1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copied from Linux Monitor (LiMon) - Networking. 4 * 5 * Copyright 1994 - 2000 Neil Russell. 6 * (See License) 7 * Copyright 2000 Roland Borde 8 * Copyright 2000 Paolo Scaffardi 9 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de 10 */ 11 12 /* 13 * General Desription: 14 * 15 * The user interface supports commands for BOOTP, RARP, and TFTP. 16 * Also, we support ARP internally. Depending on available data, 17 * these interact as follows: 18 * 19 * BOOTP: 20 * 21 * Prerequisites: - own ethernet address 22 * We want: - own IP address 23 * - TFTP server IP address 24 * - name of bootfile 25 * Next step: ARP 26 * 27 * LINK_LOCAL: 28 * 29 * Prerequisites: - own ethernet address 30 * We want: - own IP address 31 * Next step: ARP 32 * 33 * RARP: 34 * 35 * Prerequisites: - own ethernet address 36 * We want: - own IP address 37 * - TFTP server IP address 38 * Next step: ARP 39 * 40 * ARP: 41 * 42 * Prerequisites: - own ethernet address 43 * - own IP address 44 * - TFTP server IP address 45 * We want: - TFTP server ethernet address 46 * Next step: TFTP 47 * 48 * DHCP: 49 * 50 * Prerequisites: - own ethernet address 51 * We want: - IP, Netmask, ServerIP, Gateway IP 52 * - bootfilename, lease time 53 * Next step: - TFTP 54 * 55 * TFTP: 56 * 57 * Prerequisites: - own ethernet address 58 * - own IP address 59 * - TFTP server IP address 60 * - TFTP server ethernet address 61 * - name of bootfile (if unknown, we use a default name 62 * derived from our own IP address) 63 * We want: - load the boot file 64 * Next step: none 65 * 66 * NFS: 67 * 68 * Prerequisites: - own ethernet address 69 * - own IP address 70 * - name of bootfile (if unknown, we use a default name 71 * derived from our own IP address) 72 * We want: - load the boot file 73 * Next step: none 74 * 75 * SNTP: 76 * 77 * Prerequisites: - own ethernet address 78 * - own IP address 79 * We want: - network time 80 * Next step: none 81 * 82 * WOL: 83 * 84 * Prerequisites: - own ethernet address 85 * We want: - magic packet or timeout 86 * Next step: none 87 */ 88 89 90 #include <common.h> 91 #include <command.h> 92 #include <console.h> 93 #include <environment.h> 94 #include <errno.h> 95 #include <net.h> 96 #include <net/fastboot.h> 97 #include <net/tftp.h> 98 #include <net/ncsi.h> 99 #if defined(CONFIG_LED_STATUS) 100 #include <miiphy.h> 101 #include <status_led.h> 102 #endif 103 #include <watchdog.h> 104 #include <linux/compiler.h> 105 #include "arp.h" 106 #include "bootp.h" 107 #include "cdp.h" 108 #if defined(CONFIG_CMD_DNS) 109 #include "dns.h" 110 #endif 111 #include "link_local.h" 112 #include "nfs.h" 113 #include "ping.h" 114 #include "rarp.h" 115 #if defined(CONFIG_CMD_SNTP) 116 #include "sntp.h" 117 #endif 118 #if defined(CONFIG_CMD_WOL) 119 #include "wol.h" 120 #endif 121 122 /** BOOTP EXTENTIONS **/ 123 124 /* Our subnet mask (0=unknown) */ 125 struct in_addr net_netmask; 126 /* Our gateways IP address */ 127 struct in_addr net_gateway; 128 /* Our DNS IP address */ 129 struct in_addr net_dns_server; 130 #if defined(CONFIG_BOOTP_DNS2) 131 /* Our 2nd DNS IP address */ 132 struct in_addr net_dns_server2; 133 #endif 134 135 /** END OF BOOTP EXTENTIONS **/ 136 137 /* Our ethernet address */ 138 u8 net_ethaddr[6]; 139 /* Boot server enet address */ 140 u8 net_server_ethaddr[6]; 141 /* Our IP addr (0 = unknown) */ 142 struct in_addr net_ip; 143 /* Server IP addr (0 = unknown) */ 144 struct in_addr net_server_ip; 145 /* Current receive packet */ 146 uchar *net_rx_packet; 147 /* Current rx packet length */ 148 int net_rx_packet_len; 149 /* IP packet ID */ 150 static unsigned net_ip_id; 151 /* Ethernet bcast address */ 152 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 153 const u8 net_null_ethaddr[6]; 154 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER) 155 void (*push_packet)(void *, int len) = 0; 156 #endif 157 /* Network loop state */ 158 enum net_loop_state net_state; 159 /* Tried all network devices */ 160 int net_restart_wrap; 161 /* Network loop restarted */ 162 static int net_restarted; 163 /* At least one device configured */ 164 static int net_dev_exists; 165 166 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */ 167 /* default is without VLAN */ 168 ushort net_our_vlan = 0xFFFF; 169 /* ditto */ 170 ushort net_native_vlan = 0xFFFF; 171 172 /* Boot File name */ 173 char net_boot_file_name[1024]; 174 /* Indicates whether the file name was specified on the command line */ 175 bool net_boot_file_name_explicit; 176 /* The actual transferred size of the bootfile (in bytes) */ 177 u32 net_boot_file_size; 178 /* Boot file size in blocks as reported by the DHCP server */ 179 u32 net_boot_file_expected_size_in_blocks; 180 181 #if defined(CONFIG_CMD_SNTP) 182 /* NTP server IP address */ 183 struct in_addr net_ntp_server; 184 /* offset time from UTC */ 185 int net_ntp_time_offset; 186 #endif 187 188 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN]; 189 /* Receive packets */ 190 uchar *net_rx_packets[PKTBUFSRX]; 191 /* Current UDP RX packet handler */ 192 static rxhand_f *udp_packet_handler; 193 /* Current ARP RX packet handler */ 194 static rxhand_f *arp_packet_handler; 195 #ifdef CONFIG_CMD_TFTPPUT 196 /* Current ICMP rx handler */ 197 static rxhand_icmp_f *packet_icmp_handler; 198 #endif 199 /* Current timeout