xref: /openbmc/u-boot/net/net.c (revision 203e94f6c9ca03e260175ce240f5856507395585)
1  /*
2   *	Copied from Linux Monitor (LiMon) - Networking.
3   *
4   *	Copyright 1994 - 2000 Neil Russell.
5   *	(See License)
6   *	Copyright 2000 Roland Borde
7   *	Copyright 2000 Paolo Scaffardi
8   *	Copyright 2000-2002 Wolfgang Denk, wd@denx.de
9   *	SPDX-License-Identifier:	GPL-2.0
10   */
11  
12  /*
13   * General Desription:
14   *
15   * The user interface supports commands for BOOTP, RARP, and TFTP.
16   * Also, we support ARP internally. Depending on available data,
17   * these interact as follows:
18   *
19   * BOOTP:
20   *
21   *	Prerequisites:	- own ethernet address
22   *	We want:	- own IP address
23   *			- TFTP server IP address
24   *			- name of bootfile
25   *	Next step:	ARP
26   *
27   * LINK_LOCAL:
28   *
29   *	Prerequisites:	- own ethernet address
30   *	We want:	- own IP address
31   *	Next step:	ARP
32   *
33   * RARP:
34   *
35   *	Prerequisites:	- own ethernet address
36   *	We want:	- own IP address
37   *			- TFTP server IP address
38   *	Next step:	ARP
39   *
40   * ARP:
41   *
42   *	Prerequisites:	- own ethernet address
43   *			- own IP address
44   *			- TFTP server IP address
45   *	We want:	- TFTP server ethernet address
46   *	Next step:	TFTP
47   *
48   * DHCP:
49   *
50   *     Prerequisites:	- own ethernet address
51   *     We want:		- IP, Netmask, ServerIP, Gateway IP
52   *			- bootfilename, lease time
53   *     Next step:	- TFTP
54   *
55   * TFTP:
56   *
57   *	Prerequisites:	- own ethernet address
58   *			- own IP address
59   *			- TFTP server IP address
60   *			- TFTP server ethernet address
61   *			- name of bootfile (if unknown, we use a default name
62   *			  derived from our own IP address)
63   *	We want:	- load the boot file
64   *	Next step:	none
65   *
66   * NFS:
67   *
68   *	Prerequisites:	- own ethernet address
69   *			- own IP address
70   *			- name of bootfile (if unknown, we use a default name
71   *			  derived from our own IP address)
72   *	We want:	- load the boot file
73   *	Next step:	none
74   *
75   * SNTP:
76   *
77   *	Prerequisites:	- own ethernet address
78   *			- own IP address
79   *	We want:	- network time
80   *	Next step:	none
81   */
82  
83  
84  #include <common.h>
85  #include <command.h>
86  #include <console.h>
87  #include <environment.h>
88  #include <errno.h>
89  #include <net.h>
90  #include <net/tftp.h>
91  #if defined(CONFIG_LED_STATUS)
92  #include <miiphy.h>
93  #include <status_led.h>
94  #endif
95  #include <watchdog.h>
96  #include <linux/compiler.h>
97  #include "arp.h"
98  #include "bootp.h"
99  #include "cdp.h"
100  #if defined(CONFIG_CMD_DNS)
101  #include "dns.h"
102  #endif
103  #include "link_local.h"
104  #include "nfs.h"
105  #include "ping.h"
106  #include "rarp.h"
107  #if defined(CONFIG_CMD_SNTP)
108  #include "sntp.h"
109  #endif
110  
111  DECLARE_GLOBAL_DATA_PTR;
112  
113  /** BOOTP EXTENTIONS **/
114  
115  /* Our subnet mask (0=unknown) */
116  struct in_addr net_netmask;
117  /* Our gateways IP address */
118  struct in_addr net_gateway;
119  /* Our DNS IP address */
120  struct in_addr net_dns_server;
121  #if defined(CONFIG_BOOTP_DNS2)
122  /* Our 2nd DNS IP address */
123  struct in_addr net_dns_server2;
124  #endif
125  
126  #ifdef CONFIG_MCAST_TFTP	/* Multicast TFTP */
127  struct in_addr net_mcast_addr;
128  #endif
129  
130  /** END OF BOOTP EXTENTIONS **/
131  
132  /* Our ethernet address */
133  u8 net_ethaddr[6];
134  /* Boot server enet address */
135  u8 net_server_ethaddr[6];
136  /* Our IP addr (0 = unknown) */
137  struct in_addr	net_ip;
138  /* Server IP addr (0 = unknown) */
139  struct in_addr	net_server_ip;
140  /* Current receive packet */
141  uchar *net_rx_packet;
142  /* Current rx packet length */
143  int		net_rx_packet_len;
144  /* IP packet ID */
145  static unsigned	net_ip_id;
146  /* Ethernet bcast address */
147  const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
148  const u8 net_null_ethaddr[6];
149  #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
150  void (*push_packet)(void *, int len) = 0;
151  #endif
152  /* Network loop state */
153  enum net_loop_state net_state;
154  /* Tried all network devices */
155  int		net_restart_wrap;
156  /* Network loop restarted */
157  static int	net_restarted;
158  /* At least one device configured */
159  static int	net_dev_exists;
160  
161  /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */
162  /* default is without VLAN */
163  ushort		net_our_vlan = 0xFFFF;
164  /* ditto */
165  ushort		net_native_vlan = 0xFFFF;
166  
167  /* Boot File name */
168  char net_boot_file_name[1024];
169  /* The actual transferred size of the bootfile (in bytes) */
170  u32 net_boot_file_size;
171  /* Boot file size in blocks as reported by the DHCP server */
172  u32 net_boot_file_expected_size_in_blocks;
173  
174  #if defined(CONFIG_CMD_SNTP)
175  /* NTP server IP address */
176  struct in_addr	net_ntp_server;
177  /* offset time from UTC */
178  int		net_ntp_time_offset;
179  #endif
180  
181  static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN];
182  /* Receive packets */
183  uchar *net_rx_packets[PKTBUFSRX];
184  /* Current UDP RX packet handler */
185  static rxhand_f *udp_packet_handler;
186  /* Current ARP RX packet handler */
187  static rxhand_f *arp_packet_handler;
188  #ifdef CONFIG_CMD_TFTPPUT
189  /* Current ICMP rx handler */
190  static rxhand_icmp_f *packet_icmp_handler;
191  #endif
192  /* Current timeout handler */
193  static thand_f *time_handler;
194  /* Time base value */
