1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copied from Linux Monitor (LiMon) - Networking. 4 * 5 * Copyright 1994 - 2000 Neil Russell. 6 * (See License) 7 * Copyright 2000 Roland Borde 8 * Copyright 2000 Paolo Scaffardi 9 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de 10 */ 11 12 /* 13 * General Desription: 14 * 15 * The user interface supports commands for BOOTP, RARP, and TFTP. 16 * Also, we support ARP internally. Depending on available data, 17 * these interact as follows: 18 * 19 * BOOTP: 20 * 21 * Prerequisites: - own ethernet address 22 * We want: - own IP address 23 * - TFTP server IP address 24 * - name of bootfile 25 * Next step: ARP 26 * 27 * LINK_LOCAL: 28 * 29 * Prerequisites: - own ethernet address 30 * We want: - own IP address 31 * Next step: ARP 32 * 33 * RARP: 34 * 35 * Prerequisites: - own ethernet address 36 * We want: - own IP address 37 * - TFTP server IP address 38 * Next step: ARP 39 * 40 * ARP: 41 * 42 * Prerequisites: - own ethernet address 43 * - own IP address 44 * - TFTP server IP address 45 * We want: - TFTP server ethernet address 46 * Next step: TFTP 47 * 48 * DHCP: 49 * 50 * Prerequisites: - own ethernet address 51 * We want: - IP, Netmask, ServerIP, Gateway IP 52 * - bootfilename, lease time 53 * Next step: - TFTP 54 * 55 * TFTP: 56 * 57 * Prerequisites: - own ethernet address 58 * - own IP address 59 * - TFTP server IP address 60 * - TFTP server ethernet address 61 * - name of bootfile (if unknown, we use a default name 62 * derived from our own IP address) 63 * We want: - load the boot file 64 * Next step: none 65 * 66 * NFS: 67 * 68 * Prerequisites: - own ethernet address 69 * - own IP address 70 * - name of bootfile (if unknown, we use a default name 71 * derived from our own IP address) 72 * We want: - load the boot file 73 * Next step: none 74 * 75 * SNTP: 76 * 77 * Prerequisites: - own ethernet address 78 * - own IP address 79 * We want: - network time 80 * Next step: none 81 * 82 * WOL: 83 * 84 * Prerequisites: - own ethernet address 85 * We want: - magic packet or timeout 86 * Next step: none 87 */ 88 89 90 #include <common.h> 91 #include <command.h> 92 #include <console.h> 93 #include <environment.h> 94 #include <errno.h> 95 #include <net.h> 96 #include <net/fastboot.h> 97 #include <net/tftp.h> 98 #if defined(CONFIG_LED_STATUS) 99 #include <miiphy.h> 100 #include <status_led.h> 101 #endif 102 #include <watchdog.h> 103 #include <linux/compiler.h> 104 #include "arp.h" 105 #include "bootp.h" 106 #include "cdp.h" 107 #if defined(CONFIG_CMD_DNS) 108 #include "dns.h" 109 #endif 110 #include "link_local.h" 111 #include "nfs.h" 112 #include "ping.h" 113 #include "rarp.h" 114 #if defined(CONFIG_CMD_SNTP) 115 #include "sntp.h" 116 #endif 117 #if defined(CONFIG_CMD_WOL) 118 #include "wol.h" 119 #endif 120 121 /** BOOTP EXTENTIONS **/ 122 123 /* Our subnet mask (0=unknown) */ 124 struct in_addr net_netmask; 125 /* Our gateways IP address */ 126 struct in_addr net_gateway; 127 /* Our DNS IP address */ 128 struct in_addr net_dns_server; 129 #if defined(CONFIG_BOOTP_DNS2) 130 /* Our 2nd DNS IP address */ 131 struct in_addr net_dns_server2; 132 #endif 133 134 /** END OF BOOTP EXTENTIONS **/ 135 136 /* Our ethernet address */ 137 u8 net_ethaddr[6]; 138 /* Boot server enet address */ 139 u8 net_server_ethaddr[6]; 140 /* Our IP addr (0 = unknown) */ 141 struct in_addr net_ip; 142 /* Server IP addr (0 = unknown) */ 143 struct in_addr net_server_ip; 144 /* Current receive packet */ 145 uchar *net_rx_packet; 146 /* Current rx packet length */ 147 int net_rx_packet_len; 148 /* IP packet ID */ 149 static unsigned net_ip_id; 150 /* Ethernet bcast address */ 151 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 152 const u8 net_null_ethaddr[6]; 153 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER) 154 void (*push_packet)(void *, int len) = 0; 155 #endif 156 /* Network loop state */ 157 enum net_loop_state net_state; 158 /* Tried all network devices */ 159 int net_restart_wrap; 160 /* Network loop restarted */ 161 static int net_restarted; 162 /* At least one device configured */ 163 static int net_dev_exists; 164 165 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */ 166 /* default is without VLAN */ 167 ushort net_our_vlan = 0xFFFF; 168 /* ditto */ 169 ushort net_native_vlan = 0xFFFF; 170 171 /* Boot File name */ 172 char net_boot_file_name[1024]; 173 /* Indicates whether the file name was specified on the command line */ 174 bool net_boot_file_name_explicit; 175 /* The actual transferred size of the bootfile (in bytes) */ 176 u32 net_boot_file_size; 177 /* Boot file size in blocks as reported by the DHCP server */ 178 u32 net_boot_file_expected_size_in_blocks; 179 180 #if defined(CONFIG_CMD_SNTP) 181 /* NTP server IP address */ 182 struct in_addr net_ntp_server; 183 /* offset time from UTC */ 184 int net_ntp_time_offset; 185 #endif 186 187 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN]; 188 /* Receive packets */ 189 uchar *net_rx_packets[PKTBUFSRX]; 190 /* Current UDP RX packet handler */ 191 static rxhand_f *udp_packet_handler; 192 /* Current ARP RX packet handler */ 193 static rxhand_f *arp_packet_handler; 194 #ifdef CONFIG_CMD_TFTPPUT 195 /* Current ICMP rx handler */ 196 static rxhand_icmp_f *packet_icmp_handler; 197 #endif 198 /* Current timeout handler */ 199 static thand_f *time_handler; 200 /* Time base value */ 201 static ulong time_start; 202 /* Current timeout value */ 203 static ulong time_delta; 204 /* THE transmit packet */ 205 uchar *net_tx_packet; 206 207 static int net_check_prereq(enum proto_t protocol); 208 209 static int net_try_count; 210 211 int __maybe_unused net_busy_flag; 212 213 /**********************************************************************/ 214 215 static int on_ipaddr(const char *name, const char *value, enum env_op op, 216 int flags) 217 { 218 if (flags & H_PROGRAMMATIC) 219 return 0; 220 221 net_ip = string_to_ip(value); 222 223 return 0; 224 } 225 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr); 226 227 static int on_gatewayip(const char *name, const char *value, enum env_op op, 228 int flags) 229 { 230 if (flags & H_PROGRAMMATIC) 231 return 0; 232 233 net_gateway = string_to_ip(value); 234 235 return 0; 236 } 237 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip); 238 239 static int on_netmask(const char *name, const char *value, enum env_op op, 240 int flags) 241 { 242 if (flags & H_PROGRAMMATIC) 243 return 0; 244 245 net_netmask = string_to_ip(value); 246 247 return 0; 248 } 249 U_BOOT_ENV_CALLBACK(netmask, on_netmask); 250 251 static int on_serverip(const char *name, const char *value, enum env_op op, 252 int flags) 253 { 254 if (flags & H_PROGRAMMATIC) 255 return 0; 256 257 net_server_ip = string_to_ip(value); 258 259 return 0; 260 } 261 U_BOOT_ENV_CALLBACK(serverip, on_serverip); 262 263 static int on_nvlan(const char *name, const char *value, enum env_op op, 264 int flags) 265 { 266 if (flags & H_PROGRAMMATIC) 267 return 0; 268 269 net_native_vlan = string_to_vlan(value); 270 271 return 0; 272 } 273 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan); 274 275 static int on_vlan(const char *name, const char *value, enum env_op op, 276 int flags) 277 { 278 if (flags & H_PROGRAMMATIC) 279 return 0; 280 281 net_our_vlan = string_to_vlan(value); 282 283 return 0; 284 } 285 U_BOOT_ENV_CALLBACK(vlan, on_vlan); 286 287 #if defined(CONFIG_CMD_DNS) 288 static int on_dnsip(const char *name, const char *value, enum env_op op, 289 int flags) 290 { 291 if (flags & H_PROGRAMMATIC) 292 return 0; 293 294 net_dns_server = string_to_ip(value); 295 296 return 0; 297 } 298 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip); 299 #endif 300 301 /* 302 * Check if autoload is enabled. If so, use either NFS or TFTP to download 303 * the boot file. 304 */ 305 void net_auto_load(void) 306 { 307 #if defined(CONFIG_CMD_NFS) 308 const char *s = env_get("autoload"); 309 310 if (s != NULL && strcmp(s, "NFS") == 0) { 311 if (net_check_prereq(NFS)) { 312 /* We aren't expecting to get a serverip, so just accept the assigned IP */ 313 #ifdef CONFIG_BOOTP_SERVERIP 314 net_set_state(NETLOOP_SUCCESS); 315 #else 316 printf("Cannot autoload with NFS\n"); 317 net_set_state(NETLOOP_FAIL); 318 #endif 319 return; 320 } 321 /* 322 * Use NFS to load the bootfile. 323 */ 324 nfs_start(); 325 return; 326 } 327 #endif 328 if (env_get_yesno("autoload") == 0) { 329 /* 330 * Just use BOOTP/RARP to configure system; 331 * Do not use TFTP to load the bootfile. 332 */ 333 net_set_state(NETLOOP_SUCCESS); 334 return; 335 } 336 if (net_check_prereq(TFTPGET)) { 337 /* We aren't expecting to get a serverip, so just accept the assigned IP */ 338 #ifdef CONFIG_BOOTP_SERVERIP 339 net_set_state(NETLOOP_SUCCESS); 340 #else 341 printf("Cannot autoload with TFTPGET\n"); 342 net_set_state(NETLOOP_FAIL); 343 #endif 344 return; 345 } 346 tftp_start(TFTPGET); 347 } 348 349 static void net_init_loop(void) 350 { 351 if (eth_get_dev()) 352 memcpy(net_ethaddr, eth_get_ethaddr(), 6); 353 354 return; 355 } 356 357 static void net_clear_handlers(void) 358 { 359 net_set_udp_handler(NULL); 360 net_set_arp_handler(NULL); 361 net_set_timeout_handler(0, NULL); 362 } 363 364 static void net_cleanup_loop(void) 365 { 366 net_clear_handlers(); 367 } 368 369 void net_init(void) 370 { 371 static int first_call = 1; 372 373 if (first_call) { 374 /* 375 * Setup packet buffers, aligned correctly. 376 */ 377 int i; 378 379 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1); 380 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN; 381 for (i = 0; i < PKTBUFSRX; i++) { 382 net_rx_packets[i] = net_tx_packet + 383 (i + 1) * PKTSIZE_ALIGN; 384 } 385 arp_init(); 386 net_clear_handlers(); 387 388 /* Only need to setup buffer pointers once. */ 389 first_call = 0; 390 } 391 392 net_init_loop(); 393 } 394 395 /**********************************************************************/ 396 /* 397 * Main network processing loop. 398 */ 399 400 int net_loop(enum proto_t protocol) 401 { 402 int ret = -EINVAL; 403 enum net_loop_state prev_net_state = net_state; 404 405 net_restarted = 0; 406 net_dev_exists = 0; 407 net_try_count = 1; 408 debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n"); 409 410 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start"); 411 net_init(); 412 if (eth_is_on_demand_init() || protocol != NETCONS) { 413 eth_halt(); 414 eth_set_current(); 415 ret = eth_init(); 416 if (ret < 0) { 417 eth_halt(); 418 return ret; 419 } 420 } else { 421 eth_init_state_only(); 422 } 423 restart: 424 #ifdef CONFIG_USB_KEYBOARD 425 net_busy_flag = 0; 426 #endif 427 net_set_state(NETLOOP_CONTINUE); 428 429 /* 430 * Start the ball rolling with the given start function. From 431 * here on, this code is a state machine driven by received 432 * packets and timer events. 