handler */ 200 static thand_f *time_handler; 201 /* Time base value */ 202 static ulong time_start; 203 /* Current timeout value */ 204 static ulong time_delta; 205 /* THE transmit packet */ 206 uchar *net_tx_packet; 207 208 static int net_check_prereq(enum proto_t protocol); 209 210 static int net_try_count; 211 212 int __maybe_unused net_busy_flag; 213 214 /**********************************************************************/ 215 216 static int on_ipaddr(const char *name, const char *value, enum env_op op, 217 int flags) 218 { 219 if (flags & H_PROGRAMMATIC) 220 return 0; 221 222 net_ip = string_to_ip(value); 223 224 return 0; 225 } 226 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr); 227 228 static int on_gatewayip(const char *name, const char *value, enum env_op op, 229 int flags) 230 { 231 if (flags & H_PROGRAMMATIC) 232 return 0; 233 234 net_gateway = string_to_ip(value); 235 236 return 0; 237 } 238 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip); 239 240 static int on_netmask(const char *name, const char *value, enum env_op op, 241 int flags) 242 { 243 if (flags & H_PROGRAMMATIC) 244 return 0; 245 246 net_netmask = string_to_ip(value); 247 248 return 0; 249 } 250 U_BOOT_ENV_CALLBACK(netmask, on_netmask); 251 252 static int on_serverip(const char *name, const char *value, enum env_op op, 253 int flags) 254 { 255 if (flags & H_PROGRAMMATIC) 256 return 0; 257 258 net_server_ip = string_to_ip(value); 259 260 return 0; 261 } 262 U_BOOT_ENV_CALLBACK(serverip, on_serverip); 263 264 static int on_nvlan(const char *name, const char *value, enum env_op op, 265 int flags) 266 { 267 if (flags & H_PROGRAMMATIC) 268 return 0; 269 270 net_native_vlan = string_to_vlan(value); 271 272 return 0; 273 } 274 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan); 275 276 static int on_vlan(const char *name, const char *value, enum env_op op, 277 int flags) 278 { 279 if (flags & H_PROGRAMMATIC) 280 return 0; 281 282 net_our_vlan = string_to_vlan(value); 283 284 return 0; 285 } 286 U_BOOT_ENV_CALLBACK(vlan, on_vlan); 287 288 #if defined(CONFIG_CMD_DNS) 289 static int on_dnsip(const char *name, const char *value, enum env_op op, 290 int flags) 291 { 292 if (flags & H_PROGRAMMATIC) 293 return 0; 294 295 net_dns_server = string_to_ip(value); 296 297 return 0; 298 } 299 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip); 300 #endif 301 302 /* 303 * Check if autoload is enabled. If so, use either NFS or TFTP to download 304 * the boot file. 305 */ 306 void net_auto_load(void) 307 { 308 #if defined(CONFIG_CMD_NFS) 309 const char *s = env_get("autoload"); 310 311 if (s != NULL && strcmp(s, "NFS") == 0) { 312 if (net_check_prereq(NFS)) { 313 /* We aren't expecting to get a serverip, so just accept the assigned IP */ 314 #ifdef CONFIG_BOOTP_SERVERIP 315 net_set_state(NETLOOP_SUCCESS); 316 #else 317 printf("Cannot autoload with NFS\n"); 318 net_set_state(NETLOOP_FAIL); 319 #endif 320 return; 321 } 322 /* 323 * Use NFS to load the bootfile. 324 */ 325 nfs_start(); 326 return; 327 } 328 #endif 329 if (env_get_yesno("autoload") == 0) { 330 /* 331 * Just use BOOTP/RARP to configure system; 332 * Do not use TFTP to load the bootfile. 333 */ 334 net_set_state(NETLOOP_SUCCESS); 335 return; 336 } 337 if (net_check_prereq(TFTPGET)) { 338 /* We aren't expecting to get a serverip, so just accept the assigned IP */ 339 #ifdef CONFIG_BOOTP_SERVERIP 340 net_set_state(NETLOOP_SUCCESS); 341 #else 342 printf("Cannot autoload with TFTPGET\n"); 343 net_set_state(NETLOOP_FAIL); 344 #endif 345 return; 346 } 347 tftp_start(TFTPGET); 348 } 349 350 static void net_init_loop(void) 351 { 352 if (eth_get_dev()) 353 memcpy(net_ethaddr, eth_get_ethaddr(), 6); 354 355 return; 356 } 357 358 static void net_clear_handlers(void) 359 { 360 net_set_udp_handler(NULL); 361 net_set_arp_handler(NULL); 362 net_set_timeout_handler(0, NULL); 363 } 364 365 static void net_cleanup_loop(void) 366 { 367 net_clear_handlers(); 368 } 369 370 void net_init(void) 371 { 372 static int first_call = 1; 373 374 if (first_call) { 375 /* 376 * Setup packet buffers, aligned correctly. 377 */ 378 int i; 379 380 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1); 381 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN; 382 for (i = 0; i < PKTBUFSRX; i++) { 383 net_rx_packets[i] = net_tx_packet + 384 (i + 1) * PKTSIZE_ALIGN; 385 } 386 arp_init(); 387 net_clear_handlers(); 388 389 /* Only need to setup buffer pointers once. */ 390 first_call = 0; 391 } 392 393 net_init_loop(); 394 } 395 396 /**********************************************************************/ 397 /* 398 * Main network processing loop. 399 */ 400 401 int net_loop(enum proto_t protocol) 402 { 403 int ret = -EINVAL; 404 enum net_loop_state prev_net_state = net_state; 405 406 net_restarted = 0; 407 net_dev_exists = 0; 408 net_try_count = 1; 409 debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n"); 410 411 #ifdef CONFIG_PHY_NCSI 412 if (protocol != NCSI && !ncsi_active()) { 413 printf("%s: configuring NCSI first\n", __func__); 414 if (net_loop(NCSI) < 0) 415 return ret; 416 eth_init_state_only(); 417 goto restart; 418 } 419 #endif 420 421 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start"); 422 net_init(); 423 if (eth_is_on_demand_init() || protocol != NETCONS) { 424 eth_halt(); 425 eth_set_current(); 426 ret = eth_init(); 427 if (ret < 0) { 428 eth_halt(); 429 return ret; 430 } 431 } else { 432 eth_init_state_only(); 433 } 434 435 restart: 436 #ifdef CONFIG_USB_KEYBOARD 437 net_busy_flag = 0; 438 #endif 439 net_set_state(NETLOOP_CONTINUE); 440 441 /* 442 * Start the ball rolling with the given start function. From 443 * here on, this code is a state machine driven by received 444 * packets and timer events. 