1 /* 2 * Copied from Linux Monitor (LiMon) - Networking. 3 * 4 * Copyright 1994 - 2000 Neil Russell. 5 * (See License) 6 * Copyright 2000 Roland Borde 7 * Copyright 2000 Paolo Scaffardi 8 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de 9 * SPDX-License-Identifier: GPL-2.0 10 */ 11 12 /* 13 * General Desription: 14 * 15 * The user interface supports commands for BOOTP, RARP, and TFTP. 16 * Also, we support ARP internally. Depending on available data, 17 * these interact as follows: 18 * 19 * BOOTP: 20 * 21 * Prerequisites: - own ethernet address 22 * We want: - own IP address 23 * - TFTP server IP address 24 * - name of bootfile 25 * Next step: ARP 26 * 27 * LINK_LOCAL: 28 * 29 * Prerequisites: - own ethernet address 30 * We want: - own IP address 31 * Next step: ARP 32 * 33 * RARP: 34 * 35 * Prerequisites: - own ethernet address 36 * We want: - own IP address 37 * - TFTP server IP address 38 * Next step: ARP 39 * 40 * ARP: 41 * 42 * Prerequisites: - own ethernet address 43 * - own IP address 44 * - TFTP server IP address 45 * We want: - TFTP server ethernet address 46 * Next step: TFTP 47 * 48 * DHCP: 49 * 50 * Prerequisites: - own ethernet address 51 * We want: - IP, Netmask, ServerIP, Gateway IP 52 * - bootfilename, lease time 53 * Next step: - TFTP 54 * 55 * TFTP: 56 * 57 * Prerequisites: - own ethernet address 58 * - own IP address 59 * - TFTP server IP address 60 * - TFTP server ethernet address 61 * - name of bootfile (if unknown, we use a default name 62 * derived from our own IP address) 63 * We want: - load the boot file 64 * Next step: none 65 * 66 * NFS: 67 * 68 * Prerequisites: - own ethernet address 69 * - own IP address 70 * - name of bootfile (if unknown, we use a default name 71 * derived from our own IP address) 72 * We want: - load the boot file 73 * Next step: none 74 * 75 * SNTP: 76 * 77 * Prerequisites: - own ethernet address 78 * - own IP address 79 * We want: - network time 80 * Next step: none 81 */ 82 83 84 #include <common.h> 85 #include <command.h> 86 #include <console.h> 87 #include <environment.h> 88 #include <errno.h> 89 #include <net.h> 90 #include <net/tftp.h> 91 #if defined(CONFIG_LED_STATUS) 92 #include <miiphy.h> 93 #include <status_led.h> 94 #endif 95 #include <watchdog.h> 96 #include <linux/compiler.h> 97 #include "arp.h" 98 #include "bootp.h" 99 #include "cdp.h" 100 #if defined(CONFIG_CMD_DNS) 101 #include "dns.h" 102 #endif 103 #include "link_local.h" 104 #include "nfs.h" 105 #include "ping.h" 106 #include "rarp.h" 107 #if defined(CONFIG_CMD_SNTP) 108 #include "sntp.h" 109 #endif 110 111 /** BOOTP EXTENTIONS **/ 112 113 /* Our subnet mask (0=unknown) */ 114 struct in_addr net_netmask; 115 /* Our gateways IP address */ 116 struct in_addr net_gateway; 117 /* Our DNS IP address */ 118 struct in_addr net_dns_server; 119 #if defined(CONFIG_BOOTP_DNS2) 120 /* Our 2nd DNS IP address */ 121 struct in_addr net_dns_server2; 122 #endif 123 124 #ifdef CONFIG_MCAST_TFTP /* Multicast TFTP */ 125 struct in_addr net_mcast_addr; 126 #endif 127 128 /** END OF BOOTP EXTENTIONS **/ 129 130 /* Our ethernet address */ 131 u8 net_ethaddr[6]; 132 /* Boot server enet address */ 133 u8 net_server_ethaddr[6]; 134 /* Our IP addr (0 = unknown) */ 135 struct in_addr net_ip; 136 /* Server IP addr (0 = unknown) */ 137 struct in_addr net_server_ip; 138 /* Current receive packet */ 139 uchar *net_rx_packet; 140 /* Current rx packet length */ 141 int net_rx_packet_len; 142 /* IP packet ID */ 143 static unsigned net_ip_id; 144 /* Ethernet bcast address */ 145 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 146 const u8 net_null_ethaddr[6]; 147 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER) 148 void (*push_packet)(void *, int len) = 0; 149 #endif 150 /* Network loop state */ 151 enum net_loop_state net_state; 152 /* Tried all network devices */ 153 int net_restart_wrap; 154 /* Network loop restarted */ 155 static int net_restarted; 156 /* At least one device configured */ 157 static int net_dev_exists; 158 159 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */ 160 /* default is without VLAN */ 161 ushort net_our_vlan = 0xFFFF; 162 /* ditto */ 163 ushort net_native_vlan = 0xFFFF; 164 165 /* Boot File name */ 166 char net_boot_file_name[1024]; 167 /* The actual transferred size of the bootfile (in bytes) */ 168 u32 net_boot_file_size; 169 /* Boot file size in blocks as reported by the DHCP server */ 170 u32 net_boot_file_expected_size_in_blocks; 171 172 #if defined(CONFIG_CMD_SNTP) 173 /* NTP server IP address */ 174 struct in_addr net_ntp_server; 175 /* offset time from UTC */ 176 int net_ntp_time_offset; 177 #endif 178 179 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN]; 180 /* Receive packets */ 181 uchar *net_rx_packets[PKTBUFSRX]; 182 /* Current UDP RX packet handler */ 183 static rxhand_f *udp_packet_handler; 184 /* Current ARP RX packet handler */ 185 static rxhand_f *arp_packet_handler; 186 #ifdef CONFIG_CMD_TFTPPUT 187 /* Current ICMP rx handler */ 188 static