433 */ 434 debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n"); 435 net_init_loop(); 436 437 switch (net_check_prereq(protocol)) { 438 case 1: 439 /* network not configured */ 440 eth_halt(); 441 net_set_state(prev_net_state); 442 return -ENODEV; 443 444 case 2: 445 /* network device not configured */ 446 break; 447 448 case 0: 449 net_dev_exists = 1; 450 net_boot_file_size = 0; 451 switch (protocol) { 452 case TFTPGET: 453 #ifdef CONFIG_CMD_TFTPPUT 454 case TFTPPUT: 455 #endif 456 /* always use ARP to get server ethernet address */ 457 tftp_start(protocol); 458 break; 459 #ifdef CONFIG_CMD_TFTPSRV 460 case TFTPSRV: 461 tftp_start_server(); 462 break; 463 #endif 464 #ifdef CONFIG_UDP_FUNCTION_FASTBOOT 465 case FASTBOOT: 466 fastboot_start_server(); 467 break; 468 #endif 469 #if defined(CONFIG_CMD_DHCP) 470 case DHCP: 471 bootp_reset(); 472 net_ip.s_addr = 0; 473 dhcp_request(); /* Basically same as BOOTP */ 474 break; 475 #endif 476 477 case BOOTP: 478 bootp_reset(); 479 net_ip.s_addr = 0; 480 bootp_request(); 481 break; 482 483 #if defined(CONFIG_CMD_RARP) 484 case RARP: 485 rarp_try = 0; 486 net_ip.s_addr = 0; 487 rarp_request(); 488 break; 489 #endif 490 #if defined(CONFIG_CMD_PING) 491 case PING: 492 ping_start(); 493 break; 494 #endif 495 #if defined(CONFIG_CMD_NFS) 496 case NFS: 497 nfs_start(); 498 break; 499 #endif 500 #if defined(CONFIG_CMD_CDP) 501 case CDP: 502 cdp_start(); 503 break; 504 #endif 505 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD) 506 case NETCONS: 507 nc_start(); 508 break; 509 #endif 510 #if defined(CONFIG_CMD_SNTP) 511 case SNTP: 512 sntp_start(); 513 break; 514 #endif 515 #if defined(CONFIG_CMD_DNS) 516 case DNS: 517 dns_start(); 518 break; 519 #endif 520 #if defined(CONFIG_CMD_LINK_LOCAL) 521 case LINKLOCAL: 522 link_local_start(); 523 break; 524 #endif 525 #if defined(CONFIG_CMD_WOL) 526 case WOL: 527 wol_start(); 528 break; 529 #endif 530 default: 531 break; 532 } 533 534 break; 535 } 536 537 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 538 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 539 defined(CONFIG_LED_STATUS) && \ 540 defined(CONFIG_LED_STATUS_RED) 541 /* 542 * Echo the inverted link state to the fault LED. 543 */ 544 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR)) 545 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_OFF); 546 else 547 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_ON); 548 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 549 #endif /* CONFIG_MII, ... */ 550 #ifdef CONFIG_USB_KEYBOARD 551 net_busy_flag = 1; 552 #endif 553 554 /* 555 * Main packet reception loop. Loop receiving packets until 556 * someone sets `net_state' to a state that terminates. 557 */ 558 for (;;) { 559 WATCHDOG_RESET(); 560 #ifdef CONFIG_SHOW_ACTIVITY 561 show_activity(1); 562 #endif 563 if (arp_timeout_check() > 0) 564 time_start = get_timer(0); 565 566 /* 567 * Check the ethernet for a new packet. The ethernet 568 * receive routine will process it. 569 * Most drivers return the most recent packet size, but not 570 * errors that may have happened. 571 */ 572 eth_rx(); 573 574 /* 575 * Abort if ctrl-c was pressed. 576 */ 577 if (ctrlc()) { 578 /* cancel any ARP that may not have completed */ 579 net_arp_wait_packet_ip.s_addr = 0; 580 581 net_cleanup_loop(); 582 eth_halt(); 583 /* Invalidate the last protocol */ 584 eth_set_last_protocol(BOOTP); 585 586 puts("\nAbort\n"); 587 /* include a debug print as well incase the debug 588 messages are directed to stderr */ 589 debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n"); 590 ret = -EINTR; 591 goto done; 592 } 593 594 /* 595 * Check for a timeout, and run the timeout handler 596 * if we have one. 597 */ 598 if (time_handler && 599 ((get_timer(0) - time_start) > time_delta)) { 600 thand_f *x; 601 602 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 603 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 604 defined(CONFIG_LED_STATUS) && \ 605 defined(CONFIG_LED_STATUS_RED) 606 /* 607 * Echo the inverted link state to the fault LED. 608 */ 609 if (miiphy_link(eth_get_dev()->name, 610 CONFIG_SYS_FAULT_MII_ADDR)) 611 status_led_set(CONFIG_LED_STATUS_RED, 612 CONFIG_LED_STATUS_OFF); 613 else 614 status_led_set(CONFIG_LED_STATUS_RED, 615 CONFIG_LED_STATUS_ON); 616 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 617 #endif /* CONFIG_MII, ... */ 618 debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n"); 619 x = time_handler; 620 time_handler = (thand_f *)0; 621 (*x)(); 622 } 623 624 if (net_state == NETLOOP_FAIL) 625 ret = net_start_again(); 626 627 switch (net_state) { 628 case NETLOOP_RESTART: 629 net_restarted = 1; 630 goto restart; 631 632 case NETLOOP_SUCCESS: 633 net_cleanup_loop(); 634 if (net_boot_file_size > 0) { 635 printf("Bytes transferred = %d (%x hex)\n", 636 net_boot_file_size, net_boot_file_size); 637 env_set_hex("filesize", net_boot_file_size); 638 env_set_hex("fileaddr", load_addr); 639 } 640 if (protocol != NETCONS) 641 eth_halt(); 642 else 643 eth_halt_state_only(); 644 645 eth_set_last_protocol(protocol); 646 647 ret = net_boot_file_size; 648 debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n"); 649 goto done; 650 651 case NETLOOP_FAIL: 652 net_cleanup_loop(); 653 /* Invalidate the last protocol */ 654 eth_set_last_protocol(BOOTP); 655 debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n"); 656 ret = -ENONET; 657 goto done; 658 659 case NETLOOP_CONTINUE: 660 continue; 661 } 662 } 663 664 done: 665 #ifdef CONFIG_USB_KEYBOARD 666 net_busy_flag = 0; 667 #endif 668 #ifdef CONFIG_CMD_TFTPPUT 669 /* Clear out the handlers */ 670 net_set_udp_handler(NULL); 671 net_set_icmp_handler(NULL); 672 #endif 673 net_set_state(prev_net_state); 674 return ret; 675 } 676 677 /**********************************************************************/ 678 679 static void start_again_timeout_handler(void) 680 { 681 net_set_state(NETLOOP_RESTART); 682 } 683 684 int net_start_again(void) 685 { 686 char *nretry; 687 int retry_forever = 0; 688 unsigned long retrycnt = 0; 689 int ret; 690 691 nretry = env_get("netretry"); 692 if (nretry) { 693 if (!strcmp(nretry, "yes")) 694 retry_forever = 1; 695 else if (!strcmp(nretry, "no")) 696 retrycnt = 0; 697 else if (!strcmp(nretry, "once")) 698 retrycnt = 1; 699 else 700 retrycnt = simple_strtoul(nretry, NULL, 0); 701 } else { 702 retrycnt = 0; 703 retry_forever = 0; 704 } 705 706 if ((!retry_forever) && (net_try_count > retrycnt)) { 707 eth_halt(); 708 net_set_state(NETLOOP_FAIL); 709 /* 710 * We don't provide a way for the protocol to return an error, 711 * but this is almost always the reason. 712 */ 713 return -ETIMEDOUT; 714 } 715 716 net_try_count++; 717 718 eth_halt(); 719 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER) 720 eth_try_another(!net_restarted); 721 #endif 722 ret = eth_init(); 723 if (net_restart_wrap) { 724 net_restart_wrap = 0; 725 if (net_dev_exists) { 726 net_set_timeout_handler(10000UL, 727 start_again_timeout_handler); 728 net_set_udp_handler(NULL); 729 } else { 730 net_set_state(NETLOOP_FAIL); 731 } 732 } else { 733 net_set_state(NETLOOP_RESTART); 734 } 735 return ret; 736 } 737 738 /**********************************************************************/ 739 /* 740 * Miscelaneous bits. 741 */ 742 743 static void dummy_handler(uchar *pkt, unsigned dport, 744 struct in_addr sip, unsigned sport, 745 unsigned len) 746 { 747 } 748 749 rxhand_f *net_get_udp_handler(void) 750 { 751 return udp_packet_handler; 752 } 753 754 void net_set_udp_handler(rxhand_f *f) 755 { 756 debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f); 757 if (f == NULL) 758 udp_packet_handler = dummy_handler; 759 else 760 udp_packet_handler = f; 761 } 762 763 rxhand_f *net_get_arp_handler(void) 764 { 765 return arp_packet_handler; 766 } 767 768 void net_set_arp_handler(rxhand_f *f) 769 { 770 debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f); 771 if (f == NULL) 772 arp_packet_handler = dummy_handler; 773 else 774 arp_packet_handler = f; 775 } 776 777 #ifdef CONFIG_CMD_TFTPPUT 778 void net_set_icmp_handler(rxhand_icmp_f *f) 779 { 780 packet_icmp_handler = f; 781 } 782 #endif 783 784 void net_set_timeout_handler(ulong iv, thand_f *f) 785 { 786 if (iv == 0) { 787 debug_cond(DEBUG_INT_STATE, 788 "--- net_loop timeout handler cancelled\n"); 789 time_handler = (thand_f *)0; 790 } else { 791 debug_cond(DEBUG_INT_STATE, 792 "--- net_loop timeout handler set (%p)\n", f); 793 time_handler = f; 794 time_start = get_timer(0); 795 time_delta = iv * CONFIG_SYS_HZ / 1000; 796 } 797 } 798 799 uchar *net_get_async_tx_pkt_buf(void) 800 { 801 if (arp_is_waiting()) 802 return arp_tx_packet; /* If we are waiting, we already sent */ 803 else 804 return net_tx_packet; 805 } 806 807 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport, 808 int payload_len) 809 { 810 return net_send_ip_packet(ether, dest, dport, sport, payload_len, 811 IPPROTO_UDP, 0, 0, 0); 812 } 813 814 int net_send_ip_packet(uchar *ether, struct in_addr dest, int dport, int sport, 815 int payload_len, int proto, u8 action, u32 tcp_seq_num, 816 u32 tcp_ack_num) 817 { 818 uchar *pkt; 819 int eth_hdr_size; 820 int pkt_hdr_size; 821 822 /* make sure the net_tx_packet is initialized (net_init() was called) */ 823 assert(net_tx_packet != NULL); 824 if (net_tx_packet == NULL) 825 return -1; 826 827 /* convert to new style broadcast */ 828 if (dest.s_addr == 0) 829 dest.s_addr = 0xFFFFFFFF; 830 831 /* if broadcast, make the ether address a broadcast and don't do ARP */ 832 if (dest.s_addr == 0xFFFFFFFF) 833 ether = (uchar *)net_bcast_ethaddr; 834 835 pkt = (uchar *)net_tx_packet; 836 837 eth_hdr_size = net_set_ether(pkt, ether, PROT_IP); 838 839 switch (proto) { 840 case IPPROTO_UDP: 841 net_set_udp_header(pkt + eth_hdr_size, dest, dport, sport, 842 payload_len); 843 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE; 844 break; 845 default: 846 return -EINVAL; 847 } 848 849 /* if MAC address was not discovered yet, do an ARP request */ 850 if (memcmp(ether, net_null_ethaddr, 6) == 0) { 851 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest); 852 853 /* save the ip and eth addr for the packet to send after arp */ 854 net_arp_wait_packet_ip = dest; 855 arp_wait_packet_ethaddr = ether; 856 857 /* size of the waiting packet */ 858 arp_wait_tx_packet_size = pkt_hdr_size + payload_len; 859 860 /* and do the ARP request */ 861 arp_wait_try = 1; 862 arp_wait_timer_start = get_timer(0); 863 arp_request(); 864 return 1; /* waiting */ 865 } else { 866 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n", 867 &dest, ether); 868 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len); 869 return 0; /* transmitted */ 870 } 871 } 872 873 #ifdef CONFIG_IP_DEFRAG 874 /* 875 * This function collects fragments in a single packet, according 876 * to the algorithm in RFC815. It returns NULL or the pointer to 877 * a complete packet, in static storage 878 */ 879 #ifndef CONFIG_NET_MAXDEFRAG 880 #define CONFIG_NET_MAXDEFRAG 16384 881 #endif 882 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG) 883 884 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE) 885 886 /* 887 * this is the packet being assembled, either data or frag control. 888 * Fragments go by 8 bytes, so this union must be 8 bytes long 889 */ 890 struct hole { 891 /* first_byte is address of this structure */ 892 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */ 893 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */ 894 u16 prev_hole; /* index of prev, 0 == none */ 895 u16 unused; 896 }; 897 898 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp) 899 { 900 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN); 901 static u16 first_hole, total_len; 902 struct hole *payload, *thisfrag, *h, *newh; 903 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff; 904 uchar *indata = (uchar *)ip; 905 int offset8, start, len, done = 0; 906 u16 ip_off = ntohs(ip->ip_off); 907 908 /* payload starts after IP header, this fragment is in there */ 909 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE); 910 offset8 = (ip_off & IP_OFFS); 911 thisfrag = payload + offset8; 912 start = offset8 * 8; 913 len = ntohs(ip->ip_len) - IP_HDR_SIZE; 914 915 if (start + len > IP_MAXUDP) /* fragment extends too far */ 916 return NULL; 917 918 if (!total_len || localip->ip_id != ip->ip_id) { 919 /* new (or different) packet, reset structs */ 920 total_len = 0xffff; 921 payload[0].last_byte = ~0; 922 payload[0].next_hole = 0; 923 payload[0].prev_hole = 0; 924 first_hole = 0; 925 /* any IP header will work, copy the first we received */ 926 memcpy(localip, ip, IP_HDR_SIZE); 927 } 928 929 /* 930 * What follows is the reassembly algorithm. We use the payload 931 * array as a linked list of hole descriptors, as each hole starts 932 * at a multiple of 8 bytes. However, last byte can be whatever value, 933 * so it is represented as byte count, not as 8-byte blocks. 934 */ 935 936 h = payload + first_hole; 937 while (h->last_byte < start) { 938 if (!h->next_hole) { 939 /* no hole that far away */ 940 return NULL; 941 } 942 h = payload + h->next_hole; 943 } 944 945 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */ 946 if (offset8 + ((len + 7) / 8) <= h - payload) { 947 /* no overlap with holes (dup fragment?) */ 948 return NULL; 949 } 950 951 if (!(ip_off & IP_FLAGS_MFRAG)) { 952 /* no more fragmentss: truncate this (last) hole */ 953 total_len = start + len; 954 h->last_byte = start + len; 955 } 956 957 /* 958 * There is some overlap: fix the hole list. This code doesn't 959 * deal with a fragment that overlaps with two different holes 960 * (thus being a superset of a previously-received fragment). 961 */ 962 963 if ((h >= thisfrag) && (h->last_byte <= start + len)) { 964 /* complete overlap with hole: remove hole */ 965 if (!h->prev_hole && !h->next_hole) { 966 /* last remaining hole */ 967 done = 1; 968 } else if (!h->prev_hole) { 969 /* first hole */ 970 first_hole = h->next_hole; 971 payload[h->next_hole].prev_hole = 0; 972 } else if (!h->next_hole) { 973 /* last hole */ 974 payload[h->prev_hole].next_hole = 0; 975 } else { 976 /* in the middle of the list */ 977 payload[h->next_hole].prev_hole = h->prev_hole; 978 payload[h->prev_hole].next_hole = h->next_hole; 979 } 980 981 } else if (h->last_byte <= start + len) { 982 /* overlaps with final part of the hole: shorten this hole */ 983 h->last_byte = start; 984 985 } else if (h >= thisfrag) { 986 /* overlaps with initial part of the hole: move this hole */ 987 newh = thisfrag + (len / 8); 988 *newh = *h; 989 h = newh; 990 if (h->next_hole) 991 payload[h->next_hole].prev_hole = (h - payload); 992 if (h->prev_hole) 993 payload[h->prev_hole].next_hole = (h - payload); 994 else 995 first_hole = (h - payload); 996 997 } else { 998 /* fragment sits in the middle: split the hole */ 999 newh = thisfrag + (len / 8); 1000 *newh = *h; 1001 h->last_byte = start; 1002 h->next_hole = (newh - payload); 1003 newh->prev_hole = (h - payload); 1004 if (newh->next_hole) 1005 payload[newh->next_hole].prev_hole = (newh - payload); 1006 } 1007 1008 /* finally copy this fragment and possibly return whole packet */ 1009 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len); 1010 if (!done) 1011 return NULL; 1012 1013 localip->ip_len = htons(total_len); 1014 *lenp = total_len + IP_HDR_SIZE; 1015 return localip; 1016 } 1017 1018 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 1019 int *lenp) 1020 { 1021 u16 ip_off = ntohs(ip->ip_off); 1022 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 1023 return ip; /* not a fragment */ 1024 return __net_defragment(ip, lenp); 1025 } 1026 1027 #else /* !CONFIG_IP_DEFRAG */ 1028 1029 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 1030 int *lenp) 1031 { 1032 u16 ip_off = ntohs(ip->ip_off); 1033 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 1034 return ip; /* not a fragment */ 1035 return NULL; 1036 } 1037 #endif 1038 1039 /** 1040 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently 1041 * drop others. 