1 /* 2 * Copied from Linux Monitor (LiMon) - Networking. 3 * 4 * Copyright 1994 - 2000 Neil Russell. 5 * (See License) 6 * Copyright 2000 Roland Borde 7 * Copyright 2000 Paolo Scaffardi 8 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de 9 * SPDX-License-Identifier: GPL-2.0 10 */ 11 12 /* 13 * General Desription: 14 * 15 * The user interface supports commands for BOOTP, RARP, and TFTP. 16 * Also, we support ARP internally. Depending on available data, 17 * these interact as follows: 18 * 19 * BOOTP: 20 * 21 * Prerequisites: - own ethernet address 22 * We want: - own IP address 23 * - TFTP server IP address 24 * - name of bootfile 25 * Next step: ARP 26 * 27 * LINK_LOCAL: 28 * 29 * Prerequisites: - own ethernet address 30 * We want: - own IP address 31 * Next step: ARP 32 * 33 * RARP: 34 * 35 * Prerequisites: - own ethernet address 36 * We want: - own IP address 37 * - TFTP server IP address 38 * Next step: ARP 39 * 40 * ARP: 41 * 42 * Prerequisites: - own ethernet address 43 * - own IP address 44 * - TFTP server IP address 45 * We want: - TFTP server ethernet address 46 * Next step: TFTP 47 * 48 * DHCP: 49 * 50 * Prerequisites: - own ethernet address 51 * We want: - IP, Netmask, ServerIP, Gateway IP 52 * - bootfilename, lease time 53 * Next step: - TFTP 54 * 55 * TFTP: 56 * 57 * Prerequisites: - own ethernet address 58 * - own IP address 59 * - TFTP server IP address 60 * - TFTP server ethernet address 61 * - name of bootfile (if unknown, we use a default name 62 * derived from our own IP address) 63 * We want: - load the boot file 64 * Next step: none 65 * 66 * NFS: 67 * 68 * Prerequisites: - own ethernet address 69 * - own IP address 70 * - name of bootfile (if unknown, we use a default name 71 * derived from our own IP address) 72 * We want: - load the boot file 73 * Next step: none 74 * 75 * SNTP: 76 * 77 * Prerequisites: - own ethernet address 78 * - own IP address 79 * We want: - network time 80 * Next step: none 81 */ 82 83 84 #include <common.h> 85 #include <command.h> 86 #include <console.h> 87 #include <environment.h> 88 #include <errno.h> 89 #include <net.h> 90 #include <net/tftp.h> 91 #if defined(CONFIG_STATUS_LED) 92 #include <miiphy.h> 93 #include <status_led.h> 94 #endif 95 #include <watchdog.h> 96 #include <linux/compiler.h> 97 #include "arp.h" 98 #include "bootp.h" 99 #include "cdp.h" 100 #if defined(CONFIG_CMD_DNS) 101 #include "dns.h" 102 #endif 103 #include "link_local.h" 104 #include "nfs.h" 105 #include "ping.h" 106 #include "rarp.h" 107 #if defined(CONFIG_CMD_SNTP) 108 #include "sntp.h" 109 #endif 110 111 DECLARE_GLOBAL_DATA_PTR; 112 113 /** BOOTP EXTENTIONS **/ 114 115 /* Our subnet mask (0=unknown) */ 116 struct in_addr net_netmask; 117 /* Our gateways IP address */ 118 struct in_addr net_gateway; 119 /* Our DNS IP address */ 120 struct in_addr net_dns_server; 121 #if defined(CONFIG_BOOTP_DNS2) 122 /* Our 2nd DNS IP address */ 123 struct in_addr net_dns_server2; 124 #endif 125 126 #ifdef CONFIG_MCAST_TFTP /* Multicast TFTP */ 127 struct in_addr net_mcast_addr; 128 #endif 129 130 /** END OF BOOTP EXTENTIONS **/ 131 132 /* Our ethernet address */ 133 u8 net_ethaddr[6]; 134 /* Boot server enet address */ 135 u8 net_server_ethaddr[6]; 136 /* Our IP addr (0 = unknown) */ 137 struct in_addr net_ip; 138 /* Server IP addr (0 = unknown) */ 139 struct in_addr net_server_ip; 140 /* Current receive packet */ 141 uchar *net_rx_packet; 142 /* Current rx packet length */ 143 int net_rx_packet_len; 144 /* IP packet ID */ 145 static unsigned net_ip_id; 146 /* Ethernet bcast address */ 147 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 148 const u8 net_null_ethaddr[6]; 149 #ifdef CONFIG_API 150 void (*push_packet)(void *, int len) = 0; 151 #endif 152 /* Network loop state */ 153 enum net_loop_state net_state; 154 /* Tried all network devices */ 155 int net_restart_wrap; 156 /* Network loop restarted */ 157 static int net_restarted; 158 /* At least one device configured */ 159 static int net_dev_exists; 160 161 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */ 162 /* default is without VLAN */ 163 ushort net_our_vlan = 0xFFFF; 164 /* ditto */ 165 ushort net_native_vlan = 0xFFFF; 166 167 /* Boot File name */ 168 char net_boot_file_name[1024]; 169 /* The actual transferred size of the bootfile (in bytes) */ 170 u32 net_boot_file_size; 171 /* Boot file size in blocks as reported by the DHCP server */ 172 u32 net_boot_file_expected_size_in_blocks; 173 174 #if defined(CONFIG_CMD_SNTP) 175 /* NTP server IP address */ 176 struct in_addr net_ntp_server; 177 /* offset time from UTC */ 178 int net_ntp_time_offset; 179 #endif 180 181 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN]; 182 /* Receive packets */ 183 uchar *net_rx_packets[PKTBUFSRX]; 184 /* Current UDP RX packet handler */ 185 static rxhand_f *udp_packet_handler; 186 /* Current ARP RX packet handler */ 187 static rxhand_f *arp_packet_handler; 188 #ifdef CONFIG_CMD_TFTPPUT 189 /* Current ICMP rx handler */ 190 static rxhand_icmp_f *packet_icmp_handler; 191 #endif 192 /* Current timeout handler */ 193 static thand_f *time_handler; 194 /* Time base value */ 195 static ulong time_start; 196 /* Current timeout value */ 197 static ulong time_delta; 198 /* THE transmit packet */ 199 uchar *net_tx_packet; 200 201 static int net_check_prereq(enum proto_t protocol); 202 203 static int net_try_count; 204 205 int __maybe_unused net_busy_flag; 206 207 /**********************************************************************/ 208 209 static int on_bootfile(const char *name, const char *value, enum env_op op, 210 int flags) 211 { 212 if (flags & H_PROGRAMMATIC) 213 return 0; 214 215 switch (op) { 216 case env_op_create: 217 case env_op_overwrite: 218 copy_filename(net_boot_file_name, value, 219 sizeof(net_boot_file_name)); 220 break; 221 default: 222 break; 223 } 224 225 return 0; 226 } 227 U_BOOT_ENV_CALLBACK(bootfile, on_bootfile); 228 229 static int on_ipaddr(const char *name, const char *value, enum env_op op, 230 int flags) 231 { 232 if (flags & H_PROGRAMMATIC) 233 return 0; 234 235 net_ip = string_to_ip(value); 236 237 return 0; 238 } 239 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr); 240 241 static int on_gatewayip(const char *name, const char *value, enum env_op op, 242 int flags) 243 { 244 if (flags & H_PROGRAMMATIC) 245 return 0; 246 247 net_gateway = string_to_ip(value); 248 249 return 0; 250 } 251 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip); 252 253 static int on_netmask(const char *name, const char *value, enum env_op op, 254 int flags) 255 { 256 if (flags & H_PROGRAMMATIC) 257 return 0; 258 259 net_netmask = string_to_ip(value); 260 261 return 0; 262 } 263 U_BOOT_ENV_CALLBACK(netmask, on_netmask); 264 265 static int on_serverip(const char *name, const char *value, enum env_op op, 266 int flags) 267 { 268 if (flags & H_PROGRAMMATIC) 269 return 0; 270 271 net_server_ip = string_to_ip(value); 272 273 return 0; 274 } 275 U_BOOT_ENV_CALLBACK(serverip, on_serverip); 276 277 static int on_nvlan(const char *name, const char *value, enum env_op op, 278 int flags) 279 { 280 if (flags & H_PROGRAMMATIC) 281 return 0; 282 283 net_native_vlan = string_to_vlan(value); 284 285 return 0; 286 } 287 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan); 288 289 static int on_vlan(const char *name, const char *value, enum env_op op, 290 int flags) 291 { 292 if (flags & H_PROGRAMMATIC) 293 return 0; 294 295 net_our_vlan = string_to_vlan(value); 296 297 return 0; 298 } 299 U_BOOT_ENV_CALLBACK(vlan, on_vlan); 300 301 #if defined(CONFIG_CMD_DNS) 302 static int on_dnsip(const char *name, const char *value, enum env_op op, 303 int flags) 304 { 305 if (flags & H_PROGRAMMATIC) 306 return 0; 307 308 net_dns_server = string_to_ip(value); 309 310 return 0; 311 } 312 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip); 313 #endif 314 315 /* 316 * Check if autoload is enabled. If so, use either NFS or TFTP to download 317 * the boot file. 318 */ 319 void net_auto_load(void) 320 { 321 #if defined(CONFIG_CMD_NFS) 322 const char *s = getenv("autoload"); 323 324 if (s != NULL && strcmp(s, "NFS") == 0) { 325 /* 326 * Use NFS to load the bootfile. 327 */ 328 nfs_start(); 329 return; 330 } 331 #endif 332 if (getenv_yesno("autoload") == 0) { 333 /* 334 * Just use BOOTP/RARP to configure system; 335 * Do not use TFTP to load the bootfile. 336 */ 337 net_set_state(NETLOOP_SUCCESS); 338 return; 339 } 340 tftp_start(TFTPGET); 341 } 342 343 static void net_init_loop(void) 344 { 345 if (eth_get_dev()) 346 memcpy(net_ethaddr, eth_get_ethaddr(), 6); 347 348 return; 349 } 350 351 static void net_clear_handlers(void) 352 { 353 net_set_udp_handler(NULL); 354 net_set_arp_handler(NULL); 355 net_set_timeout_handler(0, NULL); 356 } 357 358 static void net_cleanup_loop(void) 359 { 360 net_clear_handlers(); 361 } 362 363 void net_init(void) 364 { 365 static int first_call = 1; 366 367 if (first_call) { 368 /* 369 * Setup packet buffers, aligned correctly. 370 */ 371 int i; 372 373 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1); 374 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN; 375 for (i = 0; i < PKTBUFSRX; i++) { 376 net_rx_packets[i] = net_tx_packet + 377 (i + 1) * PKTSIZE_ALIGN; 378 } 379 arp_init(); 380 net_clear_handlers(); 381 382 /* Only need to setup buffer pointers once. */ 383 first_call = 0; 384 } 385 386 net_init_loop(); 387 } 388 389 /**********************************************************************/ 390 /* 391 * Main network processing loop. 392 */ 393 394 int net_loop(enum proto_t protocol) 395 { 396 int ret = -EINVAL; 397 398 net_restarted = 0; 399 net_dev_exists = 0; 400 net_try_count = 1; 401 debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n"); 402 403 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start"); 404 net_init(); 405 if (eth_is_on_demand_init() || protocol != NETCONS) { 406 eth_halt(); 407 eth_set_current(); 408 ret = eth_init(); 409 if (ret < 0) { 410 eth_halt(); 411 return ret; 412 } 413 } else { 414 eth_init_state_only(); 415 } 416 restart: 417 #ifdef CONFIG_USB_KEYBOARD 418 net_busy_flag = 0; 419 #endif 420 net_set_state(NETLOOP_CONTINUE); 421 422 /* 423 * Start the ball rolling with the given start function. From 424 * here on, this code is a state machine driven by received 425 * packets and timer events. 