195  static ulong	time_start;
196  /* Current timeout value */
197  static ulong	time_delta;
198  /* THE transmit packet */
199  uchar *net_tx_packet;
200  
201  static int net_check_prereq(enum proto_t protocol);
202  
203  static int net_try_count;
204  
205  int __maybe_unused net_busy_flag;
206  
207  /**********************************************************************/
208  
209  static int on_bootfile(const char *name, const char *value, enum env_op op,
210  	int flags)
211  {
212  	if (flags & H_PROGRAMMATIC)
213  		return 0;
214  
215  	switch (op) {
216  	case env_op_create:
217  	case env_op_overwrite:
218  		copy_filename(net_boot_file_name, value,
219  			      sizeof(net_boot_file_name));
220  		break;
221  	default:
222  		break;
223  	}
224  
225  	return 0;
226  }
227  U_BOOT_ENV_CALLBACK(bootfile, on_bootfile);
228  
229  static int on_ipaddr(const char *name, const char *value, enum env_op op,
230  	int flags)
231  {
232  	if (flags & H_PROGRAMMATIC)
233  		return 0;
234  
235  	net_ip = string_to_ip(value);
236  
237  	return 0;
238  }
239  U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr);
240  
241  static int on_gatewayip(const char *name, const char *value, enum env_op op,
242  	int flags)
243  {
244  	if (flags & H_PROGRAMMATIC)
245  		return 0;
246  
247  	net_gateway = string_to_ip(value);
248  
249  	return 0;
250  }
251  U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip);
252  
253  static int on_netmask(const char *name, const char *value, enum env_op op,
254  	int flags)
255  {
256  	if (flags & H_PROGRAMMATIC)
257  		return 0;
258  
259  	net_netmask = string_to_ip(value);
260  
261  	return 0;
262  }
263  U_BOOT_ENV_CALLBACK(netmask, on_netmask);
264  
265  static int on_serverip(const char *name, const char *value, enum env_op op,
266  	int flags)
267  {
268  	if (flags & H_PROGRAMMATIC)
269  		return 0;
270  
271  	net_server_ip = string_to_ip(value);
272  
273  	return 0;
274  }
275  U_BOOT_ENV_CALLBACK(serverip, on_serverip);
276  
277  static int on_nvlan(const char *name, const char *value, enum env_op op,
278  	int flags)
279  {
280  	if (flags & H_PROGRAMMATIC)
281  		return 0;
282  
283  	net_native_vlan = string_to_vlan(value);
284  
285  	return 0;
286  }
287  U_BOOT_ENV_CALLBACK(nvlan, on_nvlan);
288  
289  static int on_vlan(const char *name, const char *value, enum env_op op,
290  	int flags)
291  {
292  	if (flags & H_PROGRAMMATIC)
293  		return 0;
294  
295  	net_our_vlan = string_to_vlan(value);
296  
297  	return 0;
298  }
299  U_BOOT_ENV_CALLBACK(vlan, on_vlan);
300  
301  #if defined(CONFIG_CMD_DNS)
302  static int on_dnsip(const char *name, const char *value, enum env_op op,
303  	int flags)
304  {
305  	if (flags & H_PROGRAMMATIC)
306  		return 0;
307  
308  	net_dns_server = string_to_ip(value);
309  
310  	return 0;
311  }
312  U_BOOT_ENV_CALLBACK(dnsip, on_dnsip);
313  #endif
314  
315  /*
316   * Check if autoload is enabled. If so, use either NFS or TFTP to download
317   * the boot file.
318   */
319  void net_auto_load(void)
320  {
321  #if defined(CONFIG_CMD_NFS)
322  	const char *s = getenv("autoload");
323  
324  	if (s != NULL && strcmp(s, "NFS") == 0) {
325  		/*
326  		 * Use NFS to load the bootfile.
327  		 */
328  		nfs_start();
329  		return;
330  	}
331  #endif
332  	if (getenv_yesno("autoload") == 0) {
333  		/*
334  		 * Just use BOOTP/RARP to configure system;
335  		 * Do not use TFTP to load the bootfile.
336  		 */
337  		net_set_state(NETLOOP_SUCCESS);
338  		return;
339  	}
340  	tftp_start(TFTPGET);
341  }
342  
343  static void net_init_loop(void)
344  {
345  	if (eth_get_dev())
346  		memcpy(net_ethaddr, eth_get_ethaddr(), 6);
347  
348  	return;
349  }
350  
351  static void net_clear_handlers(void)
352  {
353  	net_set_udp_handler(NULL);
354  	net_set_arp_handler(NULL);
355  	net_set_timeout_handler(0, NULL);
356  }
357  
358  static void net_cleanup_loop(void)
359  {
360  	net_clear_handlers();
361  }
362  
363  void net_init(void)
364  {
365  	static int first_call = 1;
366  
367  	if (first_call) {
368  		/*
369  		 *	Setup packet buffers, aligned correctly.
370  		 */
371  		int i;
372  
373  		net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1);
374  		net_tx_packet -= (ulong)net_tx_packet % PKTALIGN;
375  		for (i = 0; i < PKTBUFSRX; i++) {
376  			net_rx_packets[i] = net_tx_packet +
377  				(i + 1) * PKTSIZE_ALIGN;
378  		}
379  		arp_init();
380  		net_clear_handlers();
381  
382  		/* Only need to setup buffer pointers once. */
383  		first_call = 0;
384  	}
385  
386  	net_init_loop();
387  }
388  
389  /**********************************************************************/
390  /*
391   *	Main network processing loop.
392   */
393  
394  int net_loop(enum proto_t protocol)
395  {
396  	int ret = -EINVAL;
397  
398  	net_restarted = 0;
399  	net_dev_exists = 0;
400  	net_try_count = 1;
401  	debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n");
402  
403  	bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start");
404  	net_init();
405  	if (eth_is_on_demand_init() || protocol != NETCONS) {
406  		eth_halt();
407  		eth_set_current();
408  		ret = eth_init();
409  		if (ret < 0) {
410  			eth_halt();
411  			return ret;
412  		}
413  	} else {
414  		eth_init_state_only();
415  	}
416  restart:
417  #ifdef CONFIG_USB_KEYBOARD
418  	net_busy_flag = 0;
419  #endif
420  	net_set_state(NETLOOP_CONTINUE);
421  
422  	/*
423  	 *	Start the ball rolling with the given start function.  From
424  	 *	here on, this code is a state machine driven by received
425  	 *	packets and timer events.
