1 /* 2 * Copied from Linux Monitor (LiMon) - Networking. 3 * 4 * Copyright 1994 - 2000 Neil Russell. 5 * (See License) 6 * Copyright 2000 Roland Borde 7 * Copyright 2000 Paolo Scaffardi 8 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de 9 * SPDX-License-Identifier: GPL-2.0 10 */ 11 12 /* 13 * General Desription: 14 * 15 * The user interface supports commands for BOOTP, RARP, and TFTP. 16 * Also, we support ARP internally. Depending on available data, 17 * these interact as follows: 18 * 19 * BOOTP: 20 * 21 * Prerequisites: - own ethernet address 22 * We want: - own IP address 23 * - TFTP server IP address 24 * - name of bootfile 25 * Next step: ARP 26 * 27 * LINK_LOCAL: 28 * 29 * Prerequisites: - own ethernet address 30 * We want: - own IP address 31 * Next step: ARP 32 * 33 * RARP: 34 * 35 * Prerequisites: - own ethernet address 36 * We want: - own IP address 37 * - TFTP server IP address 38 * Next step: ARP 39 * 40 * ARP: 41 * 42 * Prerequisites: - own ethernet address 43 * - own IP address 44 * - TFTP server IP address 45 * We want: - TFTP server ethernet address 46 * Next step: TFTP 47 * 48 * DHCP: 49 * 50 * Prerequisites: - own ethernet address 51 * We want: - IP, Netmask, ServerIP, Gateway IP 52 * - bootfilename, lease time 53 * Next step: - TFTP 54 * 55 * TFTP: 56 * 57 * Prerequisites: - own ethernet address 58 * - own IP address 59 * - TFTP server IP address 60 * - TFTP server ethernet address 61 * - name of bootfile (if unknown, we use a default name 62 * derived from our own IP address) 63 * We want: - load the boot file 64 * Next step: none 65 * 66 * NFS: 67 * 68 * Prerequisites: - own ethernet address 69 * - own IP address 70 * - name of bootfile (if unknown, we use a default name 71 * derived from our own IP address) 72 * We want: - load the boot file 73 * Next step: none 74 * 75 * SNTP: 76 * 77 * Prerequisites: - own ethernet address 78 * - own IP address 79 * We want: - network time 80 * Next step: none 81 */ 82 83 84 #include <common.h> 85 #include <command.h> 86 #include <environment.h> 87 #include <errno.h> 88 #include <net.h> 89 #if defined(CONFIG_STATUS_LED) 90 #include <miiphy.h> 91 #include <status_led.h> 92 #endif 93 #include <watchdog.h> 94 #include <linux/compiler.h> 95 #include "arp.h" 96 #include "bootp.h" 97 #include "cdp.h" 98 #if defined(CONFIG_CMD_DNS) 99 #include "dns.h" 100 #endif 101 #include "link_local.h" 102 #include "nfs.h" 103 #include "ping.h" 104 #include "rarp.h" 105 #if defined(CONFIG_CMD_SNTP) 106 #include "sntp.h" 107 #endif 108 #include "tftp.h" 109 110 DECLARE_GLOBAL_DATA_PTR; 111 112 /** BOOTP EXTENTIONS **/ 113 114 /* Our subnet mask (0=unknown) */ 115 struct in_addr net_netmask; 116 /* Our gateways IP address */ 117 struct in_addr net_gateway; 118 /* Our DNS IP address */ 119 struct in_addr net_dns_server; 120 #if defined(CONFIG_BOOTP_DNS2) 121 /* Our 2nd DNS IP address */ 122 struct in_addr net_dns_server2; 123 #endif 124 125 #ifdef CONFIG_MCAST_TFTP /* Multicast TFTP */ 126 struct in_addr net_mcast_addr; 127 #endif 128 129 /** END OF BOOTP EXTENTIONS **/ 130 131 /* Our ethernet address */ 132 u8 net_ethaddr[6]; 133 /* Boot server enet address */ 134 u8 net_server_ethaddr[6]; 135 /* Our IP addr (0 = unknown) */ 136 struct in_addr net_ip; 137 /* Server IP addr (0 = unknown) */ 138 struct in_addr net_server_ip; 139 /* Current receive packet */ 140 uchar *net_rx_packet; 141 /* Current rx packet length */ 142 int net_rx_packet_len; 143 /* IP packet ID */ 144 static unsigned net_ip_id; 145 /* Ethernet bcast address */ 146 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 147 const u8 net_null_ethaddr[6]; 148 #ifdef CONFIG_API 149 void (*push_packet)(void *, int len) = 0; 150 #endif 151 /* Network loop state */ 152 enum net_loop_state net_state; 153 /* Tried all network devices */ 154 int net_restart_wrap; 155 /* Network loop restarted */ 156 static int net_restarted; 157 /* At least one device configured */ 158 static int net_dev_exists; 159 160 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */ 161 /* default is without VLAN */ 162 ushort net_our_vlan = 0xFFFF; 163 /* ditto */ 164 ushort net_native_vlan = 0xFFFF; 165 166 /* Boot File name */ 167 char net_boot_file_name[128]; 168 /* The actual transferred size of the bootfile (in bytes) */ 169 u32 net_boot_file_size; 170 /* Boot file size in blocks as reported by the DHCP server */ 171 u32 net_boot_file_expected_size_in_blocks; 172 173 #if defined(CONFIG_CMD_SNTP) 174 /* NTP server IP address */ 175 struct in_addr net_ntp_server; 176 /* offset time from UTC */ 177 int net_ntp_time_offset; 178 #endif 179 180 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN]; 181 /* Receive packets */ 182 uchar *net_rx_packets[PKTBUFSRX]; 183 /* Current UDP RX packet handler */ 184 static rxhand_f *udp_packet_handler; 185 /* Current ARP RX packet handler */ 186 static rxhand_f *arp_packet_handler; 187 #ifdef CONFIG_CMD_TFTPPUT 188 /* Current ICMP rx handler */ 189 static rxhand_icmp_f *packet_icmp_handler; 190 #endif 191 /* Current timeout