426 */ 427 debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n"); 428 net_init_loop(); 429 430 switch (net_check_prereq(protocol)) { 431 case 1: 432 /* network not configured */ 433 eth_halt(); 434 return -ENODEV; 435 436 case 2: 437 /* network device not configured */ 438 break; 439 440 case 0: 441 net_dev_exists = 1; 442 net_boot_file_size = 0; 443 switch (protocol) { 444 case TFTPGET: 445 #ifdef CONFIG_CMD_TFTPPUT 446 case TFTPPUT: 447 #endif 448 /* always use ARP to get server ethernet address */ 449 tftp_start(protocol); 450 break; 451 #ifdef CONFIG_CMD_TFTPSRV 452 case TFTPSRV: 453 tftp_start_server(); 454 break; 455 #endif 456 #if defined(CONFIG_CMD_DHCP) 457 case DHCP: 458 bootp_reset(); 459 net_ip.s_addr = 0; 460 dhcp_request(); /* Basically same as BOOTP */ 461 break; 462 #endif 463 464 case BOOTP: 465 bootp_reset(); 466 net_ip.s_addr = 0; 467 bootp_request(); 468 break; 469 470 #if defined(CONFIG_CMD_RARP) 471 case RARP: 472 rarp_try = 0; 473 net_ip.s_addr = 0; 474 rarp_request(); 475 break; 476 #endif 477 #if defined(CONFIG_CMD_PING) 478 case PING: 479 ping_start(); 480 break; 481 #endif 482 #if defined(CONFIG_CMD_NFS) 483 case NFS: 484 nfs_start(); 485 break; 486 #endif 487 #if defined(CONFIG_CMD_CDP) 488 case CDP: 489 cdp_start(); 490 break; 491 #endif 492 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD) 493 case NETCONS: 494 nc_start(); 495 break; 496 #endif 497 #if defined(CONFIG_CMD_SNTP) 498 case SNTP: 499 sntp_start(); 500 break; 501 #endif 502 #if defined(CONFIG_CMD_DNS) 503 case DNS: 504 dns_start(); 505 break; 506 #endif 507 #if defined(CONFIG_CMD_LINK_LOCAL) 508 case LINKLOCAL: 509 link_local_start(); 510 break; 511 #endif 512 default: 513 break; 514 } 515 516 break; 517 } 518 519 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 520 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 521 defined(CONFIG_STATUS_LED) && \ 522 defined(STATUS_LED_RED) 523 /* 524 * Echo the inverted link state to the fault LED. 525 */ 526 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR)) 527 status_led_set(STATUS_LED_RED, STATUS_LED_OFF); 528 else 529 status_led_set(STATUS_LED_RED, STATUS_LED_ON); 530 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 531 #endif /* CONFIG_MII, ... */ 532 #ifdef CONFIG_USB_KEYBOARD 533 net_busy_flag = 1; 534 #endif 535 536 /* 537 * Main packet reception loop. Loop receiving packets until 538 * someone sets `net_state' to a state that terminates. 539 */ 540 for (;;) { 541 WATCHDOG_RESET(); 542 #ifdef CONFIG_SHOW_ACTIVITY 543 show_activity(1); 544 #endif 545 /* 546 * Check the ethernet for a new packet. The ethernet 547 * receive routine will process it. 548 * Most drivers return the most recent packet size, but not 549 * errors that may have happened. 550 */ 551 eth_rx(); 552 553 /* 554 * Abort if ctrl-c was pressed. 555 */ 556 if (ctrlc()) { 557 /* cancel any ARP that may not have completed */ 558 net_arp_wait_packet_ip.s_addr = 0; 559 560 net_cleanup_loop(); 561 eth_halt(); 562 /* Invalidate the last protocol */ 563 eth_set_last_protocol(BOOTP); 564 565 puts("\nAbort\n"); 566 /* include a debug print as well incase the debug 567 messages are directed to stderr */ 568 debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n"); 569 ret = -EINTR; 570 goto done; 571 } 572 573 if (arp_timeout_check() > 0) { 574 time_start = get_timer(0); 575 } 576 577 /* 578 * Check for a timeout, and run the timeout handler 579 * if we have one. 580 */ 581 if (time_handler && 582 ((get_timer(0) - time_start) > time_delta)) { 583 thand_f *x; 584 585 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) 586 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \ 587 defined(CONFIG_STATUS_LED) && \ 588 defined(STATUS_LED_RED) 589 /* 590 * Echo the inverted link state to the fault LED. 591 */ 592 if (miiphy_link(eth_get_dev()->name, 593 CONFIG_SYS_FAULT_MII_ADDR)) 594 status_led_set(STATUS_LED_RED, STATUS_LED_OFF); 595 else 596 status_led_set(STATUS_LED_RED, STATUS_LED_ON); 597 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */ 598 #endif /* CONFIG_MII, ... */ 599 debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n"); 600 x = time_handler; 601 time_handler = (thand_f *)0; 602 (*x)(); 603 } 604 605 if (net_state == NETLOOP_FAIL) 606 ret = net_start_again(); 607 608 switch (net_state) { 609 case NETLOOP_RESTART: 610 net_restarted = 1; 611 goto restart; 612 613 case NETLOOP_SUCCESS: 614 net_cleanup_loop(); 615 if (net_boot_file_size > 0) { 616 printf("Bytes transferred = %d (%x hex)\n", 617 net_boot_file_size, net_boot_file_size); 618 setenv_hex("filesize", net_boot_file_size); 619 setenv_hex("fileaddr", load_addr); 620 } 621 if (protocol != NETCONS) 622 eth_halt(); 623 else 624 eth_halt_state_only(); 625 626 eth_set_last_protocol(protocol); 627 628 ret = net_boot_file_size; 