445 */ 446 debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n"); 447 net_init_loop(); 448 449 switch (net_check_prereq(protocol)) { 450 case 1: 451 /* network not configured */ 452 eth_halt(); 453 net_set_state(prev_net_state); 454 return -ENODEV; 455 456 case 2: 457 /* network device not configured */ 458 break; 459 460 case 0: 461 net_dev_exists = 1; 462 net_boot_file_size = 0; 463 switch (protocol) { 464 case TFTPGET: 465 #ifdef CONFIG_CMD_TFTPPUT 466 case TFTPPUT: 467 #endif 468 /* always use ARP to get server ethernet address */ 469 tftp_start(protocol); 470 break; 471 #ifdef CONFIG_CMD_TFTPSRV 472 case TFTPSRV: 473 tftp_start_server(); 474 break; 475 #endif 476 #ifdef CONFIG_UDP_FUNCTION_FASTBOOT 477 case FASTBOOT: 478 fastboot_start_server(); 479 break; 480 #endif 481 #if defined(CONFIG_CMD_DHCP) 482 case DHCP: 483 bootp_reset(); 484 net_ip.s_addr = 0; 485 dhcp_request(); /* Basically same as BOOTP */ 486 break; 487 #endif 488 489 case BOOTP: 490 bootp_reset(); 491 net_ip.s_addr = 0; 492 bootp_request(); 493 break; 494 495 #if defined(CONFIG_CMD_RARP) 496 case RARP: 497 rarp_try = 0; 498 net_ip.s_addr = 0; 499 rarp_request(); 500 break; 501 #endif 502 #if defined(CONFIG_CMD_PING) 503 case PING: 504 ping_start(); 505 break; 506 #endif 507 #if defined(CONFIG_CMD_NFS) 508 case NFS: 509 nfs_start(); 510 break; 511 #endif 512 #if defined(CONFIG_CMD_CDP) 513 case CDP: 514 cdp_start(); 515 break; 516 #endif 517 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD) 518 case NETCONS: 519 nc_start(); 520 break; 521 #endif 522 #if defined(CONFIG_CMD_SNTP) 523 case SNTP: 524 sntp_start(); 525 break; 526 #endif 527 #if defined(CONFIG_CMD_DNS) 528 case DNS: 529 dns_start(); 530 break; 531 #endif 532 #if defined(CONFIG_CMD_LINK_LOCAL) 533 case LINKLOCAL: 534 link_local_start(); 535 break; 536 #endif 537 #if defined(CONFIG_CMD_WOL) 538 case WOL: 539 wol_start(); 540 break; 541 #endif 542 #if defined(CONFIG_CMD_NCSI) 543 case NCSI: 544 ncsi_probe_packages(); 545 break; 546 #endif 547 default: 548 break; 549 } 550 551 break; 552 } 553 554 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 555 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 556 defined(CONFIG_LED_STATUS) && \ 557 defined(CONFIG_LED_STATUS_RED) 558 /* 559 * Echo the inverted link state to the fault LED. 560 */ 561 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR)) 562 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_OFF); 563 else 564 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_ON); 565 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 566 #endif /* CONFIG_MII, ... */ 567 #ifdef CONFIG_USB_KEYBOARD 568 net_busy_flag = 1; 569 #endif 570 571 /* 572 * Main packet reception loop. Loop receiving packets until 573 * someone sets `net_state' to a state that terminates. 574 */ 575 for (;;) { 576 WATCHDOG_RESET(); 577 #ifdef CONFIG_SHOW_ACTIVITY 578 show_activity(1); 579 #endif 580 if (arp_timeout_check() > 0) 581 time_start = get_timer(0); 582 583 /* 584 * Check the ethernet for a new packet. The ethernet 585 * receive routine will process it. 586 * Most drivers return the most recent packet size, but not 587 * errors that may have happened. 588 */ 589 eth_rx(); 590 591 /* 592 * Abort if ctrl-c was pressed. 593 */ 594 if (ctrlc()) { 595 /* cancel any ARP that may not have completed */ 596 net_arp_wait_packet_ip.s_addr = 0; 597 598 net_cleanup_loop(); 599 eth_halt(); 600 /* Invalidate the last protocol */ 601 eth_set_last_protocol(BOOTP); 602 603 puts("\nAbort\n"); 604 /* include a debug print as well incase the debug 605 messages are directed to stderr */ 606 debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n"); 607 ret = -EINTR; 608 goto done; 609 } 610 611 /* 612 * Check for a timeout, and run the timeout handler 613 * if we have one. 614 */ 615 if (time_handler && 616 ((get_timer(0) - time_start) > time_delta)) { 617 thand_f *x; 618 619 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 620 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 621 defined(CONFIG_LED_STATUS) && \ 622 defined(CONFIG_LED_STATUS_RED) 623 /* 624 * Echo the inverted link state to the fault LED. 625 */ 626 if (miiphy_link(eth_get_dev()->name, 627 CONFIG_SYS_FAULT_MII_ADDR)) 628 status_led_set(CONFIG_LED_STATUS_RED, 629 CONFIG_LED_STATUS_OFF); 630 else 631 status_led_set(CONFIG_LED_STATUS_RED, 632 CONFIG_LED_STATUS_ON); 633 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 634 #endif /* CONFIG_MII, ... */ 635 debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n"); 636 x = time_handler; 637 time_handler = (thand_f *)0; 638 (*x)(); 639 } 640 641 if (net_state == NETLOOP_FAIL) 642 ret = net_start_again(); 643 644 switch (net_state) { 645 case NETLOOP_RESTART: 646 net_restarted = 1; 647 goto restart; 648 649 case NETLOOP_SUCCESS: 650 net_cleanup_loop(); 651 if (net_boot_file_size > 0) { 652 printf("Bytes transferred = %d (%x hex)\n", 653 net_boot_file_size, net_boot_file_size); 