handler */ 192 static thand_f *time_handler; 193 /* Time base value */ 194 static ulong time_start; 195 /* Current timeout value */ 196 static ulong time_delta; 197 /* THE transmit packet */ 198 uchar *net_tx_packet; 199 200 static int net_check_prereq(enum proto_t protocol); 201 202 static int net_try_count; 203 204 int __maybe_unused net_busy_flag; 205 206 /**********************************************************************/ 207 208 static int on_bootfile(const char *name, const char *value, enum env_op op, 209 int flags) 210 { 211 if (flags & H_PROGRAMMATIC) 212 return 0; 213 214 switch (op) { 215 case env_op_create: 216 case env_op_overwrite: 217 copy_filename(net_boot_file_name, value, 218 sizeof(net_boot_file_name)); 219 break; 220 default: 221 break; 222 } 223 224 return 0; 225 } 226 U_BOOT_ENV_CALLBACK(bootfile, on_bootfile); 227 228 static int on_ipaddr(const char *name, const char *value, enum env_op op, 229 int flags) 230 { 231 if (flags & H_PROGRAMMATIC) 232 return 0; 233 234 net_ip = string_to_ip(value); 235 236 return 0; 237 } 238 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr); 239 240 static int on_gatewayip(const char *name, const char *value, enum env_op op, 241 int flags) 242 { 243 if (flags & H_PROGRAMMATIC) 244 return 0; 245 246 net_gateway = string_to_ip(value); 247 248 return 0; 249 } 250 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip); 251 252 static int on_netmask(const char *name, const char *value, enum env_op op, 253 int flags) 254 { 255 if (flags & H_PROGRAMMATIC) 256 return 0; 257 258 net_netmask = string_to_ip(value); 259 260 return 0; 261 } 262 U_BOOT_ENV_CALLBACK(netmask, on_netmask); 263 264 static int on_serverip(const char *name, const char *value, enum env_op op, 265 int flags) 266 { 267 if (flags & H_PROGRAMMATIC) 268 return 0; 269 270 net_server_ip = string_to_ip(value); 271 272 return 0; 273 } 274 U_BOOT_ENV_CALLBACK(serverip, on_serverip); 275 276 static int on_nvlan(const char *name, const char *value, enum env_op op, 277 int flags) 278 { 279 if (flags & H_PROGRAMMATIC) 280 return 0; 281 282 net_native_vlan = string_to_vlan(value); 283 284 return 0; 285 } 286 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan); 287 288 static int on_vlan(const char *name, const char *value, enum env_op op, 289 int flags) 290 { 291 if (flags & H_PROGRAMMATIC) 292 return 0; 293 294 net_our_vlan = string_to_vlan(value); 295 296 return 0; 297 } 298 U_BOOT_ENV_CALLBACK(vlan, on_vlan); 299 300 #if defined(CONFIG_CMD_DNS) 301 static int on_dnsip(const char *name, const char *value, enum env_op op, 302 int flags) 303 { 304 if (flags & H_PROGRAMMATIC) 305 return 0; 306 307 net_dns_server = string_to_ip(value); 308 309 return 0; 310 } 311 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip); 312 #endif 313 314 /* 315 * Check if autoload is enabled. If so, use either NFS or TFTP to download 316 * the boot file. 317 */ 318 void net_auto_load(void) 319 { 320 #if defined(CONFIG_CMD_NFS) 321 const char *s = getenv("autoload"); 322 323 if (s != NULL && strcmp(s, "NFS") == 0) { 324 /* 325 * Use NFS to load the bootfile. 326 */ 327 nfs_start(); 328 return; 329 } 330 #endif 331 if (getenv_yesno("autoload") == 0) { 332 /* 333 * Just use BOOTP/RARP to configure system; 334 * Do not use TFTP to load the bootfile. 335 */ 336 net_set_state(NETLOOP_SUCCESS); 337 return; 338 } 339 tftp_start(TFTPGET); 340 } 341 342 static void net_init_loop(void) 343 { 344 if (eth_get_dev()) 345 memcpy(net_ethaddr, eth_get_ethaddr(), 6); 346 347 return; 348 } 349 350 static void net_clear_handlers(void) 351 { 352 net_set_udp_handler(NULL); 353 net_set_arp_handler(NULL); 354 net_set_timeout_handler(0, NULL); 355 } 356 357 static void net_cleanup_loop(void) 358 { 359 net_clear_handlers(); 360 } 361 362 void net_init(void) 363 { 364 static int first_call = 1; 365 366 if (first_call) { 367 /* 368 * Setup packet buffers, aligned correctly. 369 */ 370 int i; 371 372 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1); 373 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN; 374 for (i = 0; i < PKTBUFSRX; i++) { 375 net_rx_packets[i] = net_tx_packet + 376 (i + 1) * PKTSIZE_ALIGN; 377 } 378 arp_init(); 379 net_clear_handlers(); 380 381 /* Only need to setup buffer pointers once. */ 382 first_call = 0; 383 } 384 385 net_init_loop(); 386 } 387 388 /**********************************************************************/ 389 /* 390 * Main network processing loop. 391 */ 392 393 int net_loop(enum proto_t protocol) 394 { 395 int ret = -EINVAL; 396 397 net_restarted = 0; 398 net_dev_exists = 0; 399 net_try_count = 1; 400 debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n"); 401 402 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start"); 403 net_init(); 404 if (eth_is_on_demand_init() || protocol != NETCONS) { 405 eth_halt(); 406 eth_set_current(); 407 ret = eth_init(); 408 if (ret < 0) { 409 eth_halt(); 410 return ret; 411 } 412 } else { 413 eth_init_state_only(); 414 } 415 restart: 416 #ifdef CONFIG_USB_KEYBOARD 417 net_busy_flag = 0; 418 #endif 419 net_set_state(NETLOOP_CONTINUE); 420 421 /* 422 * Start the ball rolling with the given start function. From 423 * here on, this code is a state machine driven by received 424 * packets and timer events. 