1042 * 1043 * @parma ip IP packet containing the ICMP 1044 */ 1045 static void receive_icmp(struct ip_udp_hdr *ip, int len, 1046 struct in_addr src_ip, struct ethernet_hdr *et) 1047 { 1048 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src; 1049 1050 switch (icmph->type) { 1051 case ICMP_REDIRECT: 1052 if (icmph->code != ICMP_REDIR_HOST) 1053 return; 1054 printf(" ICMP Host Redirect to %pI4 ", 1055 &icmph->un.gateway); 1056 break; 1057 default: 1058 #if defined(CONFIG_CMD_PING) 1059 ping_receive(et, ip, len); 1060 #endif 1061 #ifdef CONFIG_CMD_TFTPPUT 1062 if (packet_icmp_handler) 1063 packet_icmp_handler(icmph->type, icmph->code, 1064 ntohs(ip->udp_dst), src_ip, 1065 ntohs(ip->udp_src), icmph->un.data, 1066 ntohs(ip->udp_len)); 1067 #endif 1068 break; 1069 } 1070 } 1071 1072 void net_process_received_packet(uchar *in_packet, int len) 1073 { 1074 struct ethernet_hdr *et; 1075 struct ip_udp_hdr *ip; 1076 struct in_addr dst_ip; 1077 struct in_addr src_ip; 1078 int eth_proto; 1079 #if defined(CONFIG_CMD_CDP) 1080 int iscdp; 1081 #endif 1082 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid; 1083 1084 debug_cond(DEBUG_NET_PKT, "packet received\n"); 1085 1086 net_rx_packet = in_packet; 1087 net_rx_packet_len = len; 1088 et = (struct ethernet_hdr *)in_packet; 1089 1090 /* too small packet? */ 1091 if (len < ETHER_HDR_SIZE) 1092 return; 1093 1094 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER) 1095 if (push_packet) { 1096 (*push_packet)(in_packet, len); 1097 return; 1098 } 1099 #endif 1100 1101 #if defined(CONFIG_CMD_CDP) 1102 /* keep track if packet is CDP */ 1103 iscdp = is_cdp_packet(et->et_dest); 1104 #endif 1105 1106 myvlanid = ntohs(net_our_vlan); 1107 if (myvlanid == (ushort)-1) 1108 myvlanid = VLAN_NONE; 1109 mynvlanid = ntohs(net_native_vlan); 1110 if (mynvlanid == (ushort)-1) 1111 mynvlanid = VLAN_NONE; 1112 1113 eth_proto = ntohs(et->et_protlen); 1114 1115 if (eth_proto < 1514) { 1116 struct e802_hdr *et802 = (struct e802_hdr *)et; 1117 /* 1118 * Got a 802.2 packet. Check the other protocol field. 1119 * XXX VLAN over 802.2+SNAP not implemented! 1120 */ 1121 eth_proto = ntohs(et802->et_prot); 1122 1123 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE); 1124 len -= E802_HDR_SIZE; 1125 1126 } else if (eth_proto != PROT_VLAN) { /* normal packet */ 1127 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE); 1128 len -= ETHER_HDR_SIZE; 1129 1130 } else { /* VLAN packet */ 1131 struct vlan_ethernet_hdr *vet = 1132 (struct vlan_ethernet_hdr *)et; 1133 1134 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n"); 1135 1136 /* too small packet? */ 1137 if (len < VLAN_ETHER_HDR_SIZE) 1138 return; 1139 1140 /* if no VLAN active */ 1141 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE 1142 #if defined(CONFIG_CMD_CDP) 1143 && iscdp == 0 1144 #endif 1145 ) 1146 return; 1147 1148 cti = ntohs(vet->vet_tag); 1149 vlanid = cti & VLAN_IDMASK; 1150 eth_proto = ntohs(vet->vet_type); 1151 1152 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE); 1153 len -= VLAN_ETHER_HDR_SIZE; 1154 } 1155 1156 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto); 1157 1158 #if defined(CONFIG_CMD_CDP) 1159 if (iscdp) { 1160 cdp_receive((uchar *)ip, len); 1161 return; 1162 } 1163 #endif 1164 1165 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) { 1166 if (vlanid == VLAN_NONE) 1167 vlanid = (mynvlanid & VLAN_IDMASK); 1168 /* not matched? */ 1169 if (vlanid != (myvlanid & VLAN_IDMASK)) 1170 return; 1171 } 1172 1173 switch (eth_proto) { 1174 case PROT_ARP: 1175 arp_receive(et, ip, len); 1176 break; 1177 1178 #ifdef CONFIG_CMD_RARP 1179 case PROT_RARP: 1180 rarp_receive(ip, len); 1181 break; 1182 #endif 1183 case PROT_IP: 1184 debug_cond(DEBUG_NET_PKT, "Got IP\n"); 1185 /* Before we start poking the header, make sure it is there */ 1186 if (len < IP_UDP_HDR_SIZE) { 1187 debug("len bad %d < %lu\n", len, 1188 (ulong)IP_UDP_HDR_SIZE); 1189 return; 1190 } 1191 /* Check the packet length */ 1192 if (len < ntohs(ip->ip_len)) { 1193 debug("len bad %d < %d\n", len, ntohs(ip->ip_len)); 1194 return; 1195 } 1196 len = ntohs(ip->ip_len); 1197 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n", 1198 len, ip->ip_hl_v & 0xff); 1199 1200 /* Can't deal with anything except IPv4 */ 1201 if ((ip->ip_hl_v & 0xf0) != 0x40) 1202 return; 1203 /* Can't deal with IP options (headers != 20 bytes) */ 1204 if ((ip->ip_hl_v & 0x0f) > 0x05) 1205 return; 1206 /* Check the Checksum of the header */ 1207 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) { 1208 debug("checksum bad\n"); 1209 return; 1210 } 1211 /* If it is not for us, ignore it */ 1212 dst_ip = net_read_ip(&ip->ip_dst); 1213 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr && 1214 dst_ip.s_addr != 0xFFFFFFFF) { 1215 return; 1216 } 1217 /* Read source IP address for later use */ 1218 src_ip = net_read_ip(&ip->ip_src); 1219 /* 1220 * The function returns the unchanged packet if it's not 1221 * a fragment, and either the complete packet or NULL if 1222 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL) 1223 */ 1224 ip = net_defragment(ip, &len); 1225 if (!ip) 1226 return; 1227 /* 1228 * watch for ICMP host redirects 1229 * 1230 * There is no real handler code (yet). We just watch 1231 * for ICMP host redirect messages. In case anybody 1232 * sees these messages: please contact me 1233 * (wd@denx.de), or - even better - send me the 1234 * necessary fixes :-) 1235 * 1236 * Note: in all cases where I have seen this so far 1237 * it was a problem with the router configuration, 1238 * for instance when a router was configured in the 1239 * BOOTP reply, but the TFTP server was on the same 1240 * subnet. So this is probably a warning that your 1241 * configuration might be wrong. But I'm not really 1242 * sure if there aren't any other situations. 1243 * 1244 * Simon Glass <sjg@chromium.org>: We get an ICMP when 1245 * we send a tftp packet to a dead connection, or when 1246 * there is no server at the other end. 1247 */ 1248 if (ip->ip_p == IPPROTO_ICMP) { 1249 receive_icmp(ip, len, src_ip, et); 1250 return; 1251 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */ 1252 return; 1253 } 1254 1255 debug_cond(DEBUG_DEV_PKT, 1256 "received UDP (to=%pI4, from=%pI4, len=%d)\n", 1257 &dst_ip, &src_ip, len); 1258 1259 #ifdef CONFIG_UDP_CHECKSUM 1260 if (ip->udp_xsum != 0) { 1261 ulong xsum; 1262 ushort *sumptr; 1263 ushort sumlen; 1264 1265 xsum = ip->ip_p; 1266 xsum += (ntohs(ip->udp_len)); 1267 xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff; 1268 xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff; 1269 xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff; 1270 xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff; 1271 1272 sumlen = ntohs(ip->udp_len); 1273 sumptr = (ushort *)&(ip->udp_src); 1274 1275 while (sumlen > 1) { 1276 ushort sumdata; 1277 1278 sumdata = *sumptr++; 1279 xsum += ntohs(sumdata); 1280 sumlen -= 2; 1281 } 1282 if (sumlen > 0) { 1283 ushort sumdata; 1284 1285 sumdata = *(unsigned char *)sumptr; 1286 sumdata = (sumdata << 8) & 0xff00; 1287 xsum += sumdata; 1288 } 1289 while ((xsum >> 16) != 0) { 1290 xsum = (xsum & 0x0000ffff) + 1291 ((xsum >> 16) & 0x0000ffff); 1292 } 1293 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) { 1294 printf(" UDP wrong checksum %08lx %08x\n", 1295 xsum, ntohs(ip->udp_xsum)); 1296 return; 1297 } 1298 } 1299 #endif 1300 1301 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD) 1302 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE, 1303 src_ip, 1304 ntohs(ip->udp_dst), 1305 ntohs(ip->udp_src), 1306 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1307 #endif 1308 /* 1309 * IP header OK. Pass the packet to the current handler. 1310 */ 1311 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE, 1312 ntohs(ip->udp_dst), 1313 src_ip, 1314 ntohs(ip->udp_src), 1315 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1316 break; 1317 #ifdef CONFIG_CMD_WOL 1318 case PROT_WOL: 1319 wol_receive(ip, len); 1320 break; 1321 #endif 1322 } 1323 } 1324 1325 /**********************************************************************/ 1326 1327 static int net_check_prereq(enum proto_t protocol) 1328 { 1329 switch (protocol) { 1330 /* Fall through */ 1331 #if defined(CONFIG_CMD_PING) 1332 case PING: 1333 if (net_ping_ip.s_addr == 0) { 1334 puts("*** ERROR: ping address not given\n"); 1335 return 1; 1336 } 1337 goto common; 1338 #endif 1339 #if defined(CONFIG_CMD_SNTP) 1340 case SNTP: 1341 if (net_ntp_server.s_addr == 0) { 1342 puts("*** ERROR: NTP server address not given\n"); 1343 return 1; 1344 } 1345 goto common; 1346 #endif 1347 #if defined(CONFIG_CMD_DNS) 1348 case DNS: 1349 if (net_dns_server.s_addr == 0) { 1350 puts("*** ERROR: DNS server address not given\n"); 1351 return 1; 1352 } 1353 goto common; 1354 #endif 1355 #if defined(CONFIG_CMD_NFS) 1356 case NFS: 1357 #endif 1358 /* Fall through */ 1359 case TFTPGET: 1360 case TFTPPUT: 1361 if (net_server_ip.s_addr == 0 && !is_serverip_in_cmd()) { 1362 puts("*** ERROR: `serverip' not set\n"); 1363 return 1; 1364 } 1365 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \ 1366 defined(CONFIG_CMD_DNS) 1367 common: 1368 #endif 1369 /* Fall through */ 1370 1371 case NETCONS: 1372 case FASTBOOT: 1373 case TFTPSRV: 1374 if (net_ip.s_addr == 0) { 1375 puts("*** ERROR: `ipaddr' not set\n"); 1376 return 1; 1377 } 1378 /* Fall through */ 1379 1380 #ifdef CONFIG_CMD_RARP 1381 case RARP: 1382 #endif 1383 case BOOTP: 1384 case CDP: 1385 case DHCP: 1386 case LINKLOCAL: 1387 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) { 1388 int num = eth_get_dev_index(); 1389 1390 switch (num) { 1391 case -1: 1392 puts("*** ERROR: No ethernet found.