654 env_set_hex("filesize", net_boot_file_size); 655 env_set_hex("fileaddr", load_addr); 656 } 657 if (protocol != NETCONS && protocol != NCSI) 658 eth_halt(); 659 else 660 eth_halt_state_only(); 661 662 eth_set_last_protocol(protocol); 663 664 ret = net_boot_file_size; 665 debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n"); 666 goto done; 667 668 case NETLOOP_FAIL: 669 net_cleanup_loop(); 670 /* Invalidate the last protocol */ 671 eth_set_last_protocol(BOOTP); 672 debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n"); 673 ret = -ENONET; 674 goto done; 675 676 case NETLOOP_CONTINUE: 677 continue; 678 } 679 } 680 681 done: 682 #ifdef CONFIG_USB_KEYBOARD 683 net_busy_flag = 0; 684 #endif 685 #ifdef CONFIG_CMD_TFTPPUT 686 /* Clear out the handlers */ 687 net_set_udp_handler(NULL); 688 net_set_icmp_handler(NULL); 689 #endif 690 net_set_state(prev_net_state); 691 return ret; 692 } 693 694 /**********************************************************************/ 695 696 static void start_again_timeout_handler(void) 697 { 698 net_set_state(NETLOOP_RESTART); 699 } 700 701 int net_start_again(void) 702 { 703 char *nretry; 704 int retry_forever = 0; 705 unsigned long retrycnt = 0; 706 int ret; 707 708 nretry = env_get("netretry"); 709 if (nretry) { 710 if (!strcmp(nretry, "yes")) 711 retry_forever = 1; 712 else if (!strcmp(nretry, "no")) 713 retrycnt = 0; 714 else if (!strcmp(nretry, "once")) 715 retrycnt = 1; 716 else 717 retrycnt = simple_strtoul(nretry, NULL, 0); 718 } else { 719 retrycnt = 0; 720 retry_forever = 0; 721 } 722 723 if ((!retry_forever) && (net_try_count > retrycnt)) { 724 eth_halt(); 725 net_set_state(NETLOOP_FAIL); 726 /* 727 * We don't provide a way for the protocol to return an error, 728 * but this is almost always the reason. 729 */ 730 return -ETIMEDOUT; 731 } 732 733 net_try_count++; 734 735 eth_halt(); 736 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER) 737 eth_try_another(!net_restarted); 738 #endif 739 ret = eth_init(); 740 if (net_restart_wrap) { 741 net_restart_wrap = 0; 742 if (net_dev_exists) { 743 net_set_timeout_handler(10000UL, 744 start_again_timeout_handler); 745 net_set_udp_handler(NULL); 746 } else { 747 net_set_state(NETLOOP_FAIL); 748 } 749 } else { 750 net_set_state(NETLOOP_RESTART); 751 } 752 return ret; 753 } 754 755 /**********************************************************************/ 756 /* 757 * Miscelaneous bits. 758 */ 759 760 static void dummy_handler(uchar *pkt, unsigned dport, 761 struct in_addr sip, unsigned sport, 762 unsigned len) 763 { 764 } 765 766 rxhand_f *net_get_udp_handler(void) 767 { 768 return udp_packet_handler; 769 } 770 771 void net_set_udp_handler(rxhand_f *f) 772 { 773 debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f); 774 if (f == NULL) 775 udp_packet_handler = dummy_handler; 776 else 777 udp_packet_handler = f; 778 } 779 780 rxhand_f *net_get_arp_handler(void) 781 { 782 return arp_packet_handler; 783 } 784 785 void net_set_arp_handler(rxhand_f *f) 786 { 787 debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f); 788 if (f == NULL) 789 arp_packet_handler = dummy_handler; 790 else 791 arp_packet_handler = f; 792 } 793 794 #ifdef CONFIG_CMD_TFTPPUT 795 void net_set_icmp_handler(rxhand_icmp_f *f) 796 { 797 packet_icmp_handler = f; 798 } 799 #endif 800 801 void net_set_timeout_handler(ulong iv, thand_f *f) 802 { 803 if (iv == 0) { 804 debug_cond(DEBUG_INT_STATE, 805 "--- net_loop timeout handler cancelled\n"); 806 time_handler = (thand_f *)0; 807 } else { 808 debug_cond(DEBUG_INT_STATE, 809 "--- net_loop timeout handler set (%p)\n", f); 810 time_handler = f; 811 time_start = get_timer(0); 812 time_delta = iv * CONFIG_SYS_HZ / 1000; 813 } 814 } 815 816 uchar *net_get_async_tx_pkt_buf(void) 817 { 818 if (arp_is_waiting()) 819 return arp_tx_packet; /* If we are waiting, we already sent */ 820 else 821 return net_tx_packet; 822 } 823 824 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport, 825 int payload_len) 826 { 827 return net_send_ip_packet(ether, dest, dport, sport, payload_len, 828 IPPROTO_UDP, 0, 0, 0); 829 } 830 831 int net_send_ip_packet(uchar *ether, struct in_addr dest, int dport, int sport, 832 int payload_len, int proto, u8 action, u32 tcp_seq_num, 833 u32 tcp_ack_num) 834 { 835 uchar *pkt; 836 int eth_hdr_size; 837 int pkt_hdr_size; 838 839 /* make sure the net_tx_packet is initialized (net_init() was called) */ 840 assert(net_tx_packet != NULL); 841 if (net_tx_packet == NULL) 842 return -1; 843 844 /* convert to new style broadcast */ 845 if (dest.s_addr == 0) 846 dest.s_addr = 0xFFFFFFFF; 847 848 /* if broadcast, make the ether address a broadcast and don't do ARP */ 849 if (dest.s_addr == 0xFFFFFFFF) 850 ether = (uchar *)net_bcast_ethaddr; 851 852 pkt = (uchar *)net_tx_packet; 853 854 eth_hdr_size = net_set_ether(pkt, ether, PROT_IP); 855 856 switch (proto) { 857 case IPPROTO_UDP: 858 net_set_udp_header(pkt + eth_hdr_size, dest, dport, sport, 859 payload_len); 860 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE; 861 break; 862 default: 863 return -EINVAL; 864 } 865 866 /* if MAC address was not discovered yet, do an ARP request */ 867 if (memcmp(ether, net_null_ethaddr, 6) == 0) { 868 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest); 869 870 /* save the ip and eth addr for the packet to send after arp */ 871 