425 */ 426 debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n"); 427 net_init_loop(); 428 429 switch (net_check_prereq(protocol)) { 430 case 1: 431 /* network not configured */ 432 eth_halt(); 433 return -ENODEV; 434 435 case 2: 436 /* network device not configured */ 437 break; 438 439 case 0: 440 net_dev_exists = 1; 441 net_boot_file_size = 0; 442 switch (protocol) { 443 case TFTPGET: 444 #ifdef CONFIG_CMD_TFTPPUT 445 case TFTPPUT: 446 #endif 447 /* always use ARP to get server ethernet address */ 448 tftp_start(protocol); 449 break; 450 #ifdef CONFIG_CMD_TFTPSRV 451 case TFTPSRV: 452 tftp_start_server(); 453 break; 454 #endif 455 #if defined(CONFIG_CMD_DHCP) 456 case DHCP: 457 bootp_reset(); 458 net_ip.s_addr = 0; 459 dhcp_request(); /* Basically same as BOOTP */ 460 break; 461 #endif 462 463 case BOOTP: 464 bootp_reset(); 465 net_ip.s_addr = 0; 466 bootp_request(); 467 break; 468 469 #if defined(CONFIG_CMD_RARP) 470 case RARP: 471 rarp_try = 0; 472 net_ip.s_addr = 0; 473 rarp_request(); 474 break; 475 #endif 476 #if defined(CONFIG_CMD_PING) 477 case PING: 478 ping_start(); 479 break; 480 #endif 481 #if defined(CONFIG_CMD_NFS) 482 case NFS: 483 nfs_start(); 484 break; 485 #endif 486 #if defined(CONFIG_CMD_CDP) 487 case CDP: 488 cdp_start(); 489 break; 490 #endif 491 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD) 492 case NETCONS: 493 nc_start(); 494 break; 495 #endif 496 #if defined(CONFIG_CMD_SNTP) 497 case SNTP: 498 sntp_start(); 499 break; 500 #endif 501 #if defined(CONFIG_CMD_DNS) 502 case DNS: 503 dns_start(); 504 break; 505 #endif 506 #if defined(CONFIG_CMD_LINK_LOCAL) 507 case LINKLOCAL: 508 link_local_start(); 509 break; 510 #endif 511 default: 512 break; 513 } 514 515 break; 516 } 517 518 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 519 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 520 defined(CONFIG_STATUS_LED) && \ 521 defined(STATUS_LED_RED) 522 /* 523 * Echo the inverted link state to the fault LED. 524 */ 525 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR)) 526 status_led_set(STATUS_LED_RED, STATUS_LED_OFF); 527 else 528 status_led_set(STATUS_LED_RED, STATUS_LED_ON); 529 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 530 #endif /* CONFIG_MII, ... */ 531 #ifdef CONFIG_USB_KEYBOARD 532 net_busy_flag = 1; 533 #endif 534 535 /* 536 * Main packet reception loop. Loop receiving packets until 537 * someone sets `net_state' to a state that terminates. 538 */ 539 for (;;) { 540 WATCHDOG_RESET(); 541 #ifdef CONFIG_SHOW_ACTIVITY 542 show_activity(1); 543 #endif 544 /* 545 * Check the ethernet for a new packet. The ethernet 546 * receive routine will process it. 547 * Most drivers return the most recent packet size, but not 548 * errors that may have happened. 549 */ 550 eth_rx(); 551 552 /* 553 * Abort if ctrl-c was pressed. 554 */ 555 if (ctrlc()) { 556 /* cancel any ARP that may not have completed */ 557 net_arp_wait_packet_ip.s_addr = 0; 558 559 net_cleanup_loop(); 560 eth_halt(); 561 /* Invalidate the last protocol */ 562 eth_set_last_protocol(BOOTP); 563 564 puts("\nAbort\n"); 565 /* include a debug print as well incase the debug 566 messages are directed to stderr */ 567 debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n"); 568 ret = -EINTR; 569 goto done; 570 } 571 572 arp_timeout_check(); 573 574 /* 575 * Check for a timeout, and run the timeout handler 576 * if we have one. 577 */ 578 if (time_handler && 579 ((get_timer(0) - time_start) > time_delta)) { 580 thand_f *x; 581 582 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 583 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 584 defined(CONFIG_STATUS_LED) && \ 585 defined(STATUS_LED_RED) 586 /* 587 * Echo the inverted link state to the fault LED. 588 */ 589 if (miiphy_link(eth_get_dev()->name, 590 CONFIG_SYS_FAULT_MII_ADDR)) 591 status_led_set(STATUS_LED_RED, STATUS_LED_OFF); 592 else 593 status_led_set(STATUS_LED_RED, STATUS_LED_ON); 594 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 595 #endif /* CONFIG_MII, ... */ 596 debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n"); 597 x = time_handler; 598 time_handler = (thand_f *)0; 599 (*x)(); 600 } 601 602 if (net_state == NETLOOP_FAIL) 603 ret = net_start_again(); 604 605 switch (net_state) { 606 case NETLOOP_RESTART: 607 net_restarted = 1; 608 goto restart; 609 610 case NETLOOP_SUCCESS: 611 net_cleanup_loop(); 612 if (net_boot_file_size > 0) { 613 printf("Bytes transferred = %d (%x hex)\n", 614 net_boot_file_size, net_boot_file_size); 615 setenv_hex("filesize", net_boot_file_size); 616 setenv_hex("fileaddr", load_addr); 617 } 618 if (protocol != NETCONS) 619 eth_halt(); 620 else 621 eth_halt_state_only(); 622 623 eth_set_last_protocol(protocol); 624 625 ret = net_boot_file_size; 626 debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n"); 