\n"); 1393 return 1; 1394 case 0: 1395 puts("*** ERROR: `ethaddr' not set\n"); 1396 break; 1397 default: 1398 printf("*** ERROR: `eth%daddr' not set\n", 1399 num); 1400 break; 1401 } 1402 1403 net_start_again(); 1404 return 2; 1405 } 1406 /* Fall through */ 1407 default: 1408 return 0; 1409 } 1410 return 0; /* OK */ 1411 } 1412 /**********************************************************************/ 1413 1414 int 1415 net_eth_hdr_size(void) 1416 { 1417 ushort myvlanid; 1418 1419 myvlanid = ntohs(net_our_vlan); 1420 if (myvlanid == (ushort)-1) 1421 myvlanid = VLAN_NONE; 1422 1423 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE : 1424 VLAN_ETHER_HDR_SIZE; 1425 } 1426 1427 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot) 1428 { 1429 struct ethernet_hdr *et = (struct ethernet_hdr *)xet; 1430 ushort myvlanid; 1431 1432 myvlanid = ntohs(net_our_vlan); 1433 if (myvlanid == (ushort)-1) 1434 myvlanid = VLAN_NONE; 1435 1436 memcpy(et->et_dest, dest_ethaddr, 6); 1437 memcpy(et->et_src, net_ethaddr, 6); 1438 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) { 1439 et->et_protlen = htons(prot); 1440 return ETHER_HDR_SIZE; 1441 } else { 1442 struct vlan_ethernet_hdr *vet = 1443 (struct vlan_ethernet_hdr *)xet; 1444 1445 vet->vet_vlan_type = htons(PROT_VLAN); 1446 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK)); 1447 vet->vet_type = htons(prot); 1448 return VLAN_ETHER_HDR_SIZE; 1449 } 1450 } 1451 1452 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot) 1453 { 1454 ushort protlen; 1455 1456 memcpy(et->et_dest, addr, 6); 1457 memcpy(et->et_src, net_ethaddr, 6); 1458 protlen = ntohs(et->et_protlen); 1459 if (protlen == PROT_VLAN) { 1460 struct vlan_ethernet_hdr *vet = 1461 (struct vlan_ethernet_hdr *)et; 1462 vet->vet_type = htons(prot); 1463 return VLAN_ETHER_HDR_SIZE; 1464 } else if (protlen > 1514) { 1465 et->et_protlen = htons(prot); 1466 return ETHER_HDR_SIZE; 1467 } else { 1468 /* 802.2 + SNAP */ 1469 struct e802_hdr *et802 = (struct e802_hdr *)et; 1470 et802->et_prot = htons(prot); 1471 return E802_HDR_SIZE; 1472 } 1473 } 1474 1475 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source, 1476 u16 pkt_len, u8 proto) 1477 { 1478 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1479 1480 /* 1481 * Construct an IP header. 1482 */ 1483 /* IP_HDR_SIZE / 4 (not including UDP) */ 1484 ip->ip_hl_v = 0x45; 1485 ip->ip_tos = 0; 1486 ip->ip_len = htons(pkt_len); 1487 ip->ip_p = proto; 1488 ip->ip_id = htons(net_ip_id++); 1489 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */ 1490 ip->ip_ttl = 255; 1491 ip->ip_sum = 0; 1492 /* already in network byte order */ 1493 net_copy_ip((void *)&ip->ip_src, &source); 1494 /* already in network byte order */ 1495 net_copy_ip((void *)&ip->ip_dst, &dest); 1496 1497 ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE); 1498 } 1499 1500 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport, 1501 int len) 1502 { 1503 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1504 1505 /* 1506 * If the data is an odd number of bytes, zero the 1507 * byte after the last byte so that the checksum 1508 * will work. 1509 */ 1510 if (len & 1) 1511 pkt[IP_UDP_HDR_SIZE + len] = 0; 1512 1513 net_set_ip_header(pkt, dest, net_ip, IP_UDP_HDR_SIZE + len, 1514 IPPROTO_UDP); 1515 1516 ip->udp_src = htons(sport); 1517 ip->udp_dst = htons(dport); 1518 ip->udp_len = htons(UDP_HDR_SIZE + len); 1519 ip->udp_xsum = 0; 1520 } 1521 1522 void copy_filename(char *dst, const char *src, int size) 1523 { 1524 if (src && *src && (*src == '"')) { 1525 ++src; 1526 --size; 1527 } 1528 1529 while ((--size > 0) && src && *src && (*src != '"')) 1530 *dst++ = *src++; 1531 *dst = '\0'; 1532 } 1533 1534 int is_serverip_in_cmd(void) 1535 { 1536 return !!strchr(net_boot_file_name, ':'); 1537 } 1538 1539 int net_parse_bootfile(struct in_addr *ipaddr, char *filename, int max_len) 1540 { 1541 char *colon; 1542 1543 if (net_boot_file_name[0] == '\0') 1544 return 0; 1545 1546 colon = strchr(net_boot_file_name, ':'); 1547 if (colon) { 1548 if (ipaddr) 1549 *ipaddr = string_to_ip(net_boot_file_name); 1550 strncpy(filename, colon + 1, max_len); 1551 } else { 1552 strncpy(filename, net_boot_file_name, max_len); 1553 } 1554 filename[max_len - 1] = '\0'; 1555 1556 return 1; 1557 } 1558 1559 #if defined(CONFIG_CMD_NFS) || \ 1560 defined(CONFIG_CMD_SNTP) || \ 1561 defined(CONFIG_CMD_DNS) 1562 /* 1563 * make port a little random (1024-17407) 1564 * This keeps the math somewhat trivial to compute, and seems to work with 1565 * all supported protocols/clients/servers 1566 */ 1567 unsigned int random_port(void) 1568 { 1569 return 1024 + (get_timer(0) % 0x4000); 1570 } 1571 #endif 1572 1573 void ip_to_string(struct in_addr x, char *s) 1574 { 1575 x.s_addr = ntohl(x.s_addr); 1576 sprintf(s, "%d.%d.%d.%d", 1577 (int) ((x.s_addr >> 24) & 0xff), 1578 (int) ((x.s_addr >> 16) & 0xff), 1579 (int) ((x.s_addr >> 8) & 0xff), 1580 (int) ((x.s_addr >> 0) & 0xff) 1581 ); 1582 } 1583 1584 void vlan_to_string(ushort x, char *s) 1585 { 1586 x = ntohs(x); 1587 1588 if (x == (ushort)-1) 1589 x = VLAN_NONE; 1590 1591 if (x == VLAN_NONE) 1592 strcpy(s, "none"); 1593 else 1594 sprintf(s, "%d", x & VLAN_IDMASK); 1595 } 1596 1597 ushort string_to_vlan(const char *s) 1598 { 1599 ushort id; 1600 1601 if (s == NULL) 1602 return htons(VLAN_NONE); 1603 1604 if (*s < '0' || *s > '9') 1605 id = VLAN_NONE; 1606 else 1607 id = (ushort)simple_strtoul(s, NULL, 10); 1608 1609 return htons(id); 1610 } 1611 1612 ushort env_get_vlan(char *var) 1613 { 1614 return string_to_vlan(env_get(var)); 1615 } 1616