rxhand_icmp_f *packet_icmp_handler; 189 #endif 190 /* Current timeout handler */ 191 static thand_f *time_handler; 192 /* Time base value */ 193 static ulong time_start; 194 /* Current timeout value */ 195 static ulong time_delta; 196 /* THE transmit packet */ 197 uchar *net_tx_packet; 198 199 static int net_check_prereq(enum proto_t protocol); 200 201 static int net_try_count; 202 203 int __maybe_unused net_busy_flag; 204 205 /**********************************************************************/ 206 207 static int on_bootfile(const char *name, const char *value, enum env_op op, 208 int flags) 209 { 210 if (flags & H_PROGRAMMATIC) 211 return 0; 212 213 switch (op) { 214 case env_op_create: 215 case env_op_overwrite: 216 copy_filename(net_boot_file_name, value, 217 sizeof(net_boot_file_name)); 218 break; 219 default: 220 break; 221 } 222 223 return 0; 224 } 225 U_BOOT_ENV_CALLBACK(bootfile, on_bootfile); 226 227 static int on_ipaddr(const char *name, const char *value, enum env_op op, 228 int flags) 229 { 230 if (flags & H_PROGRAMMATIC) 231 return 0; 232 233 net_ip = string_to_ip(value); 234 235 return 0; 236 } 237 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr); 238 239 static int on_gatewayip(const char *name, const char *value, enum env_op op, 240 int flags) 241 { 242 if (flags & H_PROGRAMMATIC) 243 return 0; 244 245 net_gateway = string_to_ip(value); 246 247 return 0; 248 } 249 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip); 250 251 static int on_netmask(const char *name, const char *value, enum env_op op, 252 int flags) 253 { 254 if (flags & H_PROGRAMMATIC) 255 return 0; 256 257 net_netmask = string_to_ip(value); 258 259 return 0; 260 } 261 U_BOOT_ENV_CALLBACK(netmask, on_netmask); 262 263 static int on_serverip(const char *name, const char *value, enum env_op op, 264 int flags) 265 { 266 if (flags & H_PROGRAMMATIC) 267 return 0; 268 269 net_server_ip = string_to_ip(value); 270 271 return 0; 272 } 273 U_BOOT_ENV_CALLBACK(serverip, on_serverip); 274 275 static int on_nvlan(const char *name, const char *value, enum env_op op, 276 int flags) 277 { 278 if (flags & H_PROGRAMMATIC) 279 return 0; 280 281 net_native_vlan = string_to_vlan(value); 282 283 return 0; 284 } 285 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan); 286 287 static int on_vlan(const char *name, const char *value, enum env_op op, 288 int flags) 289 { 290 if (flags & H_PROGRAMMATIC) 291 return 0; 292 293 net_our_vlan = string_to_vlan(value); 294 295 return 0; 296 } 297 U_BOOT_ENV_CALLBACK(vlan, on_vlan); 298 299 #if defined(CONFIG_CMD_DNS) 300 static int on_dnsip(const char *name, const char *value, enum env_op op, 301 int flags) 302 { 303 if (flags & H_PROGRAMMATIC) 304 return 0; 305 306 net_dns_server = string_to_ip(value); 307 308 return 0; 309 } 310 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip); 311 #endif 312 313 /* 314 * Check if autoload is enabled. If so, use either NFS or TFTP to download 315 * the boot file. 316 */ 317 void net_auto_load(void) 318 { 319 #if defined(CONFIG_CMD_NFS) 320 const char *s = env_get("autoload"); 321 322 if (s != NULL && strcmp(s, "NFS") == 0) { 323 /* 324 * Use NFS to load the bootfile. 325 */ 326 nfs_start(); 327 return; 328 } 329 #endif 330 if (env_get_yesno("autoload") == 0) { 331 /* 332 * Just use BOOTP/RARP to configure system; 333 * Do not use TFTP to load the bootfile. 334 */ 335 net_set_state(NETLOOP_SUCCESS); 336 return; 337 } 338 tftp_start(TFTPGET); 339 } 340 341 static void net_init_loop(void) 342 { 343 if (eth_get_dev()) 344 memcpy(net_ethaddr, eth_get_ethaddr(), 6); 345 346 return; 347 } 348 349 static void net_clear_handlers(void) 350 { 351 net_set_udp_handler(NULL); 352 net_set_arp_handler(NULL); 353 net_set_timeout_handler(0, NULL); 354 } 355 356 static void net_cleanup_loop(void) 357 { 358 net_clear_handlers(); 359 } 360 361 void net_init(void) 362 { 363 static int first_call = 1; 364 365 if (first_call) { 366 /* 367 * Setup packet buffers, aligned correctly. 368 */ 369 int i; 370 371 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1); 372 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN; 373 for (i = 0; i < PKTBUFSRX; i++) { 374 net_rx_packets[i] = net_tx_packet + 375 (i + 1) * PKTSIZE_ALIGN; 376 } 377 arp_init(); 378 net_clear_handlers(); 379 380 /* Only need to setup buffer pointers once. */ 381 first_call = 0; 382 } 383 384 net_init_loop(); 385 } 386 387 /**********************************************************************/ 388 /* 389 * Main network processing loop. 390 */ 391 392 int net_loop(enum proto_t protocol) 393 { 394 int ret = -EINVAL; 395 396 net_restarted = 0; 397 net_dev_exists = 0; 398 net_try_count = 1; 399 debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n"); 400 401 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start"); 402 net_init(); 403 if (eth_is_on_demand_init() || protocol != NETCONS) { 404 eth_halt(); 405 eth_set_current(); 406 ret = eth_init(); 407 if (ret < 0) { 408 eth_halt(); 409 return ret; 410 } 411 } else { 412 eth_init_state_only(); 413 } 414 restart: 415 #ifdef CONFIG_USB_KEYBOARD 416 net_busy_flag = 0; 417 #endif 418 net_set_state(NETLOOP_CONTINUE); 419 420 /* 421 * Start the ball rolling with the given start function. From 422 * here on, this code is a state machine driven by received 423 * packets and timer events. 