627 goto done; 628 629 case NETLOOP_FAIL: 630 net_cleanup_loop(); 631 /* Invalidate the last protocol */ 632 eth_set_last_protocol(BOOTP); 633 debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n"); 634 goto done; 635 636 case NETLOOP_CONTINUE: 637 continue; 638 } 639 } 640 641 done: 642 #ifdef CONFIG_USB_KEYBOARD 643 net_busy_flag = 0; 644 #endif 645 #ifdef CONFIG_CMD_TFTPPUT 646 /* Clear out the handlers */ 647 net_set_udp_handler(NULL); 648 net_set_icmp_handler(NULL); 649 #endif 650 return ret; 651 } 652 653 /**********************************************************************/ 654 655 static void start_again_timeout_handler(void) 656 { 657 net_set_state(NETLOOP_RESTART); 658 } 659 660 int net_start_again(void) 661 { 662 char *nretry; 663 int retry_forever = 0; 664 unsigned long retrycnt = 0; 665 int ret; 666 667 nretry = getenv("netretry"); 668 if (nretry) { 669 if (!strcmp(nretry, "yes")) 670 retry_forever = 1; 671 else if (!strcmp(nretry, "no")) 672 retrycnt = 0; 673 else if (!strcmp(nretry, "once")) 674 retrycnt = 1; 675 else 676 retrycnt = simple_strtoul(nretry, NULL, 0); 677 } else { 678 retrycnt = 0; 679 retry_forever = 0; 680 } 681 682 if ((!retry_forever) && (net_try_count >= retrycnt)) { 683 eth_halt(); 684 net_set_state(NETLOOP_FAIL); 685 /* 686 * We don't provide a way for the protocol to return an error, 687 * but this is almost always the reason. 688 */ 689 return -ETIMEDOUT; 690 } 691 692 net_try_count++; 693 694 eth_halt(); 695 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER) 696 eth_try_another(!net_restarted); 697 #endif 698 ret = eth_init(); 699 if (net_restart_wrap) { 700 net_restart_wrap = 0; 701 if (net_dev_exists) { 702 net_set_timeout_handler(10000UL, 703 start_again_timeout_handler); 704 net_set_udp_handler(NULL); 705 } else { 706 net_set_state(NETLOOP_FAIL); 707 } 708 } else { 709 net_set_state(NETLOOP_RESTART); 710 } 711 return ret; 712 } 713 714 /**********************************************************************/ 715 /* 716 * Miscelaneous bits. 717 */ 718 719 static void dummy_handler(uchar *pkt, unsigned dport, 720 struct in_addr sip, unsigned sport, 721 unsigned len) 722 { 723 } 724 725 rxhand_f *net_get_udp_handler(void) 726 { 727 return udp_packet_handler; 728 } 729 730 void net_set_udp_handler(rxhand_f *f) 731 { 732 debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f); 733 if (f == NULL) 734 udp_packet_handler = dummy_handler; 735 else 736 udp_packet_handler = f; 737 } 738 739 rxhand_f *net_get_arp_handler(void) 740 { 741 return arp_packet_handler; 742 } 743 744 void net_set_arp_handler(rxhand_f *f) 745 { 746 debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f); 747 if (f == NULL) 748 arp_packet_handler = dummy_handler; 749 else 750 arp_packet_handler = f; 751 } 752 753 #ifdef CONFIG_CMD_TFTPPUT 754 void net_set_icmp_handler(rxhand_icmp_f *f) 755 { 756 packet_icmp_handler = f; 757 } 758 #endif 759 760 void net_set_timeout_handler(ulong iv, thand_f *f) 761 { 762 if (iv == 0) { 763 debug_cond(DEBUG_INT_STATE, 764 "--- net_loop timeout handler cancelled\n"); 765 time_handler = (thand_f *)0; 766 } else { 767 debug_cond(DEBUG_INT_STATE, 768 "--- net_loop timeout handler set (%p)\n", f); 769 time_handler = f; 770 time_start = get_timer(0); 771 time_delta = iv * CONFIG_SYS_HZ / 1000; 772 } 773 } 774 775 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport, 776 int payload_len) 777 { 778 uchar *pkt; 779 int eth_hdr_size; 780 int pkt_hdr_size; 781 782 /* make sure the net_tx_packet is initialized (net_init() was called) */ 783 assert(net_tx_packet != NULL); 784 if (net_tx_packet == NULL) 785 return -1; 786 787 /* convert to new style broadcast */ 788 if (dest.s_addr == 0) 789 dest.s_addr = 0xFFFFFFFF; 790 791 /* if broadcast, make the ether address a broadcast and don't do ARP */ 792 if (dest.s_addr == 0xFFFFFFFF) 793 ether = (uchar *)net_bcast_ethaddr; 794 795 pkt = (uchar *)net_tx_packet; 796 797 eth_hdr_size = net_set_ether(pkt, ether, PROT_IP); 798 pkt += eth_hdr_size; 799 net_set_udp_header(pkt, dest, dport, sport, payload_len); 800 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE; 801 802 /* if MAC address was not discovered yet, do an ARP request */ 803 if (memcmp(ether, net_null_ethaddr, 6) == 0) { 804 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest); 805 806 /* save the ip and eth addr for the packet to send after arp */ 807 net_arp_wait_packet_ip = dest; 808 arp_wait_packet_ethaddr = ether; 809 810 /* size of the waiting packet */ 811 arp_wait_tx_packet_size = pkt_hdr_size + payload_len; 812 813 /* and do the ARP request */ 814 arp_wait_try = 1; 815 arp_wait_timer_start = get_timer(0); 816 arp_request(); 817 return 1; /* waiting */ 818 } else { 819 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n", 820 &dest, ether); 821 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len); 822 return 0; /* transmitted */ 823 } 824 } 825 826 #ifdef CONFIG_IP_DEFRAG 827 /* 828 * This function collects fragments in a single packet, according 829 * to the algorithm in RFC815. It returns NULL or the pointer to 830 * a complete packet, in static storage 831 */ 832 #ifndef CONFIG_NET_MAXDEFRAG 833 #define CONFIG_NET_MAXDEFRAG 16384 834 #endif 835 /* 836 * MAXDEFRAG, above, is chosen in the config file and is real data 837 * so we need to add the NFS overhead, which is more than TFTP. 838 * To use sizeof in the internal unnamed structures, we need a real 839 * instance (can't do "sizeof(struct rpc_t.u.reply))", unfortunately). 