426  	 */
427  	debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n");
428  	net_init_loop();
429  
430  	switch (net_check_prereq(protocol)) {
431  	case 1:
432  		/* network not configured */
433  		eth_halt();
434  		return -ENODEV;
435  
436  	case 2:
437  		/* network device not configured */
438  		break;
439  
440  	case 0:
441  		net_dev_exists = 1;
442  		net_boot_file_size = 0;
443  		switch (protocol) {
444  		case TFTPGET:
445  #ifdef CONFIG_CMD_TFTPPUT
446  		case TFTPPUT:
447  #endif
448  			/* always use ARP to get server ethernet address */
449  			tftp_start(protocol);
450  			break;
451  #ifdef CONFIG_CMD_TFTPSRV
452  		case TFTPSRV:
453  			tftp_start_server();
454  			break;
455  #endif
456  #if defined(CONFIG_CMD_DHCP)
457  		case DHCP:
458  			bootp_reset();
459  			net_ip.s_addr = 0;
460  			dhcp_request();		/* Basically same as BOOTP */
461  			break;
462  #endif
463  
464  		case BOOTP:
465  			bootp_reset();
466  			net_ip.s_addr = 0;
467  			bootp_request();
468  			break;
469  
470  #if defined(CONFIG_CMD_RARP)
471  		case RARP:
472  			rarp_try = 0;
473  			net_ip.s_addr = 0;
474  			rarp_request();
475  			break;
476  #endif
477  #if defined(CONFIG_CMD_PING)
478  		case PING:
479  			ping_start();
480  			break;
481  #endif
482  #if defined(CONFIG_CMD_NFS)
483  		case NFS:
484  			nfs_start();
485  			break;
486  #endif
487  #if defined(CONFIG_CMD_CDP)
488  		case CDP:
489  			cdp_start();
490  			break;
491  #endif
492  #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
493  		case NETCONS:
494  			nc_start();
495  			break;
496  #endif
497  #if defined(CONFIG_CMD_SNTP)
498  		case SNTP:
499  			sntp_start();
500  			break;
501  #endif
502  #if defined(CONFIG_CMD_DNS)
503  		case DNS:
504  			dns_start();
505  			break;
506  #endif
507  #if defined(CONFIG_CMD_LINK_LOCAL)
508  		case LINKLOCAL:
509  			link_local_start();
510  			break;
511  #endif
512  		default:
513  			break;
514  		}
515  
516  		break;
517  	}
518  
519  #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
520  #if	defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)	&& \
521  	defined(CONFIG_LED_STATUS)			&& \
522  	defined(CONFIG_LED_STATUS_RED)
523  	/*
524  	 * Echo the inverted link state to the fault LED.
525  	 */
526  	if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR))
527  		status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_OFF);
528  	else
529  		status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_ON);
530  #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
531  #endif /* CONFIG_MII, ... */
532  #ifdef CONFIG_USB_KEYBOARD
533  	net_busy_flag = 1;
534  #endif
535  
536  	/*
537  	 *	Main packet reception loop.  Loop receiving packets until
538  	 *	someone sets `net_state' to a state that terminates.
539  	 */
540  	for (;;) {
541  		WATCHDOG_RESET();
542  #ifdef CONFIG_SHOW_ACTIVITY
543  		show_activity(1);
544  #endif
545  		if (arp_timeout_check() > 0)
546  			time_start = get_timer(0);
547  
548  		/*
549  		 *	Check the ethernet for a new packet.  The ethernet
550  		 *	receive routine will process it.
551  		 *	Most drivers return the most recent packet size, but not
552  		 *	errors that may have happened.
553  		 */
554  		eth_rx();
555  
556  		/*
557  		 *	Abort if ctrl-c was pressed.
558  		 */
559  		if (ctrlc()) {
560  			/* cancel any ARP that may not have completed */
561  			net_arp_wait_packet_ip.s_addr = 0;
562  
563  			net_cleanup_loop();
564  			eth_halt();
565  			/* Invalidate the last protocol */
566  			eth_set_last_protocol(BOOTP);
567  
568  			puts("\nAbort\n");
569  			/* include a debug print as well incase the debug
570  			   messages are directed to stderr */
571  			debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n");
572  			ret = -EINTR;
573  			goto done;
574  		}
575  
576  		/*
577  		 *	Check for a timeout, and run the timeout handler
578  		 *	if we have one.
579  		 */
580  		if (time_handler &&
581  		    ((get_timer(0) - time_start) > time_delta)) {
582  			thand_f *x;
583  
584  #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
585  #if	defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)	&& \
586  	defined(CONFIG_LED_STATUS)			&& \
587  	defined(CONFIG_LED_STATUS_RED)
588  			/*
589  			 * Echo the inverted link state to the fault LED.