net_arp_wait_packet_ip = dest; 872 arp_wait_packet_ethaddr = ether; 873 874 /* size of the waiting packet */ 875 arp_wait_tx_packet_size = pkt_hdr_size + payload_len; 876 877 /* and do the ARP request */ 878 arp_wait_try = 1; 879 arp_wait_timer_start = get_timer(0); 880 arp_request(); 881 return 1; /* waiting */ 882 } else { 883 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n", 884 &dest, ether); 885 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len); 886 return 0; /* transmitted */ 887 } 888 } 889 890 #ifdef CONFIG_IP_DEFRAG 891 /* 892 * This function collects fragments in a single packet, according 893 * to the algorithm in RFC815. It returns NULL or the pointer to 894 * a complete packet, in static storage 895 */ 896 #ifndef CONFIG_NET_MAXDEFRAG 897 #define CONFIG_NET_MAXDEFRAG 16384 898 #endif 899 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG) 900 901 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE) 902 903 /* 904 * this is the packet being assembled, either data or frag control. 905 * Fragments go by 8 bytes, so this union must be 8 bytes long 906 */ 907 struct hole { 908 /* first_byte is address of this structure */ 909 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */ 910 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */ 911 u16 prev_hole; /* index of prev, 0 == none */ 912 u16 unused; 913 }; 914 915 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp) 916 { 917 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN); 918 static u16 first_hole, total_len; 919 struct hole *payload, *thisfrag, *h, *newh; 920 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff; 921 uchar *indata = (uchar *)ip; 922 int offset8, start, len, done = 0; 923 u16 ip_off = ntohs(ip->ip_off); 924 925 /* payload starts after IP header, this fragment is in there */ 926 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE); 927 offset8 = (ip_off & IP_OFFS); 928 thisfrag = payload + offset8; 929 start = offset8 * 8; 930 len = ntohs(ip->ip_len) - IP_HDR_SIZE; 931 932 if (start + len > IP_MAXUDP) /* fragment extends too far */ 933 return NULL; 934 935 if (!total_len || localip->ip_id != ip->ip_id) { 936 /* new (or different) packet, reset structs */ 937 total_len = 0xffff; 938 payload[0].last_byte = ~0; 939 payload[0].next_hole = 0; 940 payload[0].prev_hole = 0; 941 first_hole = 0; 942 /* any IP header will work, copy the first we received */ 943 memcpy(localip, ip, IP_HDR_SIZE); 944 } 945 946 /* 947 * What follows is the reassembly algorithm. We use the payload 948 * array as a linked list of hole descriptors, as each hole starts 949 * at a multiple of 8 bytes. However, last byte can be whatever value, 950 * so it is represented as byte count, not as 8-byte blocks. 951 */ 952 953 h = payload + first_hole; 954 while (h->last_byte < start) { 955 if (!h->next_hole) { 956 /* no hole that far away */ 957 return NULL; 958 } 959 h = payload + h->next_hole; 960 } 961 962 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */ 963 if (offset8 + ((len + 7) / 8) <= h - payload) { 964 /* no overlap with holes (dup fragment?) */ 965 return NULL; 966 } 967 968 if (!(ip_off & IP_FLAGS_MFRAG)) { 969 /* no more fragmentss: truncate this (last) hole */ 970 total_len = start + len; 971 h->last_byte = start + len; 972 } 973 974 /* 975 * There is some overlap: fix the hole list. This code doesn't 976 * deal with a fragment that overlaps with two different holes 977 * (thus being a superset of a previously-received fragment). 978 */ 979 980 if ((h >= thisfrag) && (h->last_byte <= start + len)) { 981 /* complete overlap with hole: remove hole */ 982 if (!h->prev_hole && !h->next_hole) { 983 /* last remaining hole */ 984 done = 1; 985 } else if (!h->prev_hole) { 986 /* first hole */ 987 first_hole = h->next_hole; 988 payload[h->next_hole].prev_hole = 0; 989 } else if (!h->next_hole) { 990 /* last hole */ 991 payload[h->prev_hole].next_hole = 0; 992 } else { 993 /* in the middle of the list */ 994 payload[h->next_hole].prev_hole = h->prev_hole; 995 payload[h->prev_hole].next_hole = h->next_hole; 996 } 997 998 } else if (h->last_byte <= start + len) { 999 /* overlaps with final part of the hole: shorten this hole */ 1000 h->last_byte = start; 1001 1002 } else if (h >= thisfrag) { 1003 /* overlaps with initial part of the hole: move this hole */ 1004 newh = thisfrag + (len / 8); 1005 *newh = *h; 1006 h = newh; 1007 if (h->next_hole) 1008 payload[h->next_hole].prev_hole = (h - payload); 1009 if (h->prev_hole) 1010 payload[h->prev_hole].next_hole = (h - payload); 1011 else 1012 first_hole = (h - payload); 1013 1014 } else { 1015 /* fragment sits in the middle: split the hole */ 1016 newh = thisfrag + (len / 8); 1017 *newh = *h; 1018 h->last_byte = start; 1019 h->next_hole = (newh - payload); 1020 newh->prev_hole = (h - payload); 1021 if (newh->next_hole) 1022 payload[newh->next_hole].prev_hole = (newh - payload); 1023 } 1024 1025 /* finally copy this fragment and possibly return whole packet */ 1026 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len); 1027 if (!done) 1028 return NULL; 1029 1030 localip->ip_len = htons(total_len); 1031 *lenp = total_len + IP_HDR_SIZE; 1032 return localip; 1033 } 1034 1035 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 1036 int *lenp) 1037 { 1038 u16 ip_off = ntohs(ip->ip_off); 1039 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 1040 return ip; /* not a fragment */ 1041 return __net_defragment(ip, lenp); 1042 } 1043 1044 #else /* !CONFIG_IP_DEFRAG */ 1045 1046 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 1047 int *lenp) 1048 { 1049 u16 ip_off = ntohs(ip->ip_off); 1050 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 1051 return ip; /* not a fragment */ 1052 return NULL; 1053 } 1054 #endif 1055 1056 /** 1057 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently 1058 * drop others. 