424 */ 425 debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n"); 426 net_init_loop(); 427 428 switch (net_check_prereq(protocol)) { 429 case 1: 430 /* network not configured */ 431 eth_halt(); 432 return -ENODEV; 433 434 case 2: 435 /* network device not configured */ 436 break; 437 438 case 0: 439 net_dev_exists = 1; 440 net_boot_file_size = 0; 441 switch (protocol) { 442 case TFTPGET: 443 #ifdef CONFIG_CMD_TFTPPUT 444 case TFTPPUT: 445 #endif 446 /* always use ARP to get server ethernet address */ 447 tftp_start(protocol); 448 break; 449 #ifdef CONFIG_CMD_TFTPSRV 450 case TFTPSRV: 451 tftp_start_server(); 452 break; 453 #endif 454 #if defined(CONFIG_CMD_DHCP) 455 case DHCP: 456 bootp_reset(); 457 net_ip.s_addr = 0; 458 dhcp_request(); /* Basically same as BOOTP */ 459 break; 460 #endif 461 462 case BOOTP: 463 bootp_reset(); 464 net_ip.s_addr = 0; 465 bootp_request(); 466 break; 467 468 #if defined(CONFIG_CMD_RARP) 469 case RARP: 470 rarp_try = 0; 471 net_ip.s_addr = 0; 472 rarp_request(); 473 break; 474 #endif 475 #if defined(CONFIG_CMD_PING) 476 case PING: 477 ping_start(); 478 break; 479 #endif 480 #if defined(CONFIG_CMD_NFS) 481 case NFS: 482 nfs_start(); 483 break; 484 #endif 485 #if defined(CONFIG_CMD_CDP) 486 case CDP: 487 cdp_start(); 488 break; 489 #endif 490 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD) 491 case NETCONS: 492 nc_start(); 493 break; 494 #endif 495 #if defined(CONFIG_CMD_SNTP) 496 case SNTP: 497 sntp_start(); 498 break; 499 #endif 500 #if defined(CONFIG_CMD_DNS) 501 case DNS: 502 dns_start(); 503 break; 504 #endif 505 #if defined(CONFIG_CMD_LINK_LOCAL) 506 case LINKLOCAL: 507 link_local_start(); 508 break; 509 #endif 510 default: 511 break; 512 } 513 514 break; 515 } 516 517 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 518 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 519 defined(CONFIG_LED_STATUS) && \ 520 defined(CONFIG_LED_STATUS_RED) 521 /* 522 * Echo the inverted link state to the fault LED. 523 */ 524 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR)) 525 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_OFF); 526 else 527 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_ON); 528 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 529 #endif /* CONFIG_MII, ... */ 530 #ifdef CONFIG_USB_KEYBOARD 531 net_busy_flag = 1; 532 #endif 533 534 /* 535 * Main packet reception loop. Loop receiving packets until 536 * someone sets `net_state' to a state that terminates. 537 */ 538 for (;;) { 539 WATCHDOG_RESET(); 540 #ifdef CONFIG_SHOW_ACTIVITY 541 show_activity(1); 542 #endif 543 if (arp_timeout_check() > 0) 544 time_start = get_timer(0); 545 546 /* 547 * Check the ethernet for a new packet. The ethernet 548 * receive routine will process it. 549 * Most drivers return the most recent packet size, but not 550 * errors that may have happened. 551 */ 552 eth_rx(); 553 554 /* 555 * Abort if ctrl-c was pressed. 556 */ 557 if (ctrlc()) { 558 /* cancel any ARP that may not have completed */ 559 net_arp_wait_packet_ip.s_addr = 0; 560 561 net_cleanup_loop(); 562 eth_halt(); 563 /* Invalidate the last protocol */ 564 eth_set_last_protocol(BOOTP); 565 566 puts("\nAbort\n"); 567 /* include a debug print as well incase the debug 568 messages are directed to stderr */ 569 debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n"); 570 ret = -EINTR; 571 goto done; 572 } 573 574 /* 575 * Check for a timeout, and run the timeout handler 576 * if we have one. 577 */ 578 if (time_handler && 579 ((get_timer(0) - time_start) > time_delta)) { 580 thand_f *x; 581 582 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 583 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 584 defined(CONFIG_LED_STATUS) && \ 585 defined(CONFIG_LED_STATUS_RED) 586 /* 587 * Echo the inverted link state to the fault LED. 588 */ 589 if (miiphy_link(eth_get_dev()->name, 590 CONFIG_SYS_FAULT_MII_ADDR)) 591 status_led_set(CONFIG_LED_STATUS_RED, 592 CONFIG_LED_STATUS_OFF); 593 else 594 status_led_set(CONFIG_LED_STATUS_RED, 595 CONFIG_LED_STATUS_ON); 596 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 597 #endif /* CONFIG_MII, ... */ 598 debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n"); 599 x = time_handler; 600 time_handler = (thand_f *)0; 601 (*x)(); 602 } 603 604 if (net_state == NETLOOP_FAIL) 605 ret = net_start_again(); 606 607 switch (net_state) { 608 case NETLOOP_RESTART: 609 net_restarted = 1; 610 goto restart; 611 612 case NETLOOP_SUCCESS: 613 net_cleanup_loop(); 614 if (net_boot_file_size > 0) { 615 printf("Bytes transferred = %d (%x hex)\n", 616 net_boot_file_size, net_boot_file_size); 617 env_set_hex("filesize", net_boot_file_size); 618 