590  			 */
591  			if (miiphy_link(eth_get_dev()->name,
592  					CONFIG_SYS_FAULT_MII_ADDR))
593  				status_led_set(CONFIG_LED_STATUS_RED,
594  					       CONFIG_LED_STATUS_OFF);
595  			else
596  				status_led_set(CONFIG_LED_STATUS_RED,
597  					       CONFIG_LED_STATUS_ON);
598  #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
599  #endif /* CONFIG_MII, ... */
600  			debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n");
601  			x = time_handler;
602  			time_handler = (thand_f *)0;
603  			(*x)();
604  		}
605  
606  		if (net_state == NETLOOP_FAIL)
607  			ret = net_start_again();
608  
609  		switch (net_state) {
610  		case NETLOOP_RESTART:
611  			net_restarted = 1;
612  			goto restart;
613  
614  		case NETLOOP_SUCCESS:
615  			net_cleanup_loop();
616  			if (net_boot_file_size > 0) {
617  				printf("Bytes transferred = %d (%x hex)\n",
618  				       net_boot_file_size, net_boot_file_size);
619  				setenv_hex("filesize", net_boot_file_size);
620  				setenv_hex("fileaddr", load_addr);
621  			}
622  			if (protocol != NETCONS)
623  				eth_halt();
624  			else
625  				eth_halt_state_only();
626  
627  			eth_set_last_protocol(protocol);
628  
629  			ret = net_boot_file_size;
630  			debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n");
631  			goto done;
632  
633  		case NETLOOP_FAIL:
634  			net_cleanup_loop();
635  			/* Invalidate the last protocol */
636  			eth_set_last_protocol(BOOTP);
637  			debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n");
638  			goto done;
639  
640  		case NETLOOP_CONTINUE:
641  			continue;
642  		}
643  	}
644  
645  done:
646  #ifdef CONFIG_USB_KEYBOARD
647  	net_busy_flag = 0;
648  #endif
649  #ifdef CONFIG_CMD_TFTPPUT
650  	/* Clear out the handlers */
651  	net_set_udp_handler(NULL);
652  	net_set_icmp_handler(NULL);
653  #endif
654  	return ret;
655  }
656  
657  /**********************************************************************/
658  
659  static void start_again_timeout_handler(void)
660  {
661  	net_set_state(NETLOOP_RESTART);
662  }
663  
664  int net_start_again(void)
665  {
666  	char *nretry;
667  	int retry_forever = 0;
668  	unsigned long retrycnt = 0;
669  	int ret;
670  
671  	nretry = getenv("netretry");
672  	if (nretry) {
673  		if (!strcmp(nretry, "yes"))
674  			retry_forever = 1;
675  		else if (!strcmp(nretry, "no"))
676  			retrycnt = 0;
677  		else if (!strcmp(nretry, "once"))
678  			retrycnt = 1;
679  		else
680  			retrycnt = simple_strtoul(nretry, NULL, 0);
681  	} else {
682  		retrycnt = 0;
683  		retry_forever = 0;
684  	}
685  
686  	if ((!retry_forever) && (net_try_count >= retrycnt)) {
687  		eth_halt();
688  		net_set_state(NETLOOP_FAIL);
689  		/*
690  		 * We don't provide a way for the protocol to return an error,
691  		 * but this is almost always the reason.
692  		 */
693  		return -ETIMEDOUT;
694  	}
695  
696  	net_try_count++;
697  
698  	eth_halt();
699  #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER)
700  	eth_try_another(!net_restarted);
701  #endif
702  	ret = eth_init();
703  	if (net_restart_wrap) {
704  		net_restart_wrap = 0;
705  		if (net_dev_exists) {
706  			net_set_timeout_handler(10000UL,
707  						start_again_timeout_handler);
708  			net_set_udp_handler(NULL);
709  		} else {
710  			net_set_state(NETLOOP_FAIL);
711  		}
712  	} else {
713  		net_set_state(NETLOOP_RESTART);
714  	}
715  	return ret;
716  }
717  
718  /**********************************************************************/
719  /*
720   *	Miscelaneous bits.
721   */
722  
723  static void dummy_handler(uchar *pkt, unsigned dport,
724  			struct in_addr sip, unsigned sport,
725  			unsigned len)
726  {
727  }
728  
729  rxhand_f *net_get_udp_handler(void)
730  {
731  	return udp_packet_handler;
732  }
733  
734  void net_set_udp_handler(rxhand_f *f)
735  {
736  	debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f);
737  	if (f == NULL)
738  		udp_packet_handler = dummy_handler;
739  	else
740  		udp_packet_handler = f;
741  }
742  
743  rxhand_f *net_get_arp_handler(void)
744  {
745  	return arp_packet_handler;
746  }
747  
748  void net_set_arp_handler(rxhand_f *f)
749  {
750  	debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f);
751  	if (f == NULL)
752  		arp_packet_handler = dummy_handler;
753  	else
754  		arp_packet_handler = f;
755  }
756  
757  #ifdef CONFIG_CMD_TFTPPUT
758  void net_set_icmp_handler(rxhand_icmp_f *f)
759  {
760  	packet_icmp_handler = f;
761  }
762  #endif
763  
764  void net_set_timeout_handler(ulong iv, thand_f *f)
765  {
766  	if (iv == 0) {
767  		debug_cond(DEBUG_INT_STATE,
768  			   "--- net_loop timeout handler cancelled\n");
769  		time_handler = (thand_f *)0;
770  	} else {
771  		debug_cond(DEBUG_INT_STATE,
772  			   "--- net_loop timeout handler set (%p)\n", f);
773  		time_handler = f;
774  		time_start = get_timer(0);
775  		time_delta = iv * CONFIG_SYS_HZ / 1000;
776  	}
777  }
778  
779  int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport,
780  		int payload_len)
781  {
782  	uchar *pkt;
783  	int eth_hdr_size;
784  	int pkt_hdr_size;
785  
786  	/* make sure the net_tx_packet is initialized (net_init() was called) */
787  	assert(net_tx_packet != NULL);
788  	if (net_tx_packet == NULL)
789  		return -1;
790  
791  	/* convert to new style broadcast */
792  	if (dest.s_addr == 0)
793  		dest.s_addr = 0xFFFFFFFF;
794  
795  	/* if broadcast, make the ether address a broadcast and don't do ARP */
796  	if (dest.s_addr == 0xFFFFFFFF)
797  		ether = (uchar *)net_bcast_ethaddr;
798  
799  	pkt = (uchar *)net_tx_packet;
800  
801  	eth_hdr_size = net_set_ether(pkt, ether, PROT_IP);
802  	pkt += eth_hdr_size;
803  	net_set_udp_header(pkt, dest, dport, sport, payload_len);
804  	pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE;
805  
806  	/* if MAC address was not discovered yet, do an ARP request */
807  	if (memcmp(ether, net_null_ethaddr, 6) == 0) {
808  		debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest);
809  
810  		/* save the ip and eth addr for the packet to send after arp */
811  		net_arp_wait_packet_ip = dest;
812  		arp_wait_packet_ethaddr = ether;
813  
814  		/* size of the waiting packet */
815  		arp_wait_tx_packet_size = pkt_hdr_size + payload_len;
816  
817  		/* and do the ARP request */
818  		arp_wait_try = 1;
819  		arp_wait_timer_start = get_timer(0);
820  		arp_request();
821  		return 1;	/* waiting */
822  	} else {
823  		debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n",
824  			   &dest, ether);
825  		net_send_packet(net_tx_packet, pkt_hdr_size + payload_len);
826  		return 0;	/* transmitted */
827  	}
828  }
829  
830  #ifdef CONFIG_IP_DEFRAG
831  /*
832   * This function collects fragments in a single packet, according
833   * to the algorithm in RFC815. It returns NULL or the pointer to
834   * a complete packet, in static storage
835   */
836  #ifndef CONFIG_NET_MAXDEFRAG
837  #define CONFIG_NET_MAXDEFRAG 16384
838  #endif
839  #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG)
840  
841  #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE)
842  
843  /*
844   * this is the packet being assembled, either data or frag control.