1059 * 1060 * @parma ip IP packet containing the ICMP 1061 */ 1062 static void receive_icmp(struct ip_udp_hdr *ip, int len, 1063 struct in_addr src_ip, struct ethernet_hdr *et) 1064 { 1065 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src; 1066 1067 switch (icmph->type) { 1068 case ICMP_REDIRECT: 1069 if (icmph->code != ICMP_REDIR_HOST) 1070 return; 1071 printf(" ICMP Host Redirect to %pI4 ", 1072 &icmph->un.gateway); 1073 break; 1074 default: 1075 #if defined(CONFIG_CMD_PING) 1076 ping_receive(et, ip, len); 1077 #endif 1078 #ifdef CONFIG_CMD_TFTPPUT 1079 if (packet_icmp_handler) 1080 packet_icmp_handler(icmph->type, icmph->code, 1081 ntohs(ip->udp_dst), src_ip, 1082 ntohs(ip->udp_src), icmph->un.data, 1083 ntohs(ip->udp_len)); 1084 #endif 1085 break; 1086 } 1087 } 1088 1089 void net_process_received_packet(uchar *in_packet, int len) 1090 { 1091 struct ethernet_hdr *et; 1092 struct ip_udp_hdr *ip; 1093 struct in_addr dst_ip; 1094 struct in_addr src_ip; 1095 int eth_proto; 1096 #if defined(CONFIG_CMD_CDP) 1097 int iscdp; 1098 #endif 1099 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid; 1100 1101 debug_cond(DEBUG_NET_PKT, "packet received\n"); 1102 1103 net_rx_packet = in_packet; 1104 net_rx_packet_len = len; 1105 et = (struct ethernet_hdr *)in_packet; 1106 1107 /* too small packet? */ 1108 if (len < ETHER_HDR_SIZE) 1109 return; 1110 1111 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER) 1112 if (push_packet) { 1113 (*push_packet)(in_packet, len); 1114 return; 1115 } 1116 #endif 1117 1118 #if defined(CONFIG_CMD_CDP) 1119 /* keep track if packet is CDP */ 1120 iscdp = is_cdp_packet(et->et_dest); 1121 #endif 1122 1123 myvlanid = ntohs(net_our_vlan); 1124 if (myvlanid == (ushort)-1) 1125 myvlanid = VLAN_NONE; 1126 mynvlanid = ntohs(net_native_vlan); 1127 if (mynvlanid == (ushort)-1) 1128 mynvlanid = VLAN_NONE; 1129 1130 eth_proto = ntohs(et->et_protlen); 1131 1132 if (eth_proto < 1514) { 1133 struct e802_hdr *et802 = (struct e802_hdr *)et; 1134 /* 1135 * Got a 802.2 packet. Check the other protocol field. 1136 * XXX VLAN over 802.2+SNAP not implemented! 1137 */ 1138 eth_proto = ntohs(et802->et_prot); 1139 1140 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE); 1141 len -= E802_HDR_SIZE; 1142 1143 } else if (eth_proto != PROT_VLAN) { /* normal packet */ 1144 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE); 1145 len -= ETHER_HDR_SIZE; 1146 1147 } else { /* VLAN packet */ 1148 struct vlan_ethernet_hdr *vet = 1149 (struct vlan_ethernet_hdr *)et; 1150 1151 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n"); 1152 1153 /* too small packet? */ 1154 if (len < VLAN_ETHER_HDR_SIZE) 1155 return; 1156 1157 /* if no VLAN active */ 1158 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE 1159 #if defined(CONFIG_CMD_CDP) 1160 && iscdp == 0 1161 #endif 1162 ) 1163 return; 1164 1165 cti = ntohs(vet->vet_tag); 1166 vlanid = cti & VLAN_IDMASK; 1167 eth_proto = ntohs(vet->vet_type); 1168 1169 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE); 1170 len -= VLAN_ETHER_HDR_SIZE; 1171 } 1172 1173 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto); 1174 1175 #if defined(CONFIG_CMD_CDP) 1176 if (iscdp) { 1177 cdp_receive((uchar *)ip, len); 1178 return; 1179 } 1180 #endif 1181 1182 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) { 1183 if (vlanid == VLAN_NONE) 1184 vlanid = (mynvlanid & VLAN_IDMASK); 1185 /* not matched? */ 1186 if (vlanid != (myvlanid & VLAN_IDMASK)) 1187 return; 1188 } 1189 1190 switch (eth_proto) { 1191 case PROT_ARP: 1192 arp_receive(et, ip, len); 1193 break; 1194 1195 #ifdef CONFIG_CMD_RARP 1196 case PROT_RARP: 1197 rarp_receive(ip, len); 1198 break; 1199 #endif 1200 case PROT_IP: 1201 debug_cond(DEBUG_NET_PKT, "Got IP\n"); 1202 /* Before we start poking the header, make sure it is there */ 1203 if (len < IP_UDP_HDR_SIZE) { 1204 debug("len bad %d < %lu\n", len, 1205 (ulong)IP_UDP_HDR_SIZE); 1206 return; 1207 } 1208 /* Check the packet length */ 1209 if (len < ntohs(ip->ip_len)) { 1210 debug("len bad %d < %d\n", len, ntohs(ip->ip_len)); 1211 return; 1212 } 1213 len = ntohs(ip->ip_len); 1214 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n", 1215 len, ip->ip_hl_v & 0xff); 1216 1217 /* Can't deal with anything except IPv4 */ 1218 if ((ip->ip_hl_v & 0xf0) != 0x40) 1219 return; 1220 /* Can't deal with IP options (headers != 20 bytes) */ 1221 if ((ip->ip_hl_v & 0x0f) > 0x05) 1222 return; 1223 /* Check the Checksum of the header */ 1224 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) { 1225 debug("checksum bad\n"); 1226 return; 1227 } 1228 /* If it is not for us, ignore it */ 1229 dst_ip = net_read_ip(&ip->ip_dst); 1230 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr && 1231 dst_ip.s_addr != 0xFFFFFFFF) { 1232 return; 1233 } 1234 /* Read source IP address for later use */ 1235 