env_set_hex("fileaddr", load_addr); 619 } 620 if (protocol != NETCONS) 621 eth_halt(); 622 else 623 eth_halt_state_only(); 624 625 eth_set_last_protocol(protocol); 626 627 ret = net_boot_file_size; 628 debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n"); 629 goto done; 630 631 case NETLOOP_FAIL: 632 net_cleanup_loop(); 633 /* Invalidate the last protocol */ 634 eth_set_last_protocol(BOOTP); 635 debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n"); 636 goto done; 637 638 case NETLOOP_CONTINUE: 639 continue; 640 } 641 } 642 643 done: 644 #ifdef CONFIG_USB_KEYBOARD 645 net_busy_flag = 0; 646 #endif 647 #ifdef CONFIG_CMD_TFTPPUT 648 /* Clear out the handlers */ 649 net_set_udp_handler(NULL); 650 net_set_icmp_handler(NULL); 651 #endif 652 return ret; 653 } 654 655 /**********************************************************************/ 656 657 static void start_again_timeout_handler(void) 658 { 659 net_set_state(NETLOOP_RESTART); 660 } 661 662 int net_start_again(void) 663 { 664 char *nretry; 665 int retry_forever = 0; 666 unsigned long retrycnt = 0; 667 int ret; 668 669 nretry = env_get("netretry"); 670 if (nretry) { 671 if (!strcmp(nretry, "yes")) 672 retry_forever = 1; 673 else if (!strcmp(nretry, "no")) 674 retrycnt = 0; 675 else if (!strcmp(nretry, "once")) 676 retrycnt = 1; 677 else 678 retrycnt = simple_strtoul(nretry, NULL, 0); 679 } else { 680 retrycnt = 0; 681 retry_forever = 0; 682 } 683 684 if ((!retry_forever) && (net_try_count > retrycnt)) { 685 eth_halt(); 686 net_set_state(NETLOOP_FAIL); 687 /* 688 * We don't provide a way for the protocol to return an error, 689 * but this is almost always the reason. 690 */ 691 return -ETIMEDOUT; 692 } 693 694 net_try_count++; 695 696 eth_halt(); 697 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER) 698 eth_try_another(!net_restarted); 699 #endif 700 ret = eth_init(); 701 if (net_restart_wrap) { 702 net_restart_wrap = 0; 703 if (net_dev_exists) { 704 net_set_timeout_handler(10000UL, 705 start_again_timeout_handler); 706 net_set_udp_handler(NULL); 707 } else { 708 net_set_state(NETLOOP_FAIL); 709 } 710 } else { 711 net_set_state(NETLOOP_RESTART); 712 } 713 return ret; 714 } 715 716 /**********************************************************************/ 717 /* 718 * Miscelaneous bits. 719 */ 720 721 static void dummy_handler(uchar *pkt, unsigned dport, 722 struct in_addr sip, unsigned sport, 723 unsigned len) 724 { 725 } 726 727 rxhand_f *net_get_udp_handler(void) 728 { 729 return udp_packet_handler; 730 } 731 732 void net_set_udp_handler(rxhand_f *f) 733 { 734 debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f); 735 if (f == NULL) 736 udp_packet_handler = dummy_handler; 737 else 738 udp_packet_handler = f; 739 } 740 741 rxhand_f *net_get_arp_handler(void) 742 { 743 return arp_packet_handler; 744 } 745 746 void net_set_arp_handler(rxhand_f *f) 747 { 748 debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f); 749 if (f == NULL) 750 arp_packet_handler = dummy_handler; 751 else 752 arp_packet_handler = f; 753 } 754 755 #ifdef CONFIG_CMD_TFTPPUT 756 void net_set_icmp_handler(rxhand_icmp_f *f) 757 { 758 packet_icmp_handler = f; 759 } 760 #endif 761 762 void net_set_timeout_handler(ulong iv, thand_f *f) 763 { 764 if (iv == 0) { 765 debug_cond(DEBUG_INT_STATE, 766 "--- net_loop timeout handler cancelled\n"); 767 time_handler = (thand_f *)0; 768 } else { 769 debug_cond(DEBUG_INT_STATE, 770 "--- net_loop timeout handler set (%p)\n", f); 771 time_handler = f; 772 time_start = get_timer(0); 773 time_delta = iv * CONFIG_SYS_HZ / 1000; 774 } 775 } 776 777 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport, 778 int payload_len) 779 { 780 uchar *pkt; 781 int eth_hdr_size; 782 int pkt_hdr_size; 783 784 /* make sure the net_tx_packet is initialized (net_init() was called) */ 785 assert(net_tx_packet != NULL); 786 if (net_tx_packet == NULL) 787 return -1; 788 789 /* convert to new style broadcast */ 790 if (dest.s_addr == 0) 791 dest.s_addr = 0xFFFFFFFF; 792 793 /* if broadcast, make the ether address a broadcast and don't do ARP */ 794 if (dest.s_addr == 0xFFFFFFFF) 795 ether = (uchar *)net_bcast_ethaddr; 796 797 pkt = (uchar *)net_tx_packet; 798 799 eth_hdr_size = net_set_ether(pkt, ether, PROT_IP); 800 pkt += eth_hdr_size; 801 net_set_udp_header(pkt, dest, dport, sport, payload_len); 802 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE; 803 804 /* if MAC address was not discovered yet, do an ARP request */ 805 if (memcmp(ether, net_null_ethaddr, 6) == 0) { 806 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest); 807 808 /* save the ip and eth addr for the packet to send after arp */ 809 net_arp_wait_packet_ip = dest; 810 arp_wait_packet_ethaddr = ether; 811 812 /* size of the waiting packet */ 813 arp_wait_tx_packet_size = pkt_hdr_size + payload_len; 814 815 /* and do the ARP request */ 816 arp_wait_try = 1; 817 arp_wait_timer_start = get_timer(0); 818 arp_request(); 819 return 1; /* waiting */ 820 } else { 821 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n", 822 &dest, ether); 823 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len); 824 return 0; /* transmitted */ 825 } 826 } 827 828 #ifdef CONFIG_IP_DEFRAG 829 /* 830 * This function collects fragments in a single packet, according 831 * to the algorithm in RFC815. It returns NULL or the pointer to 832 * a complete packet, in static storage 833 */ 834 #ifndef CONFIG_NET_MAXDEFRAG 835 #define CONFIG_NET_MAXDEFRAG 16384 836 #endif 837 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG) 838 839 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE) 840 841 /* 842 * this is the packet being assembled, either data or frag control. 