xref: /openbmc/u-boot/net/net.c (revision 16cf145f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	Copied from Linux Monitor (LiMon) - Networking.
4  *
5  *	Copyright 1994 - 2000 Neil Russell.
6  *	(See License)
7  *	Copyright 2000 Roland Borde
8  *	Copyright 2000 Paolo Scaffardi
9  *	Copyright 2000-2002 Wolfgang Denk, wd@denx.de
10  */
11 
12 /*
13  * General Desription:
14  *
15  * The user interface supports commands for BOOTP, RARP, and TFTP.
16  * Also, we support ARP internally. Depending on available data,
17  * these interact as follows:
18  *
19  * BOOTP:
20  *
21  *	Prerequisites:	- own ethernet address
22  *	We want:	- own IP address
23  *			- TFTP server IP address
24  *			- name of bootfile
25  *	Next step:	ARP
26  *
27  * LINK_LOCAL:
28  *
29  *	Prerequisites:	- own ethernet address
30  *	We want:	- own IP address
31  *	Next step:	ARP
32  *
33  * RARP:
34  *
35  *	Prerequisites:	- own ethernet address
36  *	We want:	- own IP address
37  *			- TFTP server IP address
38  *	Next step:	ARP
39  *
40  * ARP:
41  *
42  *	Prerequisites:	- own ethernet address
43  *			- own IP address
44  *			- TFTP server IP address
45  *	We want:	- TFTP server ethernet address
46  *	Next step:	TFTP
47  *
48  * DHCP:
49  *
50  *     Prerequisites:	- own ethernet address
51  *     We want:		- IP, Netmask, ServerIP, Gateway IP
52  *			- bootfilename, lease time
53  *     Next step:	- TFTP
54  *
55  * TFTP:
56  *
57  *	Prerequisites:	- own ethernet address
58  *			- own IP address
59  *			- TFTP server IP address
60  *			- TFTP server ethernet address
61  *			- name of bootfile (if unknown, we use a default name
62  *			  derived from our own IP address)
63  *	We want:	- load the boot file
64  *	Next step:	none
65  *
66  * NFS:
67  *
68  *	Prerequisites:	- own ethernet address
69  *			- own IP address
70  *			- name of bootfile (if unknown, we use a default name
71  *			  derived from our own IP address)
72  *	We want:	- load the boot file
73  *	Next step:	none
74  *
75  * SNTP:
76  *
77  *	Prerequisites:	- own ethernet address
78  *			- own IP address
79  *	We want:	- network time
80  *	Next step:	none
81  *
82  * WOL:
83  *
84  *	Prerequisites:	- own ethernet address
85  *	We want:	- magic packet or timeout
86  *	Next step:	none
87  */
88 
89 
90 #include <common.h>
91 #include <command.h>
92 #include <console.h>
93 #include <environment.h>
94 #include <errno.h>
95 #include <net.h>
96 #include <net/fastboot.h>
97 #include <net/tftp.h>
98 #if defined(CONFIG_LED_STATUS)
99 #include <miiphy.h>
100 #include <status_led.h>
101 #endif
102 #include <watchdog.h>
103 #include <linux/compiler.h>
104 #include "arp.h"
105 #include "bootp.h"
106 #include "cdp.h"
107 #if defined(CONFIG_CMD_DNS)
108 #include "dns.h"
109 #endif
110 #include "link_local.h"
111 #include "nfs.h"
112 #include "ping.h"
113 #include "rarp.h"
114 #if defined(CONFIG_CMD_SNTP)
115 #include "sntp.h"
116 #endif
117 #if defined(CONFIG_CMD_WOL)
118 #include "wol.h"
119 #endif
120 
121 /** BOOTP EXTENTIONS **/
122 
123 /* Our subnet mask (0=unknown) */
124 struct in_addr net_netmask;
125 /* Our gateways IP address */
126 struct in_addr net_gateway;
127 /* Our DNS IP address */
128 struct in_addr net_dns_server;
129 #if defined(CONFIG_BOOTP_DNS2)
130 /* Our 2nd DNS IP address */
131 struct in_addr net_dns_server2;
132 #endif
133 
134 #ifdef CONFIG_MCAST_TFTP	/* Multicast TFTP */
135 struct in_addr net_mcast_addr;