src_ip = net_read_ip(&ip->ip_src); 1236 /* 1237 * The function returns the unchanged packet if it's not 1238 * a fragment, and either the complete packet or NULL if 1239 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL) 1240 */ 1241 ip = net_defragment(ip, &len); 1242 if (!ip) 1243 return; 1244 /* 1245 * watch for ICMP host redirects 1246 * 1247 * There is no real handler code (yet). We just watch 1248 * for ICMP host redirect messages. In case anybody 1249 * sees these messages: please contact me 1250 * (wd@denx.de), or - even better - send me the 1251 * necessary fixes :-) 1252 * 1253 * Note: in all cases where I have seen this so far 1254 * it was a problem with the router configuration, 1255 * for instance when a router was configured in the 1256 * BOOTP reply, but the TFTP server was on the same 1257 * subnet. So this is probably a warning that your 1258 * configuration might be wrong. But I'm not really 1259 * sure if there aren't any other situations. 1260 * 1261 * Simon Glass <sjg@chromium.org>: We get an ICMP when 1262 * we send a tftp packet to a dead connection, or when 1263 * there is no server at the other end. 1264 */ 1265 if (ip->ip_p == IPPROTO_ICMP) { 1266 receive_icmp(ip, len, src_ip, et); 1267 return; 1268 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */ 1269 return; 1270 } 1271 1272 if (ntohs(ip->udp_len) < UDP_HDR_SIZE || ntohs(ip->udp_len) > ntohs(ip->ip_len)) 1273 return; 1274 1275 debug_cond(DEBUG_DEV_PKT, 1276 "received UDP (to=%pI4, from=%pI4, len=%d)\n", 1277 &dst_ip, &src_ip, len); 1278 1279 #ifdef CONFIG_UDP_CHECKSUM 1280 if (ip->udp_xsum != 0) { 1281 ulong xsum; 1282 ushort *sumptr; 1283 ushort sumlen; 1284 1285 xsum = ip->ip_p; 1286 xsum += (ntohs(ip->udp_len)); 1287 xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff; 1288 xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff; 1289 xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff; 1290 xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff; 1291 1292 sumlen = ntohs(ip->udp_len); 1293 sumptr = (ushort *)&(ip->udp_src); 1294 1295 while (sumlen > 1) { 1296 ushort sumdata; 1297 1298 sumdata = *sumptr++; 1299 xsum += ntohs(sumdata); 1300 sumlen -= 2; 1301 } 1302 if (sumlen > 0) { 1303 ushort sumdata; 1304 1305 sumdata = *(unsigned char *)sumptr; 1306 sumdata = (sumdata << 8) & 0xff00; 1307 xsum += sumdata; 1308 } 1309 while ((xsum >> 16) != 0) { 1310 xsum = (xsum & 0x0000ffff) + 1311 ((xsum >> 16) & 0x0000ffff); 1312 } 1313 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) { 1314 printf(" UDP wrong checksum %08lx %08x\n", 1315 xsum, ntohs(ip->udp_xsum)); 1316 return; 1317 } 1318 } 1319 #endif 1320 1321 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD) 1322 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE, 1323 src_ip, 1324 ntohs(ip->udp_dst), 1325 ntohs(ip->udp_src), 1326 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1327 #endif 1328 /* 1329 * IP header OK. Pass the packet to the current handler. 1330 */ 1331 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE, 1332 ntohs(ip->udp_dst), 1333 src_ip, 1334 ntohs(ip->udp_src), 1335 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1336 break; 1337 #ifdef CONFIG_CMD_WOL 1338 case PROT_WOL: 1339 wol_receive(ip, len); 1340 break; 1341 #endif 1342 #ifdef CONFIG_PHY_NCSI 1343 case PROT_NCSI: 1344 ncsi_receive(et, ip, len); 1345 break; 1346 #endif 1347 } 1348 } 1349 1350 /**********************************************************************/ 1351 1352 static int net_check_prereq(enum proto_t protocol) 1353 { 1354 switch (protocol) { 1355 /* Fall through */ 1356 #if defined(CONFIG_CMD_PING) 1357 case PING: 1358 if (net_ping_ip.s_addr == 0) { 1359 puts("*** ERROR: ping address not given\n"); 1360 return 1; 1361 } 1362 goto common; 1363 #endif 1364 #if defined(CONFIG_CMD_SNTP) 1365 case SNTP: 1366 if (net_ntp_server.s_addr == 0) { 1367 puts("*** ERROR: NTP server address not given\n"); 1368 return 1; 1369 } 1370 goto common; 1371 #endif 1372 #if defined(CONFIG_CMD_DNS) 1373 case DNS: 1374 if (net_dns_server.s_addr == 0) { 1375 puts("*** ERROR: DNS server address not given\n"); 1376 return 1; 1377 } 1378 goto common; 1379 #endif 1380 #if defined(CONFIG_CMD_NFS) 1381 case NFS: 1382 #endif 1383 /* Fall through */ 1384 case TFTPGET: 1385 case TFTPPUT: 1386 if (net_server_ip.s_addr == 0 && !is_serverip_in_cmd()) { 1387 puts("*** ERROR: `serverip' not set\n"); 1388 return 1; 1389 } 1390 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \ 1391 defined(CONFIG_CMD_DNS) 1392 common: 1393 #endif 1394 /* Fall through */ 1395 1396 case NETCONS: 1397 case FASTBOOT: 1398 case TFTPSRV: 1399 if (net_ip.s_addr == 0) { 1400 puts("*** ERROR: `ipaddr' not set\n"); 1401 return 1; 1402 } 1403 /* Fall through */ 1404 1405 #ifdef CONFIG_CMD_RARP 1406 case RARP: 1407 #endif 1408 #ifdef CONFIG_CMD_NCSI 1409 case NCSI: 1410 #endif 1411 case BOOTP: 1412 case CDP: 1413 case DHCP: 1414 case LINKLOCAL: 1415 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) { 1416 int num = eth_get_dev_index(); 1417 1418 switch (num) { 1419 case -1: 1420 puts("*** ERROR: No ethernet found.