843 * Fragments go by 8 bytes, so this union must be 8 bytes long 844 */ 845 struct hole { 846 /* first_byte is address of this structure */ 847 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */ 848 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */ 849 u16 prev_hole; /* index of prev, 0 == none */ 850 u16 unused; 851 }; 852 853 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp) 854 { 855 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN); 856 static u16 first_hole, total_len; 857 struct hole *payload, *thisfrag, *h, *newh; 858 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff; 859 uchar *indata = (uchar *)ip; 860 int offset8, start, len, done = 0; 861 u16 ip_off = ntohs(ip->ip_off); 862 863 /* payload starts after IP header, this fragment is in there */ 864 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE); 865 offset8 = (ip_off & IP_OFFS); 866 thisfrag = payload + offset8; 867 start = offset8 * 8; 868 len = ntohs(ip->ip_len) - IP_HDR_SIZE; 869 870 if (start + len > IP_MAXUDP) /* fragment extends too far */ 871 return NULL; 872 873 if (!total_len || localip->ip_id != ip->ip_id) { 874 /* new (or different) packet, reset structs */ 875 total_len = 0xffff; 876 payload[0].last_byte = ~0; 877 payload[0].next_hole = 0; 878 payload[0].prev_hole = 0; 879 first_hole = 0; 880 /* any IP header will work, copy the first we received */ 881 memcpy(localip, ip, IP_HDR_SIZE); 882 } 883 884 /* 885 * What follows is the reassembly algorithm. We use the payload 886 * array as a linked list of hole descriptors, as each hole starts 887 * at a multiple of 8 bytes. However, last byte can be whatever value, 888 * so it is represented as byte count, not as 8-byte blocks. 889 */ 890 891 h = payload + first_hole; 892 while (h->last_byte < start) { 893 if (!h->next_hole) { 894 /* no hole that far away */ 895 return NULL; 896 } 897 h = payload + h->next_hole; 898 } 899 900 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */ 901 if (offset8 + ((len + 7) / 8) <= h - payload) { 902 /* no overlap with holes (dup fragment?) */ 903 return NULL; 904 } 905 906 if (!(ip_off & IP_FLAGS_MFRAG)) { 907 /* no more fragmentss: truncate this (last) hole */ 908 total_len = start + len; 909 h->last_byte = start + len; 910 } 911 912 /* 913 * There is some overlap: fix the hole list. This code doesn't 914 * deal with a fragment that overlaps with two different holes 915 * (thus being a superset of a previously-received fragment). 916 */ 917 918 if ((h >= thisfrag) && (h->last_byte <= start + len)) { 919 /* complete overlap with hole: remove hole */ 920 if (!h->prev_hole && !h->next_hole) { 921 /* last remaining hole */ 922 done = 1; 923 } else if (!h->prev_hole) { 924 /* first hole */ 925 first_hole = h->next_hole; 926 payload[h->next_hole].prev_hole = 0; 927 } else if (!h->next_hole) { 928 /* last hole */ 929 payload[h->prev_hole].next_hole = 0; 930 } else { 931 /* in the middle of the list */ 932 payload[h->next_hole].prev_hole = h->prev_hole; 933 payload[h->prev_hole].next_hole = h->next_hole; 934 } 935 936 } else if (h->last_byte <= start + len) { 937 /* overlaps with final part of the hole: shorten this hole */ 938 h->last_byte = start; 939 940 } else if (h >= thisfrag) { 941 /* overlaps with initial part of the hole: move this hole */ 942 newh = thisfrag + (len / 8); 943 *newh = *h; 944 h = newh; 945 if (h->next_hole) 946 payload[h->next_hole].prev_hole = (h - payload); 947 if (h->prev_hole) 948 payload[h->prev_hole].next_hole = (h - payload); 949 else 950 first_hole = (h - payload); 951 952 } else { 953 /* fragment sits in the middle: split the hole */ 954 newh = thisfrag + (len / 8); 955 *newh = *h; 956 h->last_byte = start; 957 h->next_hole = (newh - payload); 958 newh->prev_hole = (h - payload); 959 if (newh->next_hole) 960 payload[newh->next_hole].prev_hole = (newh - payload); 961 } 962 963 /* finally copy this fragment and possibly return whole packet */ 964 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len); 965 if (!done) 966 return NULL; 967 968 localip->ip_len = htons(total_len); 969 *lenp = total_len + IP_HDR_SIZE; 970 return localip; 971 } 972 973 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 974 int *lenp) 975 { 976 u16 ip_off = ntohs(ip->ip_off); 977 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 978 return ip; /* not a fragment */ 979 return __net_defragment(ip, lenp); 980 } 981 982 #else /* !CONFIG_IP_DEFRAG */ 983 984 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 985 int *lenp) 986 { 987 u16 ip_off = ntohs(ip->ip_off); 988 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 989 return ip; /* not a fragment */ 990 return NULL; 991 } 992 #endif 993 994 /** 995 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently 996 * drop others. 