845   * Fragments go by 8 bytes, so this union must be 8 bytes long
846   */
847  struct hole {
848  	/* first_byte is address of this structure */
849  	u16 last_byte;	/* last byte in this hole + 1 (begin of next hole) */
850  	u16 next_hole;	/* index of next (in 8-b blocks), 0 == none */
851  	u16 prev_hole;	/* index of prev, 0 == none */
852  	u16 unused;
853  };
854  
855  static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp)
856  {
857  	static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN);
858  	static u16 first_hole, total_len;
859  	struct hole *payload, *thisfrag, *h, *newh;
860  	struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff;
861  	uchar *indata = (uchar *)ip;
862  	int offset8, start, len, done = 0;
863  	u16 ip_off = ntohs(ip->ip_off);
864  
865  	/* payload starts after IP header, this fragment is in there */
866  	payload = (struct hole *)(pkt_buff + IP_HDR_SIZE);
867  	offset8 =  (ip_off & IP_OFFS);
868  	thisfrag = payload + offset8;
869  	start = offset8 * 8;
870  	len = ntohs(ip->ip_len) - IP_HDR_SIZE;
871  
872  	if (start + len > IP_MAXUDP) /* fragment extends too far */
873  		return NULL;
874  
875  	if (!total_len || localip->ip_id != ip->ip_id) {
876  		/* new (or different) packet, reset structs */
877  		total_len = 0xffff;
878  		payload[0].last_byte = ~0;
879  		payload[0].next_hole = 0;
880  		payload[0].prev_hole = 0;
881  		first_hole = 0;
882  		/* any IP header will work, copy the first we received */
883  		memcpy(localip, ip, IP_HDR_SIZE);
884  	}
885  
886  	/*
887  	 * What follows is the reassembly algorithm. We use the payload
888  	 * array as a linked list of hole descriptors, as each hole starts
889  	 * at a multiple of 8 bytes. However, last byte can be whatever value,
890  	 * so it is represented as byte count, not as 8-byte blocks.
891  	 */
892  
893  	h = payload + first_hole;
894  	while (h->last_byte < start) {
895  		if (!h->next_hole) {
896  			/* no hole that far away */
897  			return NULL;
898  		}
899  		h = payload + h->next_hole;
900  	}
901  
902  	/* last fragment may be 1..7 bytes, the "+7" forces acceptance */
903  	if (offset8 + ((len + 7) / 8) <= h - payload) {
904  		/* no overlap with holes (dup fragment?) */
905  		return NULL;
906  	}
907  
908  	if (!(ip_off & IP_FLAGS_MFRAG)) {
909  		/* no more fragmentss: truncate this (last) hole */
910  		total_len = start + len;
911  		h->last_byte = start + len;
912  	}
913  
914  	/*
915  	 * There is some overlap: fix the hole list. This code doesn't
916  	 * deal with a fragment that overlaps with two different holes
917  	 * (thus being a superset of a previously-received fragment).
918  	 */
919  
920  	if ((h >= thisfrag) && (h->last_byte <= start + len)) {
921  		/* complete overlap with hole: remove hole */
922  		if (!h->prev_hole && !h->next_hole) {
923  			/* last remaining hole */
924  			done = 1;
925  		} else if (!h->prev_hole) {
926  			/* first hole */
927  			first_hole = h->next_hole;
928  			payload[h->next_hole].prev_hole = 0;
929  		} else if (!h->next_hole) {
930  			/* last hole */
931  			payload[h->prev_hole].next_hole = 0;
932  		} else {
933  			/* in the middle of the list */
934  			payload[h->next_hole].prev_hole = h->prev_hole;
935  			payload[h->prev_hole].next_hole = h->next_hole;
936  		}
937  
938  	} else if (h->last_byte <= start + len) {
939  		/* overlaps with final part of the hole: shorten this hole */
940  		h->last_byte = start;
941  
942  	} else if (h >= thisfrag) {
943  		/* overlaps with initial part of the hole: move this hole */
944  		newh = thisfrag + (len / 8);
945  		*newh = *h;
946  		h = newh;
947  		if (h->next_hole)
948  			payload[h->next_hole].prev_hole = (h - payload);
949  		if (h->prev_hole)
950  			payload[h->prev_hole].next_hole = (h - payload);
951  		else
952  			first_hole = (h - payload);
953  
954  	} else {
955  		/* fragment sits in the middle: split the hole */
956  		newh = thisfrag + (len / 8);
957  		*newh = *h;
958  		h->last_byte = start;
959  		h->next_hole = (newh - payload);
960  		newh->prev_hole = (h - payload);
961  		if (newh->next_hole)
962  			payload[newh->next_hole].prev_hole = (newh - payload);
963  	}
964  
965  	/* finally copy this fragment and possibly return whole packet */
966  	memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len);
967  	if (!done)
968  		return NULL;
969  
970  	localip->ip_len = htons(total_len);
971  	*lenp = total_len + IP_HDR_SIZE;
972  	return localip;
973  }
974  
975  static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
976  	int *lenp)
977  {
978  	u16 ip_off = ntohs(ip->ip_off);
979  	if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
980  		return ip; /* not a fragment */
981  	return __net_defragment(ip, lenp);
982  }
983  
984  #else /* !CONFIG_IP_DEFRAG */
985  
986  static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
987  	int *lenp)
988  {
989  	u16 ip_off = ntohs(ip->ip_off);
990  	if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
991  		return ip; /* not a fragment */
992  	return NULL;
993  }
994  #endif
995  
996  /**
997   * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently
998   * drop others.