\n"); 1421 return 1; 1422 case 0: 1423 puts("*** ERROR: `ethaddr' not set\n"); 1424 break; 1425 default: 1426 printf("*** ERROR: `eth%daddr' not set\n", 1427 num); 1428 break; 1429 } 1430 1431 net_start_again(); 1432 return 2; 1433 } 1434 /* Fall through */ 1435 default: 1436 return 0; 1437 } 1438 return 0; /* OK */ 1439 } 1440 /**********************************************************************/ 1441 1442 int 1443 net_eth_hdr_size(void) 1444 { 1445 ushort myvlanid; 1446 1447 myvlanid = ntohs(net_our_vlan); 1448 if (myvlanid == (ushort)-1) 1449 myvlanid = VLAN_NONE; 1450 1451 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE : 1452 VLAN_ETHER_HDR_SIZE; 1453 } 1454 1455 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot) 1456 { 1457 struct ethernet_hdr *et = (struct ethernet_hdr *)xet; 1458 ushort myvlanid; 1459 1460 myvlanid = ntohs(net_our_vlan); 1461 if (myvlanid == (ushort)-1) 1462 myvlanid = VLAN_NONE; 1463 1464 memcpy(et->et_dest, dest_ethaddr, 6); 1465 memcpy(et->et_src, net_ethaddr, 6); 1466 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) { 1467 et->et_protlen = htons(prot); 1468 return ETHER_HDR_SIZE; 1469 } else { 1470 struct vlan_ethernet_hdr *vet = 1471 (struct vlan_ethernet_hdr *)xet; 1472 1473 vet->vet_vlan_type = htons(PROT_VLAN); 1474 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK)); 1475 vet->vet_type = htons(prot); 1476 return VLAN_ETHER_HDR_SIZE; 1477 } 1478 } 1479 1480 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot) 1481 { 1482 ushort protlen; 1483 1484 memcpy(et->et_dest, addr, 6); 1485 memcpy(et->et_src, net_ethaddr, 6); 1486 protlen = ntohs(et->et_protlen); 1487 if (protlen == PROT_VLAN) { 1488 struct vlan_ethernet_hdr *vet = 1489 (struct vlan_ethernet_hdr *)et; 1490 vet->vet_type = htons(prot); 1491 return VLAN_ETHER_HDR_SIZE; 1492 } else if (protlen > 1514) { 1493 et->et_protlen = htons(prot); 1494 return ETHER_HDR_SIZE; 1495 } else { 1496 /* 802.2 + SNAP */ 1497 struct e802_hdr *et802 = (struct e802_hdr *)et; 1498 et802->et_prot = htons(prot); 1499 return E802_HDR_SIZE; 1500 } 1501 } 1502 1503 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source, 1504 u16 pkt_len, u8 proto) 1505 { 1506 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1507 1508 /* 1509 * Construct an IP header. 1510 */ 1511 /* IP_HDR_SIZE / 4 (not including UDP) */ 1512 ip->ip_hl_v = 0x45; 1513 ip->ip_tos = 0; 1514 ip->ip_len = htons(pkt_len); 1515 ip->ip_p = proto; 1516 ip->ip_id = htons(net_ip_id++); 1517 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */ 1518 ip->ip_ttl = 255; 1519 ip->ip_sum = 0; 1520 /* already in network byte order */ 1521 net_copy_ip((void *)&ip->ip_src, &source); 1522 /* already in network byte order */ 1523 net_copy_ip((void *)&ip->ip_dst, &dest); 1524 1525 ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE); 1526 } 1527 1528 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport, 1529 int len) 1530 { 1531 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1532 1533 /* 1534 * If the data is an odd number of bytes, zero the 1535 * byte after the last byte so that the checksum 1536 * will work. 1537 */ 1538 if (len & 1) 1539 pkt[IP_UDP_HDR_SIZE + len] = 0; 1540 1541 net_set_ip_header(pkt, dest, net_ip, IP_UDP_HDR_SIZE + len, 1542 IPPROTO_UDP); 1543 1544 ip->udp_src = htons(sport); 1545 ip->udp_dst = htons(dport); 1546 ip->udp_len = htons(UDP_HDR_SIZE + len); 1547 ip->udp_xsum = 0; 1548 } 1549 1550 void copy_filename(char *dst, const char *src, int size) 1551 { 1552 if (src && *src && (*src == '"')) { 1553 ++src; 1554 --size; 1555 } 1556 1557 while ((--size > 0) && src && *src && (*src != '"')) 1558 *dst++ = *src++; 1559 *dst = '\0'; 1560 } 1561 1562 int is_serverip_in_cmd(void) 1563 { 1564 return !!strchr(net_boot_file_name, ':'); 1565 } 1566 1567 int net_parse_bootfile(struct in_addr *ipaddr, char *filename, int max_len) 1568 { 1569 char *colon; 1570 1571 if (net_boot_file_name[0] == '\0') 1572 return 0; 1573 1574 colon = strchr(net_boot_file_name, ':'); 1575 if (colon) { 1576 if (ipaddr) 1577 *ipaddr = string_to_ip(net_boot_file_name); 1578 strncpy(filename, colon + 1, max_len); 1579 } else { 1580 strncpy(filename, net_boot_file_name, max_len); 1581 } 1582 filename[max_len - 1] = '\0'; 1583 1584 return 1; 1585 } 1586 1587 #if defined(CONFIG_CMD_NFS) || \ 1588 defined(CONFIG_CMD_SNTP) || \ 1589 defined(CONFIG_CMD_DNS) 1590 /* 1591 * make port a little random (1024-17407) 1592 * This keeps the math somewhat trivial to compute, and seems to work with 1593 * all supported protocols/clients/servers 1594 */ 1595 unsigned int random_port(void) 1596 { 1597 return 1024 + (get_timer(0) % 0x4000); 1598 } 1599 #endif 1600 1601 void ip_to_string(struct in_addr x, char *s) 1602 { 1603 x.s_addr = ntohl(x.s_addr); 1604 sprintf(s, "%d.%d.%d.%d", 1605 (int) ((x.s_addr >> 24) & 0xff), 1606 (int) ((x.s_addr >> 16) & 0xff), 1607 (int) ((x.s_addr >> 8) & 0xff), 1608 (int) ((x.s_addr >> 0) & 0xff) 1609 ); 1610 } 1611 1612 void vlan_to_string(ushort x, char *s) 1613 { 1614 x = ntohs(x); 1615 1616 if (x == (ushort)-1) 1617 x = VLAN_NONE; 1618 1619 if (x == VLAN_NONE) 1620 strcpy(s, "none"); 1621 else 1622 sprintf(s, "%d", x & VLAN_IDMASK); 1623 } 1624 1625 ushort string_to_vlan(const char *s) 1626 { 1627 ushort id; 1628 1629 if (s == NULL) 1630 return htons(VLAN_NONE); 1631 1632 if (*s < '0' || *s > '9') 1633 id = VLAN_NONE; 1634 else 1635 id = (ushort)simple_strtoul(s, NULL, 10); 1636 1637 return htons(id); 1638 } 1639 1640 ushort env_get_vlan(char *var) 1641 { 1642 return string_to_vlan(env_get(var)); 1643 } 1644