997 * 998 * @parma ip IP packet containing the ICMP 999 */ 1000 static void receive_icmp(struct ip_udp_hdr *ip, int len, 1001 struct in_addr src_ip, struct ethernet_hdr *et) 1002 { 1003 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src; 1004 1005 switch (icmph->type) { 1006 case ICMP_REDIRECT: 1007 if (icmph->code != ICMP_REDIR_HOST) 1008 return; 1009 printf(" ICMP Host Redirect to %pI4 ", 1010 &icmph->un.gateway); 1011 break; 1012 default: 1013 #if defined(CONFIG_CMD_PING) 1014 ping_receive(et, ip, len); 1015 #endif 1016 #ifdef CONFIG_CMD_TFTPPUT 1017 if (packet_icmp_handler) 1018 packet_icmp_handler(icmph->type, icmph->code, 1019 ntohs(ip->udp_dst), src_ip, 1020 ntohs(ip->udp_src), icmph->un.data, 1021 ntohs(ip->udp_len)); 1022 #endif 1023 break; 1024 } 1025 } 1026 1027 void net_process_received_packet(uchar *in_packet, int len) 1028 { 1029 struct ethernet_hdr *et; 1030 struct ip_udp_hdr *ip; 1031 struct in_addr dst_ip; 1032 struct in_addr src_ip; 1033 int eth_proto; 1034 #if defined(CONFIG_CMD_CDP) 1035 int iscdp; 1036 #endif 1037 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid; 1038 1039 debug_cond(DEBUG_NET_PKT, "packet received\n"); 1040 1041 net_rx_packet = in_packet; 1042 net_rx_packet_len = len; 1043 et = (struct ethernet_hdr *)in_packet; 1044 1045 /* too small packet? */ 1046 if (len < ETHER_HDR_SIZE) 1047 return; 1048 1049 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER) 1050 if (push_packet) { 1051 (*push_packet)(in_packet, len); 1052 return; 1053 } 1054 #endif 1055 1056 #if defined(CONFIG_CMD_CDP) 1057 /* keep track if packet is CDP */ 1058 iscdp = is_cdp_packet(et->et_dest); 1059 #endif 1060 1061 myvlanid = ntohs(net_our_vlan); 1062 if (myvlanid == (ushort)-1) 1063 myvlanid = VLAN_NONE; 1064 mynvlanid = ntohs(net_native_vlan); 1065 if (mynvlanid == (ushort)-1) 1066 mynvlanid = VLAN_NONE; 1067 1068 eth_proto = ntohs(et->et_protlen); 1069 1070 if (eth_proto < 1514) { 1071 struct e802_hdr *et802 = (struct e802_hdr *)et; 1072 /* 1073 * Got a 802.2 packet. Check the other protocol field. 1074 * XXX VLAN over 802.2+SNAP not implemented! 1075 */ 1076 eth_proto = ntohs(et802->et_prot); 1077 1078 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE); 1079 len -= E802_HDR_SIZE; 1080 1081 } else if (eth_proto != PROT_VLAN) { /* normal packet */ 1082 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE); 1083 len -= ETHER_HDR_SIZE; 1084 1085 } else { /* VLAN packet */ 1086 struct vlan_ethernet_hdr *vet = 1087 (struct vlan_ethernet_hdr *)et; 1088 1089 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n"); 1090 1091 /* too small packet? */ 1092 if (len < VLAN_ETHER_HDR_SIZE) 1093 return; 1094 1095 /* if no VLAN active */ 1096 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE 1097 #if defined(CONFIG_CMD_CDP) 1098 && iscdp == 0 1099 #endif 1100 ) 1101 return; 1102 1103 cti = ntohs(vet->vet_tag); 1104 vlanid = cti & VLAN_IDMASK; 1105 eth_proto = ntohs(vet->vet_type); 1106 1107 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE); 1108 len -= VLAN_ETHER_HDR_SIZE; 1109 } 1110 1111 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto); 1112 1113 #if defined(CONFIG_CMD_CDP) 1114 if (iscdp) { 1115 cdp_receive((uchar *)ip, len); 1116 return; 1117 } 1118 #endif 1119 1120 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) { 1121 if (vlanid == VLAN_NONE) 1122 vlanid = (mynvlanid & VLAN_IDMASK); 1123 /* not matched? */ 1124 if (vlanid != (myvlanid & VLAN_IDMASK)) 1125 return; 1126 } 1127 1128 switch (eth_proto) { 1129 case PROT_ARP: 1130 arp_receive(et, ip, len); 1131 break; 1132 1133 #ifdef CONFIG_CMD_RARP 1134 case PROT_RARP: 1135 rarp_receive(ip, len); 1136 break; 1137 #endif 1138 case PROT_IP: 1139 debug_cond(DEBUG_NET_PKT, "Got IP\n"); 1140 /* Before we start poking the header, make sure it is there */ 1141 if (len < IP_UDP_HDR_SIZE) { 1142 debug("len bad %d < %lu\n", len, 1143 (ulong)IP_UDP_HDR_SIZE); 1144 return; 1145 } 1146 /* Check the packet length */ 1147 if (len < ntohs(ip->ip_len)) { 1148 debug("len bad %d < %d\n", len, ntohs(ip->ip_len)); 1149 return; 1150 } 1151 len = ntohs(ip->ip_len); 1152 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n", 1153 len, ip->ip_hl_v & 0xff); 1154 1155 /* Can't deal with anything except IPv4 */ 1156 if ((ip->ip_hl_v & 0xf0) != 0x40) 1157 return; 1158 /* Can't deal with IP options (headers != 20 bytes) */ 1159 if ((ip->ip_hl_v & 0x0f) > 0x05) 1160 return; 1161 /* Check the Checksum of the header */ 1162 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) { 1163 debug("checksum bad\n"); 1164 