629 debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n"); 630 goto done; 631 632 case NETLOOP_FAIL: 633 net_cleanup_loop(); 634 /* Invalidate the last protocol */ 635 eth_set_last_protocol(BOOTP); 636 debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n"); 637 goto done; 638 639 case NETLOOP_CONTINUE: 640 continue; 641 } 642 } 643 644 done: 645 #ifdef CONFIG_USB_KEYBOARD 646 net_busy_flag = 0; 647 #endif 648 #ifdef CONFIG_CMD_TFTPPUT 649 /* Clear out the handlers */ 650 net_set_udp_handler(NULL); 651 net_set_icmp_handler(NULL); 652 #endif 653 return ret; 654 } 655 656 /**********************************************************************/ 657 658 static void start_again_timeout_handler(void) 659 { 660 net_set_state(NETLOOP_RESTART); 661 } 662 663 int net_start_again(void) 664 { 665 char *nretry; 666 int retry_forever = 0; 667 unsigned long retrycnt = 0; 668 int ret; 669 670 nretry = getenv("netretry"); 671 if (nretry) { 672 if (!strcmp(nretry, "yes")) 673 retry_forever = 1; 674 else if (!strcmp(nretry, "no")) 675 retrycnt = 0; 676 else if (!strcmp(nretry, "once")) 677 retrycnt = 1; 678 else 679 retrycnt = simple_strtoul(nretry, NULL, 0); 680 } else { 681 retrycnt = 0; 682 retry_forever = 0; 683 } 684 685 if ((!retry_forever) && (net_try_count >= retrycnt)) { 686 eth_halt(); 687 net_set_state(NETLOOP_FAIL); 688 /* 689 * We don't provide a way for the protocol to return an error, 690 * but this is almost always the reason. 691 */ 692 return -ETIMEDOUT; 693 } 694 695 net_try_count++; 696 697 eth_halt(); 698 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER) 699 eth_try_another(!net_restarted); 700 #endif 701 ret = eth_init(); 702 if (net_restart_wrap) { 703 net_restart_wrap = 0; 704 if (net_dev_exists) { 705 net_set_timeout_handler(10000UL, 706 start_again_timeout_handler); 707 net_set_udp_handler(NULL); 708 } else { 709 net_set_state(NETLOOP_FAIL); 710 } 711 } else { 712 net_set_state(NETLOOP_RESTART); 713 } 714 return ret; 715 } 716 717 /**********************************************************************/ 718 /* 719 * Miscelaneous bits. 720 */ 721 722 static void dummy_handler(uchar *pkt, unsigned dport, 723 struct in_addr sip, unsigned sport, 724 unsigned len) 725 { 726 } 727 728 rxhand_f *net_get_udp_handler(void) 729 { 730 return udp_packet_handler; 731 } 732 733 void net_set_udp_handler(rxhand_f *f) 734 { 735 debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f); 736 if (f == NULL) 737 udp_packet_handler = dummy_handler; 738 else 739 udp_packet_handler = f; 740 } 741 742 rxhand_f *net_get_arp_handler(void) 743 { 744 return arp_packet_handler; 745 } 746 747 void net_set_arp_handler(rxhand_f *f) 748 { 749 debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f); 750 if (f == NULL) 751 arp_packet_handler = dummy_handler; 752 else 753 arp_packet_handler = f; 754 } 755 756 #ifdef CONFIG_CMD_TFTPPUT 757 void net_set_icmp_handler(rxhand_icmp_f *f) 758 { 759 packet_icmp_handler = f; 760 } 761 #endif 762 763 void net_set_timeout_handler(ulong iv, thand_f *f) 764 { 765 if (iv == 0) { 766 debug_cond(DEBUG_INT_STATE, 767 "--- net_loop timeout handler cancelled\n"); 768 time_handler = (thand_f *)0; 769 } else { 770 debug_cond(DEBUG_INT_STATE, 771 "--- net_loop timeout handler set (%p)\n", f); 772 time_handler = f; 773 time_start = get_timer(0); 774 time_delta = iv * CONFIG_SYS_HZ / 1000; 775 } 776 } 777 778 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport, 779 int payload_len) 780 { 781 uchar *pkt; 782 int eth_hdr_size; 783 int pkt_hdr_size; 784 785 /* make sure the net_tx_packet is initialized (net_init() was called) */ 786 assert(net_tx_packet != NULL); 787 if (net_tx_packet == NULL) 788 return -1; 789 790 /* convert to new style broadcast */ 791 if (dest.s_addr == 0) 792 dest.s_addr = 0xFFFFFFFF; 793 794 /* if broadcast, make the ether address a broadcast and don't do ARP */ 795 if (dest.s_addr == 0xFFFFFFFF) 796 ether = (uchar *)net_bcast_ethaddr; 797 798 pkt = (uchar *)net_tx_packet; 799 800 eth_hdr_size = net_set_ether(pkt, ether, PROT_IP); 801 pkt += eth_hdr_size; 802 net_set_udp_header(pkt, dest, dport, sport, payload_len); 803 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE; 804 805 /* if MAC address was not discovered yet, do an ARP request */ 806 if (memcmp(ether, net_null_ethaddr, 6) == 0) { 807 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest); 808 809 /* save the ip and eth addr for the packet to send after arp */ 810 net_arp_wait_packet_ip = dest; 811 arp_wait_packet_ethaddr = ether; 812 813 /* size of the waiting packet */ 814 arp_wait_tx_packet_size = pkt_hdr_size + payload_len; 815 816 /* and do the ARP request */ 817 arp_wait_try = 1; 818 arp_wait_timer_start = get_timer(0); 819 arp_request(); 820 return 1; /* waiting */ 821 } else { 822 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n", 823 &dest, ether); 824 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len); 825 return 0; /* transmitted */ 826 } 827 } 828 829 #ifdef CONFIG_IP_DEFRAG 830 /* 831 * This function collects fragments in a single packet, according 832 * to the algorithm in RFC815. It returns NULL or the pointer to 833 * a complete packet, in static storage 834 */ 835 #ifndef CONFIG_NET_MAXDEFRAG 836 #define CONFIG_NET_MAXDEFRAG 16384 837 #endif 838 /* 839 * MAXDEFRAG, above, is chosen in the config file and is real data 840 * so we need to add the NFS overhead, which is more than TFTP. 841 * To use sizeof in the internal unnamed structures, we need a real 842 * instance (can't do "sizeof(struct rpc_t.u.reply))", unfortunately). 