999   *
1000   * @parma ip	IP packet containing the ICMP
1001   */
1002  static void receive_icmp(struct ip_udp_hdr *ip, int len,
1003  			struct in_addr src_ip, struct ethernet_hdr *et)
1004  {
1005  	struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src;
1006  
1007  	switch (icmph->type) {
1008  	case ICMP_REDIRECT:
1009  		if (icmph->code != ICMP_REDIR_HOST)
1010  			return;
1011  		printf(" ICMP Host Redirect to %pI4 ",
1012  		       &icmph->un.gateway);
1013  		break;
1014  	default:
1015  #if defined(CONFIG_CMD_PING)
1016  		ping_receive(et, ip, len);
1017  #endif
1018  #ifdef CONFIG_CMD_TFTPPUT
1019  		if (packet_icmp_handler)
1020  			packet_icmp_handler(icmph->type, icmph->code,
1021  					    ntohs(ip->udp_dst), src_ip,
1022  					    ntohs(ip->udp_src), icmph->un.data,
1023  					    ntohs(ip->udp_len));
1024  #endif
1025  		break;
1026  	}
1027  }
1028  
1029  void net_process_received_packet(uchar *in_packet, int len)
1030  {
1031  	struct ethernet_hdr *et;
1032  	struct ip_udp_hdr *ip;
1033  	struct in_addr dst_ip;
1034  	struct in_addr src_ip;
1035  	int eth_proto;
1036  #if defined(CONFIG_CMD_CDP)
1037  	int iscdp;
1038  #endif
1039  	ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid;
1040  
1041  	debug_cond(DEBUG_NET_PKT, "packet received\n");
1042  
1043  	net_rx_packet = in_packet;
1044  	net_rx_packet_len = len;
1045  	et = (struct ethernet_hdr *)in_packet;
1046  
1047  	/* too small packet? */
1048  	if (len < ETHER_HDR_SIZE)
1049  		return;
1050  
1051  #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
1052  	if (push_packet) {
1053  		(*push_packet)(in_packet, len);
1054  		return;
1055  	}
1056  #endif
1057  
1058  #if defined(CONFIG_CMD_CDP)
1059  	/* keep track if packet is CDP */
1060  	iscdp = is_cdp_packet(et->et_dest);
1061  #endif
1062  
1063  	myvlanid = ntohs(net_our_vlan);
1064  	if (myvlanid == (ushort)-1)
1065  		myvlanid = VLAN_NONE;
1066  	mynvlanid = ntohs(net_native_vlan);
1067  	if (mynvlanid == (ushort)-1)
1068  		mynvlanid = VLAN_NONE;
1069  
1070  	eth_proto = ntohs(et->et_protlen);
1071  
1072  	if (eth_proto < 1514) {
1073  		struct e802_hdr *et802 = (struct e802_hdr *)et;
1074  		/*
1075  		 *	Got a 802.2 packet.  Check the other protocol field.
1076  		 *	XXX VLAN over 802.2+SNAP not implemented!
1077  		 */
1078  		eth_proto = ntohs(et802->et_prot);
1079  
1080  		ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE);
1081  		len -= E802_HDR_SIZE;
1082  
1083  	} else if (eth_proto != PROT_VLAN) {	/* normal packet */
1084  		ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE);
1085  		len -= ETHER_HDR_SIZE;
1086  
1087  	} else {			/* VLAN packet */
1088  		struct vlan_ethernet_hdr *vet =
1089  			(struct vlan_ethernet_hdr *)et;
1090  
1091  		debug_cond(DEBUG_NET_PKT, "VLAN packet received\n");
1092  
1093  		/* too small packet? */
1094  		if (len < VLAN_ETHER_HDR_SIZE)
1095  			return;
1096  
1097  		/* if no VLAN active */
1098  		if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE
1099  #if defined(CONFIG_CMD_CDP)
1100  				&& iscdp == 0
1101  #endif
1102  				)
1103  			return;
1104  
1105  		cti = ntohs(vet->vet_tag);
1106  		vlanid = cti & VLAN_IDMASK;
1107  		eth_proto = ntohs(vet->vet_type);
1108  
1109  		ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE);
1110  		len -= VLAN_ETHER_HDR_SIZE;
1111  	}
1112  
1113  	debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto);
1114  
1115  #if defined(CONFIG_CMD_CDP)
1116  	if (iscdp) {
1117  		cdp_receive((uchar *)ip, len);
1118  		return;
1119  	}
1120  #endif
1121  
1122  	if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) {
1123  		if (vlanid == VLAN_NONE)
1124  			vlanid = (mynvlanid & VLAN_IDMASK);
1125  		/* not matched? */
1126  		if (vlanid != (myvlanid & VLAN_IDMASK))
1127  			return;
1128  	}
1129  
1130  	switch (eth_proto) {
1131  	case PROT_ARP:
1132  		arp_receive(et, ip, len);
1133  		break;
1134  
1135  #ifdef CONFIG_CMD_RARP
1136  	case PROT_RARP:
1137  		rarp_receive(ip, len);
1138  		break;
1139  #endif
1140  	case PROT_IP:
1141  		debug_cond(DEBUG_NET_PKT, "Got IP\n");
1142  		/* Before we start poking the header, make sure it is there */
1143  		if (len < IP_UDP_HDR_SIZE) {
1144  			debug("len bad %d < %lu\n", len,
1145  			      (ulong)IP_UDP_HDR_SIZE);
1146  			return;
1147  		}
1148  		/* Check the packet length */
1149  		if (len < ntohs(ip->ip_len)) {
1150  			debug("len bad %d < %d\n", len, ntohs(ip->ip_len));
1151  			return;
1152  		}
1153  		len = ntohs(ip->ip_len);
1154  		debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n",
1155  			   len, ip->ip_hl_v & 0xff);
1156  
1157  		/* Can't deal with anything except IPv4 */
1158  		if ((ip->ip_hl_v & 0xf0) != 0x40)
1159  			return;
1160  		/* Can't deal with IP options (headers != 20 bytes) */
1161  		if ((ip->ip_hl_v & 0x0f) > 0x05)
1162  			return;
1163  		/* Check the Checksum of the header */
1164  		if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) {
1165  			debug("checksum bad\n");
1166  			return;
1167  		}
1168  		/* If it is not for us, ignore it */
1169  		dst_ip = net_read_ip(&ip->ip_dst);
1170  		if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr &&
1171  		    dst_ip.s_addr != 0xFFFFFFFF) {
1172  #ifdef CONFIG_MCAST_TFTP
1173  			if (net_mcast_addr != dst_ip)
1174  #endif
1175  				return;
1176  		}
1177  		/* Read source IP address for later use */
1178  		src_ip = net_read_ip(&ip->ip_src);
1179  		/*
1180  		 * The function returns the unchanged packet if it's not
1181  		 * a fragment, and either the complete packet or NULL if
1182  		 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL)
1183  		 */
1184  		ip = net_defragment(ip, &len);
1185  		if (!ip)
1186  			return;
1187  		/*
1188  		 * watch for ICMP host redirects
1189  		 *
1190  		 * There is no real handler code (yet). We just watch
1191  		 * for ICMP host redirect messages. In case anybody
1192  		 * sees these messages: please contact me
1193  		 * (wd@denx.de), or - even better - send me the
1194  		 * necessary fixes :-)
1195  		 *
1196  		 * Note: in all cases where I have seen this so far
1197  		 * it was a problem with the router configuration,
1198  		 * for instance when a router was configured in the
1199  		 * BOOTP reply, but the TFTP server was on the same
1200  		 * subnet. So this is probably a warning that your
1201  		 * configuration might be wrong. But I'm not really
1202  		 * sure if there aren't any other situations.