return; 1165 } 1166 /* If it is not for us, ignore it */ 1167 dst_ip = net_read_ip(&ip->ip_dst); 1168 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr && 1169 dst_ip.s_addr != 0xFFFFFFFF) { 1170 #ifdef CONFIG_MCAST_TFTP 1171 if (net_mcast_addr != dst_ip) 1172 #endif 1173 return; 1174 } 1175 /* Read source IP address for later use */ 1176 src_ip = net_read_ip(&ip->ip_src); 1177 /* 1178 * The function returns the unchanged packet if it's not 1179 * a fragment, and either the complete packet or NULL if 1180 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL) 1181 */ 1182 ip = net_defragment(ip, &len); 1183 if (!ip) 1184 return; 1185 /* 1186 * watch for ICMP host redirects 1187 * 1188 * There is no real handler code (yet). We just watch 1189 * for ICMP host redirect messages. In case anybody 1190 * sees these messages: please contact me 1191 * (wd@denx.de), or - even better - send me the 1192 * necessary fixes :-) 1193 * 1194 * Note: in all cases where I have seen this so far 1195 * it was a problem with the router configuration, 1196 * for instance when a router was configured in the 1197 * BOOTP reply, but the TFTP server was on the same 1198 * subnet. So this is probably a warning that your 1199 * configuration might be wrong. But I'm not really 1200 * sure if there aren't any other situations. 1201 * 1202 * Simon Glass <sjg@chromium.org>: We get an ICMP when 1203 * we send a tftp packet to a dead connection, or when 1204 * there is no server at the other end. 1205 */ 1206 if (ip->ip_p == IPPROTO_ICMP) { 1207 receive_icmp(ip, len, src_ip, et); 1208 return; 1209 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */ 1210 return; 1211 } 1212 1213 debug_cond(DEBUG_DEV_PKT, 1214 "received UDP (to=%pI4, from=%pI4, len=%d)\n", 1215 &dst_ip, &src_ip, len); 1216 1217 #ifdef CONFIG_UDP_CHECKSUM 1218 if (ip->udp_xsum != 0) { 1219 ulong xsum; 1220 ushort *sumptr; 1221 ushort sumlen; 1222 1223 xsum = ip->ip_p; 1224 xsum += (ntohs(ip->udp_len)); 1225 xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff; 1226 xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff; 1227 xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff; 1228 xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff; 1229 1230 sumlen = ntohs(ip->udp_len); 1231 sumptr = (ushort *)&(ip->udp_src); 1232 1233 while (sumlen > 1) { 1234 ushort sumdata; 1235 1236 sumdata = *sumptr++; 1237 xsum += ntohs(sumdata); 1238 sumlen -= 2; 1239 } 1240 if (sumlen > 0) { 1241 ushort sumdata; 1242 1243 sumdata = *(unsigned char *)sumptr; 1244 sumdata = (sumdata << 8) & 0xff00; 1245 xsum += sumdata; 1246 } 1247 while ((xsum >> 16) != 0) { 1248 xsum = (xsum & 0x0000ffff) + 1249 ((xsum >> 16) & 0x0000ffff); 1250 } 1251 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) { 1252 printf(" UDP wrong checksum %08lx %08x\n", 1253 xsum, ntohs(ip->udp_xsum)); 1254 return; 1255 } 1256 } 1257 #endif 1258 1259 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD) 1260 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE, 1261 src_ip, 1262 ntohs(ip->udp_dst), 1263 ntohs(ip->udp_src), 1264 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1265 #endif 1266 /* 1267 * IP header OK. Pass the packet to the current handler. 1268 */ 1269 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE, 1270 ntohs(ip->udp_dst), 1271 src_ip, 1272 ntohs(ip->udp_src), 1273 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1274 break; 1275 } 1276 } 1277 1278 /**********************************************************************/ 1279 1280 static int net_check_prereq(enum proto_t protocol) 1281 { 1282 switch (protocol) { 1283 /* Fall through */ 1284 #if defined(CONFIG_CMD_PING) 1285 case PING: 1286 if (net_ping_ip.s_addr == 0) { 1287 puts("*** ERROR: ping address not given\n"); 1288 return 1; 1289 } 1290 goto common; 1291 #endif 1292 #if defined(CONFIG_CMD_SNTP) 1293 case SNTP: 1294 if (net_ntp_server.s_addr == 0) { 1295 puts("*** ERROR: NTP server address not given\n"); 1296 return 1; 1297 } 1298 goto common; 1299 #endif 1300 #if defined(CONFIG_CMD_DNS) 1301 case DNS: 1302 if (net_dns_server.s_addr == 0) { 1303 puts("*** ERROR: DNS server address not given\n"); 1304 return 1; 1305 } 1306 goto common; 1307 #endif 1308 #if defined(CONFIG_CMD_NFS) 1309 case NFS: 1310 #endif 1311 /* Fall through */ 1312 case TFTPGET: 1313 case TFTPPUT: 1314 if (net_server_ip.s_addr == 0) { 1315 puts("*** ERROR: `serverip' not set\n"); 1316 return 1; 1317 } 1318 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \ 1319 defined(CONFIG_CMD_DNS) 1320 common: 1321 #endif 1322 /* Fall through */ 1323 1324 case NETCONS: 1325 case TFTPSRV: 1326 if (net_ip.s_addr == 0) { 1327 puts("*** ERROR: `ipaddr' not set\n"); 1328 return 1; 1329 } 1330 /* Fall through */ 1331 1332 #ifdef CONFIG_CMD_RARP 1333 case RARP: 1334 #endif 1335 case BOOTP: 1336 case CDP: 1337 case DHCP: 1338 case LINKLOCAL: 1339 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) { 1340 int num = eth_get_dev_index(); 1341 1342 switch (num) { 1343 case -1: 1344 puts("*** ERROR: No ethernet found.