840 * The compiler doesn't complain nor allocates the actual structure 841 */ 842 static struct rpc_t rpc_specimen; 843 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG + sizeof(rpc_specimen.u.reply)) 844 845 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE) 846 847 /* 848 * this is the packet being assembled, either data or frag control. 849 * Fragments go by 8 bytes, so this union must be 8 bytes long 850 */ 851 struct hole { 852 /* first_byte is address of this structure */ 853 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */ 854 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */ 855 u16 prev_hole; /* index of prev, 0 == none */ 856 u16 unused; 857 }; 858 859 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp) 860 { 861 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN); 862 static u16 first_hole, total_len; 863 struct hole *payload, *thisfrag, *h, *newh; 864 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff; 865 uchar *indata = (uchar *)ip; 866 int offset8, start, len, done = 0; 867 u16 ip_off = ntohs(ip->ip_off); 868 869 /* payload starts after IP header, this fragment is in there */ 870 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE); 871 offset8 = (ip_off & IP_OFFS); 872 thisfrag = payload + offset8; 873 start = offset8 * 8; 874 len = ntohs(ip->ip_len) - IP_HDR_SIZE; 875 876 if (start + len > IP_MAXUDP) /* fragment extends too far */ 877 return NULL; 878 879 if (!total_len || localip->ip_id != ip->ip_id) { 880 /* new (or different) packet, reset structs */ 881 total_len = 0xffff; 882 payload[0].last_byte = ~0; 883 payload[0].next_hole = 0; 884 payload[0].prev_hole = 0; 885 first_hole = 0; 886 /* any IP header will work, copy the first we received */ 887 memcpy(localip, ip, IP_HDR_SIZE); 888 } 889 890 /* 891 * What follows is the reassembly algorithm. We use the payload 892 * array as a linked list of hole descriptors, as each hole starts 893 * at a multiple of 8 bytes. However, last byte can be whatever value, 894 * so it is represented as byte count, not as 8-byte blocks. 895 */ 896 897 h = payload + first_hole; 898 while (h->last_byte < start) { 899 if (!h->next_hole) { 900 /* no hole that far away */ 901 return NULL; 902 } 903 h = payload + h->next_hole; 904 } 905 906 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */ 907 if (offset8 + ((len + 7) / 8) <= h - payload) { 908 /* no overlap with holes (dup fragment?) */ 909 return NULL; 910 } 911 912 if (!(ip_off & IP_FLAGS_MFRAG)) { 913 /* no more fragmentss: truncate this (last) hole */ 914 total_len = start + len; 915 h->last_byte = start + len; 916 } 917 918 /* 919 * There is some overlap: fix the hole list. This code doesn't 920 * deal with a fragment that overlaps with two different holes 921 * (thus being a superset of a previously-received fragment). 922 */ 923 924 if ((h >= thisfrag) && (h->last_byte <= start + len)) { 925 /* complete overlap with hole: remove hole */ 926 if (!h->prev_hole && !h->next_hole) { 927 /* last remaining hole */ 928 done = 1; 929 } else if (!h->prev_hole) { 930 /* first hole */ 931 first_hole = h->next_hole; 932 payload[h->next_hole].prev_hole = 0; 933 } else if (!h->next_hole) { 934 /* last hole */ 935 payload[h->prev_hole].next_hole = 0; 936 } else { 937 /* in the middle of the list */ 938 payload[h->next_hole].prev_hole = h->prev_hole; 939 payload[h->prev_hole].next_hole = h->next_hole; 940 } 941 942 } else if (h->last_byte <= start + len) { 943 /* overlaps with final part of the hole: shorten this hole */ 944 h->last_byte = start; 945 946 } else if (h >= thisfrag) { 947 /* overlaps with initial part of the hole: move this hole */ 948 newh = thisfrag + (len / 8); 949 *newh = *h; 950 h = newh; 951 if (h->next_hole) 952 payload[h->next_hole].prev_hole = (h - payload); 953 if (h->prev_hole) 954 payload[h->prev_hole].next_hole = (h - payload); 955 else 956 first_hole = (h - payload); 957 958 } else { 959 /* fragment sits in the middle: split the hole */ 960 newh = thisfrag + (len / 8); 961 *newh = *h; 962 h->last_byte = start; 963 h->next_hole = (newh - payload); 964 newh->prev_hole = (h - payload); 965 if (newh->next_hole) 966 payload[newh->next_hole].prev_hole = (newh - payload); 967 } 968 969 /* finally copy this fragment and possibly return whole packet */ 970 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len); 971 if (!done) 972 return NULL; 973 974 localip->ip_len = htons(total_len); 975 *lenp = total_len + IP_HDR_SIZE; 976 return localip; 977 } 978 979 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 980 int *lenp) 981 { 982 u16 ip_off = ntohs(ip->ip_off); 983 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 984 return ip; /* not a fragment */ 985 return __net_defragment(ip, lenp); 986 } 987 988 #else /* !CONFIG_IP_DEFRAG */ 989 990 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 991 int *lenp) 992 { 993 u16 ip_off = ntohs(ip->ip_off); 994 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 995 return ip; /* not a fragment */ 996 return NULL; 997 } 998 #endif 999 1000 /** 1001 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently 1002 * drop others. 