1203  		 *
1204  		 * Simon Glass <sjg@chromium.org>: We get an ICMP when
1205  		 * we send a tftp packet to a dead connection, or when
1206  		 * there is no server at the other end.
1207  		 */
1208  		if (ip->ip_p == IPPROTO_ICMP) {
1209  			receive_icmp(ip, len, src_ip, et);
1210  			return;
1211  		} else if (ip->ip_p != IPPROTO_UDP) {	/* Only UDP packets */
1212  			return;
1213  		}
1214  
1215  		debug_cond(DEBUG_DEV_PKT,
1216  			   "received UDP (to=%pI4, from=%pI4, len=%d)\n",
1217  			   &dst_ip, &src_ip, len);
1218  
1219  #ifdef CONFIG_UDP_CHECKSUM
1220  		if (ip->udp_xsum != 0) {
1221  			ulong   xsum;
1222  			ushort *sumptr;
1223  			ushort  sumlen;
1224  
1225  			xsum  = ip->ip_p;
1226  			xsum += (ntohs(ip->udp_len));
1227  			xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff;
1228  			xsum += (ntohl(ip->ip_src.s_addr) >>  0) & 0x0000ffff;
1229  			xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff;
1230  			xsum += (ntohl(ip->ip_dst.s_addr) >>  0) & 0x0000ffff;
1231  
1232  			sumlen = ntohs(ip->udp_len);
1233  			sumptr = (ushort *)&(ip->udp_src);
1234  
1235  			while (sumlen > 1) {
1236  				ushort sumdata;
1237  
1238  				sumdata = *sumptr++;
1239  				xsum += ntohs(sumdata);
1240  				sumlen -= 2;
1241  			}
1242  			if (sumlen > 0) {
1243  				ushort sumdata;
1244  
1245  				sumdata = *(unsigned char *)sumptr;
1246  				sumdata = (sumdata << 8) & 0xff00;
1247  				xsum += sumdata;
1248  			}
1249  			while ((xsum >> 16) != 0) {
1250  				xsum = (xsum & 0x0000ffff) +
1251  				       ((xsum >> 16) & 0x0000ffff);
1252  			}
1253  			if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) {
1254  				printf(" UDP wrong checksum %08lx %08x\n",
1255  				       xsum, ntohs(ip->udp_xsum));
1256  				return;
1257  			}
1258  		}
1259  #endif
1260  
1261  #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
1262  		nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE,
1263  				src_ip,
1264  				ntohs(ip->udp_dst),
1265  				ntohs(ip->udp_src),
1266  				ntohs(ip->udp_len) - UDP_HDR_SIZE);
1267  #endif
1268  		/*
1269  		 * IP header OK.  Pass the packet to the current handler.
1270  		 */
1271  		(*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE,
1272  				      ntohs(ip->udp_dst),
1273  				      src_ip,
1274  				      ntohs(ip->udp_src),
1275  				      ntohs(ip->udp_len) - UDP_HDR_SIZE);
1276  		break;
1277  	}
1278  }
1279  
1280  /**********************************************************************/
1281  
1282  static int net_check_prereq(enum proto_t protocol)
1283  {
1284  	switch (protocol) {
1285  		/* Fall through */
1286  #if defined(CONFIG_CMD_PING)
1287  	case PING:
1288  		if (net_ping_ip.s_addr == 0) {
1289  			puts("*** ERROR: ping address not given\n");
1290  			return 1;
1291  		}
1292  		goto common;
1293  #endif
1294  #if defined(CONFIG_CMD_SNTP)
1295  	case SNTP:
1296  		if (net_ntp_server.s_addr == 0) {
1297  			puts("*** ERROR: NTP server address not given\n");
1298  			return 1;
1299  		}
1300  		goto common;
1301  #endif
1302  #if defined(CONFIG_CMD_DNS)
1303  	case DNS:
1304  		if (net_dns_server.s_addr == 0) {
1305  			puts("*** ERROR: DNS server address not given\n");
1306  			return 1;
1307  		}
1308  		goto common;
1309  #endif
1310  #if defined(CONFIG_CMD_NFS)
1311  	case NFS:
1312  #endif
1313  		/* Fall through */
1314  	case TFTPGET:
1315  	case TFTPPUT:
1316  		if (net_server_ip.s_addr == 0) {
1317  			puts("*** ERROR: `serverip' not set\n");
1318  			return 1;
1319  		}
1320  #if	defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \
1321  	defined(CONFIG_CMD_DNS)
1322  common:
1323  #endif
1324  		/* Fall through */
1325  
1326  	case NETCONS:
1327  	case TFTPSRV:
1328  		if (net_ip.s_addr == 0) {
1329  			puts("*** ERROR: `ipaddr' not set\n");
1330  			return 1;
1331  		}
1332  		/* Fall through */
1333  
1334  #ifdef CONFIG_CMD_RARP
1335  	case RARP:
1336  #endif
1337  	case BOOTP:
1338  	case CDP:
1339  	case DHCP:
1340  	case LINKLOCAL:
1341  		if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) {
1342  			int num = eth_get_dev_index();
1343  
1344  			switch (num) {
1345  			case -1:
1346  				puts("*** ERROR: No ethernet found.\n");
1347  				return 1;
1348  			case 0:
1349  				puts("*** ERROR: `ethaddr' not set\n");
1350  				break;
1351  			default:
1352  				printf("*** ERROR: `eth%daddr' not set\n",
1353  				       num);
1354  				break;
1355  			}
1356  
1357  			net_start_again();
1358  			return 2;
1359  		}
1360  		/* Fall through */
1361  	default:
1362  		return 0;
1363  	}
1364  	return 0;		/* OK */
1365  }
1366  /**********************************************************************/
1367  
1368  int
1369  net_eth_hdr_size(void)
1370  {
1371  	ushort myvlanid;
1372  
1373  	myvlanid = ntohs(net_our_vlan);