\n"); 1345 return 1; 1346 case 0: 1347 puts("*** ERROR: `ethaddr' not set\n"); 1348 break; 1349 default: 1350 printf("*** ERROR: `eth%daddr' not set\n", 1351 num); 1352 break; 1353 } 1354 1355 net_start_again(); 1356 return 2; 1357 } 1358 /* Fall through */ 1359 default: 1360 return 0; 1361 } 1362 return 0; /* OK */ 1363 } 1364 /**********************************************************************/ 1365 1366 int 1367 net_eth_hdr_size(void) 1368 { 1369 ushort myvlanid; 1370 1371 myvlanid = ntohs(net_our_vlan); 1372 if (myvlanid == (ushort)-1) 1373 myvlanid = VLAN_NONE; 1374 1375 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE : 1376 VLAN_ETHER_HDR_SIZE; 1377 } 1378 1379 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot) 1380 { 1381 struct ethernet_hdr *et = (struct ethernet_hdr *)xet; 1382 ushort myvlanid; 1383 1384 myvlanid = ntohs(net_our_vlan); 1385 if (myvlanid == (ushort)-1) 1386 myvlanid = VLAN_NONE; 1387 1388 memcpy(et->et_dest, dest_ethaddr, 6); 1389 memcpy(et->et_src, net_ethaddr, 6); 1390 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) { 1391 et->et_protlen = htons(prot); 1392 return ETHER_HDR_SIZE; 1393 } else { 1394 struct vlan_ethernet_hdr *vet = 1395 (struct vlan_ethernet_hdr *)xet; 1396 1397 vet->vet_vlan_type = htons(PROT_VLAN); 1398 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK)); 1399 vet->vet_type = htons(prot); 1400 return VLAN_ETHER_HDR_SIZE; 1401 } 1402 } 1403 1404 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot) 1405 { 1406 ushort protlen; 1407 1408 memcpy(et->et_dest, addr, 6); 1409 memcpy(et->et_src, net_ethaddr, 6); 1410 protlen = ntohs(et->et_protlen); 1411 if (protlen == PROT_VLAN) { 1412 struct vlan_ethernet_hdr *vet = 1413 (struct vlan_ethernet_hdr *)et; 1414 vet->vet_type = htons(prot); 1415 return VLAN_ETHER_HDR_SIZE; 1416 } else if (protlen > 1514) { 1417 et->et_protlen = htons(prot); 1418 return ETHER_HDR_SIZE; 1419 } else { 1420 /* 802.2 + SNAP */ 1421 struct e802_hdr *et802 = (struct e802_hdr *)et; 1422 et802->et_prot = htons(prot); 1423 return E802_HDR_SIZE; 1424 } 1425 } 1426 1427 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source) 1428 { 1429 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1430 1431 /* 1432 * Construct an IP header. 1433 */ 1434 /* IP_HDR_SIZE / 4 (not including UDP) */ 1435 ip->ip_hl_v = 0x45; 1436 ip->ip_tos = 0; 1437 ip->ip_len = htons(IP_HDR_SIZE); 1438 ip->ip_id = htons(net_ip_id++); 1439 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */ 1440 ip->ip_ttl = 255; 1441 ip->ip_sum = 0; 1442 /* already in network byte order */ 1443 net_copy_ip((void *)&ip->ip_src, &source); 1444 /* already in network byte order */ 1445 net_copy_ip((void *)&ip->ip_dst, &dest); 1446 } 1447 1448 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport, 1449 int len) 1450 { 1451 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1452 1453 /* 1454 * If the data is an odd number of bytes, zero the 1455 * byte after the last byte so that the checksum 1456 * will work. 1457 */ 1458 if (len & 1) 1459 pkt[IP_UDP_HDR_SIZE + len] = 0; 1460 1461 net_set_ip_header(pkt, dest, net_ip); 1462 ip->ip_len = htons(IP_UDP_HDR_SIZE + len); 1463 ip->ip_p = IPPROTO_UDP; 1464 ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE); 1465 1466 ip->udp_src = htons(sport); 1467 ip->udp_dst = htons(dport); 1468 ip->udp_len = htons(UDP_HDR_SIZE + len); 1469 ip->udp_xsum = 0; 1470 } 1471 1472 void copy_filename(char *dst, const char *src, int size) 1473 { 1474 if (*src && (*src == '"')) { 1475 ++src; 1476 --size; 1477 } 1478 1479 while ((--size > 0) && *src && (*src != '"')) 1480 *dst++ = *src++; 1481 *dst = '\0'; 1482 } 1483 1484 #if defined(CONFIG_CMD_NFS) || \ 1485 defined(CONFIG_CMD_SNTP) || \ 1486 defined(CONFIG_CMD_DNS) 1487 /* 1488 * make port a little random (1024-17407) 1489 * This keeps the math somewhat trivial to compute, and seems to work with 1490 * all supported protocols/clients/servers 1491 */ 1492 unsigned int random_port(void) 1493 { 1494 return 1024 + (get_timer(0) % 0x4000); 1495 } 1496 #endif 1497 1498 void ip_to_string(struct in_addr x, char *s) 1499 { 1500 x.s_addr = ntohl(x.s_addr); 1501 sprintf(s, "%d.%d.%d.%d", 1502 (int) ((x.s_addr >> 24) & 0xff), 1503 (int) ((x.s_addr >> 16) & 0xff), 1504 (int) ((x.s_addr >> 8) & 0xff), 1505 (int) ((x.s_addr >> 0) & 0xff) 1506 ); 1507 } 1508 1509 void vlan_to_string(ushort x, char *s) 1510 { 1511 x = ntohs(x); 1512 1513 if (x == (ushort)-1) 1514 x = VLAN_NONE; 1515 1516 if (x == VLAN_NONE) 1517 strcpy(s, "none"); 1518 else 1519 sprintf(s, "%d", x & VLAN_IDMASK); 1520 } 1521 1522 ushort string_to_vlan(const char *s) 1523 { 1524 ushort id; 1525 1526 if (s == NULL) 1527 return htons(VLAN_NONE); 1528 1529 if (*s < '0' || *s > '9') 1530 id = VLAN_NONE; 1531 else 1532 id = (ushort)simple_strtoul(s, NULL, 10); 1533 1534 return htons(id); 1535 } 1536 1537 ushort env_get_vlan(char *var) 1538 { 1539 return string_to_vlan(env_get(var)); 1540 } 1541