1003 * 1004 * @parma ip IP packet containing the ICMP 1005 */ 1006 static void receive_icmp(struct ip_udp_hdr *ip, int len, 1007 struct in_addr src_ip, struct ethernet_hdr *et) 1008 { 1009 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src; 1010 1011 switch (icmph->type) { 1012 case ICMP_REDIRECT: 1013 if (icmph->code != ICMP_REDIR_HOST) 1014 return; 1015 printf(" ICMP Host Redirect to %pI4 ", 1016 &icmph->un.gateway); 1017 break; 1018 default: 1019 #if defined(CONFIG_CMD_PING) 1020 ping_receive(et, ip, len); 1021 #endif 1022 #ifdef CONFIG_CMD_TFTPPUT 1023 if (packet_icmp_handler) 1024 packet_icmp_handler(icmph->type, icmph->code, 1025 ntohs(ip->udp_dst), src_ip, 1026 ntohs(ip->udp_src), icmph->un.data, 1027 ntohs(ip->udp_len)); 1028 #endif 1029 break; 1030 } 1031 } 1032 1033 void net_process_received_packet(uchar *in_packet, int len) 1034 { 1035 struct ethernet_hdr *et; 1036 struct ip_udp_hdr *ip; 1037 struct in_addr dst_ip; 1038 struct in_addr src_ip; 1039 int eth_proto; 1040 #if defined(CONFIG_CMD_CDP) 1041 int iscdp; 1042 #endif 1043 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid; 1044 1045 debug_cond(DEBUG_NET_PKT, "packet received\n"); 1046 1047 net_rx_packet = in_packet; 1048 net_rx_packet_len = len; 1049 et = (struct ethernet_hdr *)in_packet; 1050 1051 /* too small packet? */ 1052 if (len < ETHER_HDR_SIZE) 1053 return; 1054 1055 #ifdef CONFIG_API 1056 if (push_packet) { 1057 (*push_packet)(in_packet, len); 1058 return; 1059 } 1060 #endif 1061 1062 #if defined(CONFIG_CMD_CDP) 1063 /* keep track if packet is CDP */ 1064 iscdp = is_cdp_packet(et->et_dest); 1065 #endif 1066 1067 myvlanid = ntohs(net_our_vlan); 1068 if (myvlanid == (ushort)-1) 1069 myvlanid = VLAN_NONE; 1070 mynvlanid = ntohs(net_native_vlan); 1071 if (mynvlanid == (ushort)-1) 1072 mynvlanid = VLAN_NONE; 1073 1074 eth_proto = ntohs(et->et_protlen); 1075 1076 if (eth_proto < 1514) { 1077 struct e802_hdr *et802 = (struct e802_hdr *)et; 1078 /* 1079 * Got a 802.2 packet. Check the other protocol field. 1080 * XXX VLAN over 802.2+SNAP not implemented! 1081 */ 1082 eth_proto = ntohs(et802->et_prot); 1083 1084 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE); 1085 len -= E802_HDR_SIZE; 1086 1087 } else if (eth_proto != PROT_VLAN) { /* normal packet */ 1088 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE); 1089 len -= ETHER_HDR_SIZE; 1090 1091 } else { /* VLAN packet */ 1092 struct vlan_ethernet_hdr *vet = 1093 (struct vlan_ethernet_hdr *)et; 1094 1095 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n"); 1096 1097 /* too small packet? */ 1098 if (len < VLAN_ETHER_HDR_SIZE) 1099 return; 1100 1101 /* if no VLAN active */ 1102 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE 1103 #if defined(CONFIG_CMD_CDP) 1104 && iscdp == 0 1105 #endif 1106 ) 1107 return; 1108 1109 cti = ntohs(vet->vet_tag); 1110 vlanid = cti & VLAN_IDMASK; 1111 eth_proto = ntohs(vet->vet_type); 1112 1113 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE); 1114 len -= VLAN_ETHER_HDR_SIZE; 1115 } 1116 1117 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto); 1118 1119 #if defined(CONFIG_CMD_CDP) 1120 if (iscdp) { 1121 cdp_receive((uchar *)ip, len); 1122 return; 1123 } 1124 #endif 1125 1126 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) { 1127 if (vlanid == VLAN_NONE) 1128 vlanid = (mynvlanid & VLAN_IDMASK); 1129 /* not matched? */ 1130 if (vlanid != (myvlanid & VLAN_IDMASK)) 1131 return; 1132 } 1133 1134 switch (eth_proto) { 1135 case PROT_ARP: 1136 arp_receive(et, ip, len); 1137 break; 1138 1139 #ifdef CONFIG_CMD_RARP 1140 case PROT_RARP: 1141 rarp_receive(ip, len); 1142 break; 1143 #endif 1144 case PROT_IP: 1145 debug_cond(DEBUG_NET_PKT, "Got IP\n"); 1146 /* Before we start poking the header, make sure it is there */ 1147 if (len < IP_UDP_HDR_SIZE) { 1148 debug("len bad %d < %lu\n", len, 1149 (ulong)IP_UDP_HDR_SIZE); 1150 return; 1151 } 1152 /* Check the packet length */ 1153 if (len < ntohs(ip->ip_len)) { 1154 debug("len bad %d < %d\n", len, ntohs(ip->ip_len)); 1155 return; 1156 } 1157 len = ntohs(ip->ip_len); 1158 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n", 1159 len, ip->ip_hl_v & 0xff); 1160 1161 /* Can't deal with anything except IPv4 */ 1162 if ((ip->ip_hl_v & 0xf0) != 0x40) 1163 return; 1164 /* Can't deal with IP options (headers != 20 bytes) */ 1165 if ((ip->ip_hl_v & 0x0f) > 0x05) 1166 return; 1167 /* Check the Checksum of the header */ 1168 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) { 