1374  	if (myvlanid == (ushort)-1)
1375  		myvlanid = VLAN_NONE;
1376  
1377  	return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE :
1378  		VLAN_ETHER_HDR_SIZE;
1379  }
1380  
1381  int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot)
1382  {
1383  	struct ethernet_hdr *et = (struct ethernet_hdr *)xet;
1384  	ushort myvlanid;
1385  
1386  	myvlanid = ntohs(net_our_vlan);
1387  	if (myvlanid == (ushort)-1)
1388  		myvlanid = VLAN_NONE;
1389  
1390  	memcpy(et->et_dest, dest_ethaddr, 6);
1391  	memcpy(et->et_src, net_ethaddr, 6);
1392  	if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) {
1393  		et->et_protlen = htons(prot);
1394  		return ETHER_HDR_SIZE;
1395  	} else {
1396  		struct vlan_ethernet_hdr *vet =
1397  			(struct vlan_ethernet_hdr *)xet;
1398  
1399  		vet->vet_vlan_type = htons(PROT_VLAN);
1400  		vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK));
1401  		vet->vet_type = htons(prot);
1402  		return VLAN_ETHER_HDR_SIZE;
1403  	}
1404  }
1405  
1406  int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot)
1407  {
1408  	ushort protlen;
1409  
1410  	memcpy(et->et_dest, addr, 6);
1411  	memcpy(et->et_src, net_ethaddr, 6);
1412  	protlen = ntohs(et->et_protlen);
1413  	if (protlen == PROT_VLAN) {
1414  		struct vlan_ethernet_hdr *vet =
1415  			(struct vlan_ethernet_hdr *)et;
1416  		vet->vet_type = htons(prot);
1417  		return VLAN_ETHER_HDR_SIZE;
1418  	} else if (protlen > 1514) {
1419  		et->et_protlen = htons(prot);
1420  		return ETHER_HDR_SIZE;
1421  	} else {
1422  		/* 802.2 + SNAP */
1423  		struct e802_hdr *et802 = (struct e802_hdr *)et;
1424  		et802->et_prot = htons(prot);
1425  		return E802_HDR_SIZE;
1426  	}
1427  }
1428  
1429  void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source)
1430  {
1431  	struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1432  
1433  	/*
1434  	 *	Construct an IP header.
1435  	 */
1436  	/* IP_HDR_SIZE / 4 (not including UDP) */
1437  	ip->ip_hl_v  = 0x45;
1438  	ip->ip_tos   = 0;
1439  	ip->ip_len   = htons(IP_HDR_SIZE);
1440  	ip->ip_id    = htons(net_ip_id++);
1441  	ip->ip_off   = htons(IP_FLAGS_DFRAG);	/* Don't fragment */
1442  	ip->ip_ttl   = 255;
1443  	ip->ip_sum   = 0;
1444  	/* already in network byte order */
1445  	net_copy_ip((void *)&ip->ip_src, &source);
1446  	/* already in network byte order */
1447  	net_copy_ip((void *)&ip->ip_dst, &dest);
1448  }
1449  
1450  void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport,
1451  			int len)
1452  {
1453  	struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1454  
1455  	/*
1456  	 *	If the data is an odd number of bytes, zero the
1457  	 *	byte after the last byte so that the checksum
1458  	 *	will work.
1459  	 */
1460  	if (len & 1)
1461  		pkt[IP_UDP_HDR_SIZE + len] = 0;
1462  
1463  	net_set_ip_header(pkt, dest, net_ip);
1464  	ip->ip_len   = htons(IP_UDP_HDR_SIZE + len);
1465  	ip->ip_p     = IPPROTO_UDP;
1466  	ip->ip_sum   = compute_ip_checksum(ip, IP_HDR_SIZE);
1467  
1468  	ip->udp_src  = htons(sport);
1469  	ip->udp_dst  = htons(dport);
1470  	ip->udp_len  = htons(UDP_HDR_SIZE + len);
1471  	ip->udp_xsum = 0;
1472  }
1473  
1474  void copy_filename(char *dst, const char *src, int size)
1475  {
1476  	if (*src && (*src == '"')) {
1477  		++src;
1478  		--size;
1479  	}
1480  
1481  	while ((--size > 0) && *src && (*src != '"'))
1482  		*dst++ = *src++;
1483  	*dst = '\0';
1484  }
1485  
1486  #if	defined(CONFIG_CMD_NFS)		|| \
1487  	defined(CONFIG_CMD_SNTP)	|| \
1488  	defined(CONFIG_CMD_DNS)
1489  /*
1490   * make port a little random (1024-17407)
1491   * This keeps the math somewhat trivial to compute, and seems to work with
1492   * all supported protocols/clients/servers
1493   */
1494  unsigned int random_port(void)
1495  {
1496  	return 1024 + (get_timer(0) % 0x4000);
1497  }
1498  #endif
1499  
1500  void ip_to_string(struct in_addr x, char *s)
1501  {
1502  	x.s_addr = ntohl(x.s_addr);
1503  	sprintf(s, "%d.%d.%d.%d",
1504  		(int) ((x.s_addr >> 24) & 0xff),
1505  		(int) ((x.s_addr >> 16) & 0xff),
1506  		(int) ((x.s_addr >> 8) & 0xff),
1507  		(int) ((x.s_addr >> 0) & 0xff)
1508  	);
1509  }
1510  
1511  void vlan_to_string(ushort x, char *s)
1512  {
1513  	x = ntohs(x);
1514  
1515  	if (x == (ushort)-1)
1516  		x = VLAN_NONE;
1517  
1518  	if (x == VLAN_NONE)
1519  		strcpy(s, "none");
1520  	else
1521  		sprintf(s, "%d", x & VLAN_IDMASK);
1522  }
1523  
1524  ushort string_to_vlan(const char *s)
1525  {
1526  	ushort id;
1527  
1528  	if (s == NULL)
1529  		return htons(VLAN_NONE);
1530  
1531  	if (*s < '0' || *s > '9')
1532  		id = VLAN_NONE;
1533  	else
1534  		id = (ushort)simple_strtoul(s, NULL, 10);
1535  
1536  	return htons(id);
1537  }
1538  
1539  ushort getenv_vlan(char *var)
1540  {
1541  	return string_to_vlan(getenv(var));
1542  }
1543