843 * The compiler doesn't complain nor allocates the actual structure 844 */ 845 static struct rpc_t rpc_specimen; 846 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG + sizeof(rpc_specimen.u.reply)) 847 848 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE) 849 850 /* 851 * this is the packet being assembled, either data or frag control. 852 * Fragments go by 8 bytes, so this union must be 8 bytes long 853 */ 854 struct hole { 855 /* first_byte is address of this structure */ 856 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */ 857 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */ 858 u16 prev_hole; /* index of prev, 0 == none */ 859 u16 unused; 860 }; 861 862 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp) 863 { 864 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN); 865 static u16 first_hole, total_len; 866 struct hole *payload, *thisfrag, *h, *newh; 867 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff; 868 uchar *indata = (uchar *)ip; 869 int offset8, start, len, done = 0; 870 u16 ip_off = ntohs(ip->ip_off); 871 872 /* payload starts after IP header, this fragment is in there */ 873 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE); 874 offset8 = (ip_off & IP_OFFS); 875 thisfrag = payload + offset8; 876 start = offset8 * 8; 877 len = ntohs(ip->ip_len) - IP_HDR_SIZE; 878 879 if (start + len > IP_MAXUDP) /* fragment extends too far */ 880 return NULL; 881 882 if (!total_len || localip->ip_id != ip->ip_id) { 883 /* new (or different) packet, reset structs */ 884 total_len = 0xffff; 885 payload[0].last_byte = ~0; 886 payload[0].next_hole = 0; 887 payload[0].prev_hole = 0; 888 first_hole = 0; 889 /* any IP header will work, copy the first we received */ 890 memcpy(localip, ip, IP_HDR_SIZE); 891 } 892 893 /* 894 * What follows is the reassembly algorithm. We use the payload 895 * array as a linked list of hole descriptors, as each hole starts 896 * at a multiple of 8 bytes. However, last byte can be whatever value, 897 * so it is represented as byte count, not as 8-byte blocks. 898 */ 899 900 h = payload + first_hole; 901 while (h->last_byte < start) { 902 if (!h->next_hole) { 903 /* no hole that far away */ 904 return NULL; 905 } 906 h = payload + h->next_hole; 907 } 908 909 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */ 910 if (offset8 + ((len + 7) / 8) <= h - payload) { 911 /* no overlap with holes (dup fragment?) */ 912 return NULL; 913 } 914 915 if (!(ip_off & IP_FLAGS_MFRAG)) { 916 /* no more fragmentss: truncate this (last) hole */ 917 total_len = start + len; 918 h->last_byte = start + len; 919 } 920 921 /* 922 * There is some overlap: fix the hole list. This code doesn't 923 * deal with a fragment that overlaps with two different holes 924 * (thus being a superset of a previously-received fragment). 925 */ 926 927 if ((h >= thisfrag) && (h->last_byte <= start + len)) { 928 /* complete overlap with hole: remove hole */ 929 if (!h->prev_hole && !h->next_hole) { 930 /* last remaining hole */ 931 done = 1; 932 } else if (!h->prev_hole) { 933 /* first hole */ 934 first_hole = h->next_hole; 935 payload[h->next_hole].prev_hole = 0; 936 } else if (!h->next_hole) { 937 /* last hole */ 938 payload[h->prev_hole].next_hole = 0; 939 } else { 940 /* in the middle of the list */ 941 payload[h->next_hole].prev_hole = h->prev_hole; 942 payload[h->prev_hole].next_hole = h->next_hole; 943 } 944 945 } else if (h->last_byte <= start + len) { 946 /* overlaps with final part of the hole: shorten this hole */ 947 h->last_byte = start; 948 949 } else if (h >= thisfrag) { 950 /* overlaps with initial part of the hole: move this hole */ 951 newh = thisfrag + (len / 8); 952 *newh = *h; 953 h = newh; 954 if (h->next_hole) 955 payload[h->next_hole].prev_hole = (h - payload); 956 if (h->prev_hole) 957 payload[h->prev_hole].next_hole = (h - payload); 958 else 959 first_hole = (h - payload); 960 961 } else { 962 /* fragment sits in the middle: split the hole */ 963 newh = thisfrag + (len / 8); 964 *newh = *h; 965 h->last_byte = start; 966 h->next_hole = (newh - payload); 967 newh->prev_hole = (h - payload); 968 if (newh->next_hole) 969 payload[newh->next_hole].prev_hole = (newh - payload); 970 } 971 972 /* finally copy this fragment and possibly return whole packet */ 973 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len); 974 if (!done) 975 return NULL; 976 977 localip->ip_len = htons(total_len); 978 *lenp = total_len + IP_HDR_SIZE; 979 return localip; 980 } 981 982 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 983 int *lenp) 984 { 985 u16 ip_off = ntohs(ip->ip_off); 986 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 987 return ip; /* not a fragment */ 988 return __net_defragment(ip, lenp); 989 } 990 991 #else /* !CONFIG_IP_DEFRAG */ 992 993 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip, 994 int *lenp) 995 { 996 u16 ip_off = ntohs(ip->ip_off); 997 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG))) 998 return ip; /* not a fragment */ 999 return NULL; 1000 } 1001 #endif 1002 1003 /** 1004 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently 1005 * drop others. 