1169 debug("checksum bad\n"); 1170 return; 1171 } 1172 /* If it is not for us, ignore it */ 1173 dst_ip = net_read_ip(&ip->ip_dst); 1174 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr && 1175 dst_ip.s_addr != 0xFFFFFFFF) { 1176 #ifdef CONFIG_MCAST_TFTP 1177 if (net_mcast_addr != dst_ip) 1178 #endif 1179 return; 1180 } 1181 /* Read source IP address for later use */ 1182 src_ip = net_read_ip(&ip->ip_src); 1183 /* 1184 * The function returns the unchanged packet if it's not 1185 * a fragment, and either the complete packet or NULL if 1186 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL) 1187 */ 1188 ip = net_defragment(ip, &len); 1189 if (!ip) 1190 return; 1191 /* 1192 * watch for ICMP host redirects 1193 * 1194 * There is no real handler code (yet). We just watch 1195 * for ICMP host redirect messages. In case anybody 1196 * sees these messages: please contact me 1197 * (wd@denx.de), or - even better - send me the 1198 * necessary fixes :-) 1199 * 1200 * Note: in all cases where I have seen this so far 1201 * it was a problem with the router configuration, 1202 * for instance when a router was configured in the 1203 * BOOTP reply, but the TFTP server was on the same 1204 * subnet. So this is probably a warning that your 1205 * configuration might be wrong. But I'm not really 1206 * sure if there aren't any other situations. 1207 * 1208 * Simon Glass <sjg@chromium.org>: We get an ICMP when 1209 * we send a tftp packet to a dead connection, or when 1210 * there is no server at the other end. 1211 */ 1212 if (ip->ip_p == IPPROTO_ICMP) { 1213 receive_icmp(ip, len, src_ip, et); 1214 return; 1215 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */ 1216 return; 1217 } 1218 1219 debug_cond(DEBUG_DEV_PKT, 1220 "received UDP (to=%pI4, from=%pI4, len=%d)\n", 1221 &dst_ip, &src_ip, len); 1222 1223 #ifdef CONFIG_UDP_CHECKSUM 1224 if (ip->udp_xsum != 0) { 1225 ulong xsum; 1226 ushort *sumptr; 1227 ushort sumlen; 1228 1229 xsum = ip->ip_p; 1230 xsum += (ntohs(ip->udp_len)); 1231 xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff; 1232 xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff; 1233 xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff; 1234 xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff; 1235 1236 sumlen = ntohs(ip->udp_len); 1237 sumptr = (ushort *)&(ip->udp_src); 1238 1239 while (sumlen > 1) { 1240 ushort sumdata; 1241 1242 sumdata = *sumptr++; 1243 xsum += ntohs(sumdata); 1244 sumlen -= 2; 1245 } 1246 if (sumlen > 0) { 1247 ushort sumdata; 1248 1249 sumdata = *(unsigned char *)sumptr; 1250 sumdata = (sumdata << 8) & 0xff00; 1251 xsum += sumdata; 1252 } 1253 while ((xsum >> 16) != 0) { 1254 xsum = (xsum & 0x0000ffff) + 1255 ((xsum >> 16) & 0x0000ffff); 1256 } 1257 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) { 1258 printf(" UDP wrong checksum %08lx %08x\n", 1259 xsum, ntohs(ip->udp_xsum)); 1260 return; 1261 } 1262 } 1263 #endif 1264 1265 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD) 1266 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE, 1267 src_ip, 1268 ntohs(ip->udp_dst), 1269 ntohs(ip->udp_src), 1270 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1271 #endif 1272 /* 1273 * IP header OK. Pass the packet to the current handler. 1274 */ 1275 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE, 1276 ntohs(ip->udp_dst), 1277 src_ip, 1278 ntohs(ip->udp_src), 1279 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1280 break; 1281 } 1282 } 1283 1284 /**********************************************************************/ 1285 1286 static int net_check_prereq(enum proto_t protocol) 1287 { 1288 switch (protocol) { 1289 /* Fall through */ 1290 #if defined(CONFIG_CMD_PING) 1291 case PING: 1292 if (net_ping_ip.s_addr == 0) { 1293 puts("*** ERROR: ping address not given\n"); 1294 return 1; 1295 } 1296 goto common; 1297 #endif 1298 #if defined(CONFIG_CMD_SNTP) 1299 case SNTP: 1300 if (net_ntp_server.s_addr == 0) { 1301 puts("*** ERROR: NTP server address not given\n"); 1302 return 1; 1303 } 1304 goto common; 1305 #endif 1306 #if defined(CONFIG_CMD_DNS) 1307 case DNS: 1308 if (net_dns_server.s_addr == 0) { 1309 puts("*** ERROR: DNS server address not given\n"); 1310 return 1; 1311 } 1312 goto common; 1313 #endif 1314 #if defined(CONFIG_CMD_NFS) 1315 case NFS: 1316 #endif 1317 /* Fall through */ 1318 case TFTPGET: 1319 case TFTPPUT: 1320 if (net_server_ip.s_addr == 0) { 1321 puts("*** ERROR: `serverip' not set\n"); 1322 return 1; 1323 } 1324 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \ 1325 defined(CONFIG_CMD_DNS) 1326 common: 1327 #endif 1328 /* Fall through */ 1329 1330 case NETCONS: 1331 case TFTPSRV: 1332 if (net_ip.s_addr == 0) { 1333 puts("*** ERROR: `ipaddr' not set\n"); 1334 return 1; 1335 } 1336 /* Fall through */ 1337 1338 #ifdef CONFIG_CMD_RARP 1339 case RARP: 1340 #endif 1341 case BOOTP: 1342 case CDP: 1343 case DHCP: 1344 case LINKLOCAL: 1345 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) { 1346 int num = eth_get_dev_index(); 1347 1348 switch (num) { 1349 case -1: 1350 puts("*** ERROR: No ethernet found.\n"); 1351 return 1; 1352 case 0: 1353 puts("*** ERROR: `ethaddr' not set\n"); 1354 break; 1355 default: 1356 printf("*** ERROR: `eth%daddr' not set\n", 1357 num); 1358 break; 1359 } 1360 1361 net_start_again(); 1362 return 2; 1363 } 1364 /* Fall through */ 1365 default: 1366 return 0; 1367 } 1368 return 0; /* OK */ 1369 } 1370 /**********************************************************************/ 1371 1372 int 1373 net_eth_hdr_size(void) 1374 { 1375 ushort myvlanid; 1376 1377 myvlanid = ntohs(net_our_vlan); 1378 if (myvlanid == (ushort)-1) 1379 myvlanid = VLAN_NONE; 1380 1381 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE : 1382 VLAN_ETHER_HDR_SIZE; 1383 } 1384 1385 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot) 1386 { 1387 struct ethernet_hdr *et = (struct ethernet_hdr *)xet; 1388 ushort myvlanid; 1389 1390 myvlanid = ntohs(net_our_vlan); 1391 if (myvlanid == (ushort)-1) 1392 myvlanid = VLAN_NONE; 1393 1394 memcpy(et->et_dest, dest_ethaddr, 6); 1395 memcpy(et->et_src, net_ethaddr, 6); 1396 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) { 1397 et->et_protlen = htons(prot); 1398 return ETHER_HDR_SIZE; 1399 } else { 1400 struct vlan_ethernet_hdr *vet = 1401 (struct vlan_ethernet_hdr *)xet; 1402 1403 vet->vet_vlan_type = htons(PROT_VLAN); 1404 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK)); 1405 vet->vet_type = htons(prot); 1406 return VLAN_ETHER_HDR_SIZE; 1407 } 1408 } 1409 1410 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot) 1411 { 1412 ushort protlen; 1413 1414 memcpy(et->et_dest, addr, 6); 1415 memcpy(et->et_src, net_ethaddr, 6); 1416 protlen = ntohs(et->et_protlen); 1417 if (protlen == PROT_VLAN) { 1418 struct vlan_ethernet_hdr *vet = 1419 (struct vlan_ethernet_hdr *)et; 1420 vet->vet_type = htons(prot); 1421 return VLAN_ETHER_HDR_SIZE; 1422 } else if (protlen > 1514) { 1423 et->et_protlen = htons(prot); 1424 return ETHER_HDR_SIZE; 1425 } else { 1426 /* 802.2 + SNAP */ 1427 struct e802_hdr *et802 = (struct e802_hdr *)et; 1428 et802->et_prot = htons(prot); 1429 return E802_HDR_SIZE; 1430 } 1431 } 1432 1433 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source) 1434 { 1435 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1436 1437 /* 1438 * Construct an IP header. 1439 */ 1440 /* IP_HDR_SIZE / 4 (not including UDP) */ 1441 ip->ip_hl_v = 0x45; 1442 ip->ip_tos = 0; 1443 ip->ip_len = htons(IP_HDR_SIZE); 1444 ip->ip_id = htons(net_ip_id++); 1445 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */ 1446 ip->ip_ttl = 255; 1447 ip->ip_sum = 0; 1448 /* already in network byte order */ 1449 net_copy_ip((void *)&ip->ip_src, &source); 1450 /* already in network byte order */ 1451 net_copy_ip((void *)&ip->ip_dst, &dest); 1452 } 1453 1454 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport, 1455 int len) 1456 { 1457 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1458 1459 /* 1460 * If the data is an odd number of bytes, zero the 1461 * byte after the last byte so that the checksum 1462 * will work. 1463 */ 1464 if (len & 1) 1465 pkt[IP_UDP_HDR_SIZE + len] = 0; 1466 1467 net_set_ip_header(pkt, dest, net_ip); 1468 ip->ip_len = htons(IP_UDP_HDR_SIZE + len); 1469 ip->ip_p = IPPROTO_UDP; 1470 ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE); 1471 1472 ip->udp_src = htons(sport); 1473 ip->udp_dst = htons(dport); 1474 ip->udp_len = htons(UDP_HDR_SIZE + len); 1475 ip->udp_xsum = 0; 1476 } 1477 1478 void copy_filename(char *dst, const char *src, int size) 1479 { 1480 if (*src && (*src == '"')) { 1481 ++src; 1482 --size; 1483 } 1484 1485 while ((--size > 0) && *src && (*src != '"')) 1486 *dst++ = *src++; 1487 *dst = '\0'; 1488 } 1489 1490 #if defined(CONFIG_CMD_NFS) || \ 1491 defined(CONFIG_CMD_SNTP) || \ 1492 defined(CONFIG_CMD_DNS) 1493 /* 1494 * make port a little random (1024-17407) 1495 * This keeps the math somewhat trivial to compute, and seems to work with 1496 * all supported protocols/clients/servers 1497 */ 1498 unsigned int random_port(void) 1499 { 1500 return 1024 + (get_timer(0) % 0x4000); 1501 } 1502 #endif 1503 1504 void ip_to_string(struct in_addr x, char *s) 1505 { 1506 x.s_addr = ntohl(x.s_addr); 1507 sprintf(s, "%d.%d.%d.%d", 1508 (int) ((x.s_addr >> 24) & 0xff), 1509 (int) ((x.s_addr >> 16) & 0xff), 1510 (int) ((x.s_addr >> 8) & 0xff), 1511 (int) ((x.s_addr >> 0) & 0xff) 1512 ); 1513 } 1514 1515 void vlan_to_string(ushort x, char *s) 1516 { 1517 x = ntohs(x); 1518 1519 if (x == (ushort)-1) 1520 x = VLAN_NONE; 1521 1522 if (x == VLAN_NONE) 1523 strcpy(s, "none"); 1524 else 1525 sprintf(s, "%d", x & VLAN_IDMASK); 1526 } 1527 1528 ushort string_to_vlan(const char *s) 1529 { 1530 ushort id; 1531 1532 if (s == NULL) 1533 return htons(VLAN_NONE); 1534 1535 if (*s < '0' || *s > '9') 1536 id = VLAN_NONE; 1537 else 1538 id = (ushort)simple_strtoul(s, NULL, 10); 1539 1540 return htons(id); 1541 } 1542 1543 ushort getenv_vlan(char *var) 1544 { 1545 return string_to_vlan(getenv(var)); 1546 } 1547