1006 * 1007 * @parma ip IP packet containing the ICMP 1008 */ 1009 static void receive_icmp(struct ip_udp_hdr *ip, int len, 1010 struct in_addr src_ip, struct ethernet_hdr *et) 1011 { 1012 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src; 1013 1014 switch (icmph->type) { 1015 case ICMP_REDIRECT: 1016 if (icmph->code != ICMP_REDIR_HOST) 1017 return; 1018 printf(" ICMP Host Redirect to %pI4 ", 1019 &icmph->un.gateway); 1020 break; 1021 default: 1022 #if defined(CONFIG_CMD_PING) 1023 ping_receive(et, ip, len); 1024 #endif 1025 #ifdef CONFIG_CMD_TFTPPUT 1026 if (packet_icmp_handler) 1027 packet_icmp_handler(icmph->type, icmph->code, 1028 ntohs(ip->udp_dst), src_ip, 1029 ntohs(ip->udp_src), icmph->un.data, 1030 ntohs(ip->udp_len)); 1031 #endif 1032 break; 1033 } 1034 } 1035 1036 void net_process_received_packet(uchar *in_packet, int len) 1037 { 1038 struct ethernet_hdr *et; 1039 struct ip_udp_hdr *ip; 1040 struct in_addr dst_ip; 1041 struct in_addr src_ip; 1042 int eth_proto; 1043 #if defined(CONFIG_CMD_CDP) 1044 int iscdp; 1045 #endif 1046 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid; 1047 1048 debug_cond(DEBUG_NET_PKT, "packet received\n"); 1049 1050 net_rx_packet = in_packet; 1051 net_rx_packet_len = len; 1052 et = (struct ethernet_hdr *)in_packet; 1053 1054 /* too small packet? */ 1055 if (len < ETHER_HDR_SIZE) 1056 return; 1057 1058 #ifdef CONFIG_API 1059 if (push_packet) { 1060 (*push_packet)(in_packet, len); 1061 return; 1062 } 1063 #endif 1064 1065 #if defined(CONFIG_CMD_CDP) 1066 /* keep track if packet is CDP */ 1067 iscdp = is_cdp_packet(et->et_dest); 1068 #endif 1069 1070 myvlanid = ntohs(net_our_vlan); 1071 if (myvlanid == (ushort)-1) 1072 myvlanid = VLAN_NONE; 1073 mynvlanid = ntohs(net_native_vlan); 1074 if (mynvlanid == (ushort)-1) 1075 mynvlanid = VLAN_NONE; 1076 1077 eth_proto = ntohs(et->et_protlen); 1078 1079 if (eth_proto < 1514) { 1080 struct e802_hdr *et802 = (struct e802_hdr *)et; 1081 /* 1082 * Got a 802.2 packet. Check the other protocol field. 1083 * XXX VLAN over 802.2+SNAP not implemented! 1084 */ 1085 eth_proto = ntohs(et802->et_prot); 1086 1087 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE); 1088 len -= E802_HDR_SIZE; 1089 1090 } else if (eth_proto != PROT_VLAN) { /* normal packet */ 1091 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE); 1092 len -= ETHER_HDR_SIZE; 1093 1094 } else { /* VLAN packet */ 1095 struct vlan_ethernet_hdr *vet = 1096 (struct vlan_ethernet_hdr *)et; 1097 1098 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n"); 1099 1100 /* too small packet? */ 1101 if (len < VLAN_ETHER_HDR_SIZE) 1102 return; 1103 1104 /* if no VLAN active */ 1105 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE 1106 #if defined(CONFIG_CMD_CDP) 1107 && iscdp == 0 1108 #endif 1109 ) 1110 return; 1111 1112 cti = ntohs(vet->vet_tag); 1113 vlanid = cti & VLAN_IDMASK; 1114 eth_proto = ntohs(vet->vet_type); 1115 1116 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE); 1117 len -= VLAN_ETHER_HDR_SIZE; 1118 } 1119 1120 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto); 1121 1122 #if defined(CONFIG_CMD_CDP) 1123 if (iscdp) { 1124 cdp_receive((uchar *)ip, len); 1125 return; 1126 } 1127 #endif 1128 1129 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) { 1130 if (vlanid == VLAN_NONE) 1131 vlanid = (mynvlanid & VLAN_IDMASK); 1132 /* not matched? */ 1133 if (vlanid != (myvlanid & VLAN_IDMASK)) 1134 return; 1135 } 1136 1137 switch (eth_proto) { 1138 case PROT_ARP: 1139 arp_receive(et, ip, len); 1140 break; 1141 1142 #ifdef CONFIG_CMD_RARP 1143 case PROT_RARP: 1144 rarp_receive(ip, len); 1145 break; 1146 #endif 1147 case PROT_IP: 1148 debug_cond(DEBUG_NET_PKT, "Got IP\n"); 1149 /* Before we start poking the header, make sure it is there */ 1150 if (len < IP_UDP_HDR_SIZE) { 1151 debug("len bad %d < %lu\n", len, 1152 (ulong)IP_UDP_HDR_SIZE); 1153 return; 1154 } 1155 /* Check the packet length */ 1156 if (len < ntohs(ip->ip_len)) { 1157 debug("len bad %d < %d\n", len, ntohs(ip->ip_len)); 1158 return; 1159 } 1160 len = ntohs(ip->ip_len); 1161 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n", 1162 len, ip->ip_hl_v & 0xff); 1163 1164 /* Can't deal with anything except IPv4 */ 1165 if ((ip->ip_hl_v & 0xf0) != 0x40) 1166 return; 1167 /* Can't deal with IP options (headers != 20 bytes) */ 1168 if ((ip->ip_hl_v & 0x0f) > 0x05) 1169 return; 1170 /* Check the Checksum of the header */ 1171 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) { 1172 debug("checksum bad\n"); 1173 return; 1174 } 1175 /* If it is not for us, ignore it */ 1176 dst_ip = net_read_ip(&ip->ip_dst); 1177 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr && 1178 dst_ip.s_addr != 0xFFFFFFFF) { 1179 #ifdef CONFIG_MCAST_TFTP 1180 if (net_mcast_addr != dst_ip) 1181 #endif 1182 return; 1183 } 1184 /* Read source IP address for later use */ 1185 src_ip = net_read_ip(&ip->ip_src); 1186 /* 1187 * The function returns the unchanged packet if it's not 1188 * a fragment, and either the complete packet or NULL if 1189 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL) 1190 */ 1191 ip = net_defragment(ip, &len); 1192 if (!ip) 1193 return; 1194 /* 1195 * watch for ICMP host redirects 1196 * 1197 * There is no real handler code (yet). We just watch 1198 * for ICMP host redirect messages. In case anybody 1199 * sees these messages: please contact me 1200 * (wd@denx.de), or - even better - send me the 1201 * necessary fixes :-) 1202 * 1203 * Note: in all cases where I have seen this so far 1204 * it was a problem with the router configuration, 1205 * for instance when a router was configured in the 1206 * BOOTP reply, but the TFTP server was on the same 1207 * subnet. So this is probably a warning that your 1208 * configuration might be wrong. But I'm not really 1209 * sure if there aren't any other situations. 1210 * 1211 * Simon Glass <sjg@chromium.org>: We get an ICMP when 1212 * we send a tftp packet to a dead connection, or when 1213 * there is no server at the other end. 1214 */ 1215 if (ip->ip_p == IPPROTO_ICMP) { 1216 receive_icmp(ip, len, src_ip, et); 1217 return; 1218 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */ 1219 return; 1220 } 1221 1222 debug_cond(DEBUG_DEV_PKT, 1223 "received UDP (to=%pI4, from=%pI4, len=%d)\n", 1224 &dst_ip, &src_ip, len); 1225 1226 #ifdef CONFIG_UDP_CHECKSUM 1227 if (ip->udp_xsum != 0) { 1228 ulong xsum; 1229 ushort *sumptr; 1230 ushort sumlen; 1231 1232 xsum = ip->ip_p; 1233 xsum += (ntohs(ip->udp_len)); 1234 xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff; 1235 xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff; 1236 xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff; 1237 xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff; 1238 1239 sumlen = ntohs(ip->udp_len); 1240 sumptr = (ushort *)&(ip->udp_src); 1241 1242 while (sumlen > 1) { 1243 ushort sumdata; 1244 1245 sumdata = *sumptr++; 1246 xsum += ntohs(sumdata); 1247 sumlen -= 2; 1248 } 1249 if (sumlen > 0) { 1250 ushort sumdata; 1251 1252 sumdata = *(unsigned char *)sumptr; 1253 sumdata = (sumdata << 8) & 0xff00; 1254 xsum += sumdata; 1255 } 1256 while ((xsum >> 16) != 0) { 1257 xsum = (xsum & 0x0000ffff) + 1258 ((xsum >> 16) & 0x0000ffff); 1259 } 1260 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) { 1261 printf(" UDP wrong checksum %08lx %08x\n", 1262 xsum, ntohs(ip->udp_xsum)); 1263 return; 1264 } 1265 } 1266 #endif 1267 1268 #if defined(CONFIG_NETCONSOLE) && !(CONFIG_SPL_BUILD) 1269 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE, 1270 src_ip, 1271 ntohs(ip->udp_dst), 1272 ntohs(ip->udp_src), 1273 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1274 #endif 1275 /* 1276 * IP header OK. Pass the packet to the current handler. 1277 */ 1278 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE, 1279 ntohs(ip->udp_dst), 1280 src_ip, 1281 ntohs(ip->udp_src), 1282 ntohs(ip->udp_len) - UDP_HDR_SIZE); 1283 break; 1284 } 1285 } 1286 1287 /**********************************************************************/ 1288 1289 static int net_check_prereq(enum proto_t protocol) 1290 { 1291 switch (protocol) { 1292 /* Fall through */ 1293 #if defined(CONFIG_CMD_PING) 1294 case PING: 1295 if (net_ping_ip.s_addr == 0) { 1296 puts("*** ERROR: ping address not given\n"); 1297 return 1; 1298 } 1299 goto common; 1300 #endif 1301 #if defined(CONFIG_CMD_SNTP) 1302 case SNTP: 1303 if (net_ntp_server.s_addr == 0) { 1304 puts("*** ERROR: NTP server address not given\n"); 1305 return 1; 1306 } 1307 goto common; 1308 #endif 1309 #if defined(CONFIG_CMD_DNS) 1310 case DNS: 1311 if (net_dns_server.s_addr == 0) { 1312 puts("*** ERROR: DNS server address not given\n"); 1313 return 1; 1314 } 1315 goto common; 1316 #endif 1317 #if defined(CONFIG_CMD_NFS) 1318 case NFS: 1319 #endif 1320 /* Fall through */ 1321 case TFTPGET: 1322 case TFTPPUT: 1323 if (net_server_ip.s_addr == 0) { 1324 puts("*** ERROR: `serverip' not set\n"); 1325 return 1; 1326 } 1327 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \ 1328 defined(CONFIG_CMD_DNS) 1329 common: 1330 #endif 1331 /* Fall through */ 1332 1333 case NETCONS: 1334 case TFTPSRV: 1335 if (net_ip.s_addr == 0) { 1336 puts("*** ERROR: `ipaddr' not set\n"); 1337 return 1; 1338 } 1339 /* Fall through */ 1340 1341 #ifdef CONFIG_CMD_RARP 1342 case RARP: 1343 #endif 1344 case BOOTP: 1345 case CDP: 1346 case DHCP: 1347 case LINKLOCAL: 1348 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) { 1349 int num = eth_get_dev_index(); 1350 1351 switch (num) { 1352 case -1: 1353 puts("*** ERROR: No ethernet found.\n"); 1354 return 1; 1355 case 0: 1356 puts("*** ERROR: `ethaddr' not set\n"); 1357 break; 1358 default: 1359 printf("*** ERROR: `eth%daddr' not set\n", 1360 num); 1361 break; 1362 } 1363 1364 net_start_again(); 1365 return 2; 1366 } 1367 /* Fall through */ 1368 default: 1369 return 0; 1370 } 1371 return 0; /* OK */ 1372 } 1373 /**********************************************************************/ 1374 1375 int 1376 net_eth_hdr_size(void) 1377 { 1378 ushort myvlanid; 1379 1380 myvlanid = ntohs(net_our_vlan); 1381 if (myvlanid == (ushort)-1) 1382 myvlanid = VLAN_NONE; 1383 1384 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE : 1385 VLAN_ETHER_HDR_SIZE; 1386 } 1387 1388 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot) 1389 { 1390 struct ethernet_hdr *et = (struct ethernet_hdr *)xet; 1391 ushort myvlanid; 1392 1393 myvlanid = ntohs(net_our_vlan); 1394 if (myvlanid == (ushort)-1) 1395 myvlanid = VLAN_NONE; 1396 1397 memcpy(et->et_dest, dest_ethaddr, 6); 1398 memcpy(et->et_src, net_ethaddr, 6); 1399 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) { 1400 et->et_protlen = htons(prot); 1401 return ETHER_HDR_SIZE; 1402 } else { 1403 struct vlan_ethernet_hdr *vet = 1404 (struct vlan_ethernet_hdr *)xet; 1405 1406 vet->vet_vlan_type = htons(PROT_VLAN); 1407 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK)); 1408 vet->vet_type = htons(prot); 1409 return VLAN_ETHER_HDR_SIZE; 1410 } 1411 } 1412 1413 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot) 1414 { 1415 ushort protlen; 1416 1417 memcpy(et->et_dest, addr, 6); 1418 memcpy(et->et_src, net_ethaddr, 6); 1419 protlen = ntohs(et->et_protlen); 1420 if (protlen == PROT_VLAN) { 1421 struct vlan_ethernet_hdr *vet = 1422 (struct vlan_ethernet_hdr *)et; 1423 vet->vet_type = htons(prot); 1424 return VLAN_ETHER_HDR_SIZE; 1425 } else if (protlen > 1514) { 1426 et->et_protlen = htons(prot); 1427 return ETHER_HDR_SIZE; 1428 } else { 1429 /* 802.2 + SNAP */ 1430 struct e802_hdr *et802 = (struct e802_hdr *)et; 1431 et802->et_prot = htons(prot); 1432 return E802_HDR_SIZE; 1433 } 1434 } 1435 1436 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source) 1437 { 1438 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1439 1440 /* 1441 * Construct an IP header. 1442 */ 1443 /* IP_HDR_SIZE / 4 (not including UDP) */ 1444 ip->ip_hl_v = 0x45; 1445 ip->ip_tos = 0; 1446 ip->ip_len = htons(IP_HDR_SIZE); 1447 ip->ip_id = htons(net_ip_id++); 1448 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */ 1449 ip->ip_ttl = 255; 1450 ip->ip_sum = 0; 1451 /* already in network byte order */ 1452 net_copy_ip((void *)&ip->ip_src, &source); 1453 /* already in network byte order */ 1454 net_copy_ip((void *)&ip->ip_dst, &dest); 1455 } 1456 1457 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport, 1458 int len) 1459 { 1460 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt; 1461 1462 /* 1463 * If the data is an odd number of bytes, zero the 1464 * byte after the last byte so that the checksum 1465 * will work. 1466 */ 1467 if (len & 1) 1468 pkt[IP_UDP_HDR_SIZE + len] = 0; 1469 1470 net_set_ip_header(pkt, dest, net_ip); 1471 ip->ip_len = htons(IP_UDP_HDR_SIZE + len); 1472 ip->ip_p = IPPROTO_UDP; 1473 ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE); 1474 1475 ip->udp_src = htons(sport); 1476 ip->udp_dst = htons(dport); 1477 ip->udp_len = htons(UDP_HDR_SIZE + len); 1478 ip->udp_xsum = 0; 1479 } 1480 1481 void copy_filename(char *dst, const char *src, int size) 1482 { 1483 if (*src && (*src == '"')) { 1484 ++src; 1485 --size; 1486 } 1487 1488 while ((--size > 0) && *src && (*src != '"')) 1489 *dst++ = *src++; 1490 *dst = '\0'; 1491 } 1492 1493 #if defined(CONFIG_CMD_NFS) || \ 1494 defined(CONFIG_CMD_SNTP) || \ 1495 defined(CONFIG_CMD_DNS) 1496 /* 1497 * make port a little random (1024-17407) 1498 * This keeps the math somewhat trivial to compute, and seems to work with 1499 * all supported protocols/clients/servers 1500 */ 1501 unsigned int random_port(void) 1502 { 1503 return 1024 + (get_timer(0) % 0x4000); 1504 } 1505 #endif 1506 1507 void ip_to_string(struct in_addr x, char *s) 1508 { 1509 x.s_addr = ntohl(x.s_addr); 1510 sprintf(s, "%d.%d.%d.%d", 1511 (int) ((x.s_addr >> 24) & 0xff), 1512 (int) ((x.s_addr >> 16) & 0xff), 1513 (int) ((x.s_addr >> 8) & 0xff), 1514 (int) ((x.s_addr >> 0) & 0xff) 1515 ); 1516 } 1517 1518 void vlan_to_string(ushort x, char *s) 1519 { 1520 x = ntohs(x); 1521 1522 if (x == (ushort)-1) 1523 x = VLAN_NONE; 1524 1525 if (x == VLAN_NONE) 1526 strcpy(s, "none"); 1527 else 1528 sprintf(s, "%d", x & VLAN_IDMASK); 1529 } 1530 1531 ushort string_to_vlan(const char *s) 1532 { 1533 ushort id; 1534 1535 if (s == NULL) 1536 return htons(VLAN_NONE); 1537 1538 if (*s < '0' || *s > '9') 1539 id = VLAN_NONE; 1540 else 1541 id = (ushort)simple_strtoul(s, NULL, 10); 1542 1543 return htons(id); 1544 } 1545 1546 ushort getenv_vlan(char *var) 1547 { 1548 return string_to_vlan(getenv(var)); 1549 } 1550