136 #endif
137 
138 /** END OF BOOTP EXTENTIONS **/
139 
140 /* Our ethernet address */
141 u8 net_ethaddr[6];
142 /* Boot server enet address */
143 u8 net_server_ethaddr[6];
144 /* Our IP addr (0 = unknown) */
145 struct in_addr	net_ip;
146 /* Server IP addr (0 = unknown) */
147 struct in_addr	net_server_ip;
148 /* Current receive packet */
149 uchar *net_rx_packet;
150 /* Current rx packet length */
151 int		net_rx_packet_len;
152 /* IP packet ID */
153 static unsigned	net_ip_id;
154 /* Ethernet bcast address */
155 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
156 const u8 net_null_ethaddr[6];
157 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
158 void (*push_packet)(void *, int len) = 0;
159 #endif
160 /* Network loop state */
161 enum net_loop_state net_state;
162 /* Tried all network devices */
163 int		net_restart_wrap;
164 /* Network loop restarted */
165 static int	net_restarted;
166 /* At least one device configured */
167 static int	net_dev_exists;
168 
169 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */
170 /* default is without VLAN */
171 ushort		net_our_vlan = 0xFFFF;
172 /* ditto */
173 ushort		net_native_vlan = 0xFFFF;
174 
175 /* Boot File name */
176 char net_boot_file_name[1024];
177 /* Indicates whether the file name was specified on the command line */
178 bool net_boot_file_name_explicit;
179 /* The actual transferred size of the bootfile (in bytes) */
180 u32 net_boot_file_size;
181 /* Boot file size in blocks as reported by the DHCP server */
182 u32 net_boot_file_expected_size_in_blocks;
183 
184 #if defined(CONFIG_CMD_SNTP)
185 /* NTP server IP address */
186 struct in_addr	net_ntp_server;
187 /* offset time from UTC */
188 int		net_ntp_time_offset;
189 #endif
190 
191 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN];
192 /* Receive packets */
193 uchar *net_rx_packets[PKTBUFSRX];
194 /* Current UDP RX packet handler */
195 static rxhand_f *udp_packet_handler;
196 /* Current ARP RX packet handler */
197 static rxhand_f *arp_packet_handler;
198 #ifdef CONFIG_CMD_TFTPPUT
199 /* Current ICMP rx handler */
200 static rxhand_icmp_f *packet_icmp_handler;
201 #endif
202 /* Current timeout handler */
203 static thand_f *time_handler;
204 /* Time base value */
205 static ulong	time_start;
206 /* Current timeout value */
207 static ulong	time_delta;
208 /* THE transmit packet */
209 uchar *net_tx_packet;
210 
211 static int net_check_prereq(enum proto_t protocol);
212 
213 static int net_try_count;
214 
215 int __maybe_unused net_busy_flag;
216 
217 /**********************************************************************/
218 
219 static int on_bootfile(const char *name, const char *value, enum env_op op,
220 	int flags)
221 {
222 	if (flags & H_PROGRAMMATIC)
223 		return 0;
224 
225 	switch (op) {
226 	case env_op_create:
227 	case env_op_overwrite:
228 		copy_filename(net_boot_file_name, value,
229 			      sizeof(net_boot_file_name));
230 		break;
231 	default:
232 		break;
233 	}
234 
235 	return 0;
236 }
237 U_BOOT_ENV_CALLBACK(bootfile, on_bootfile);
238 
239 static int on_ipaddr(const char *name, const char *value, enum env_op op,
240 	int flags)
241 {
242 	if (flags & H_PROGRAMMATIC)
243 		return 0;
244 
245 	net_ip = string_to_ip(value);
246 
247 	return 0;
248 }
249 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr);
250 
251 static int on_gatewayip(const char *name, const char *value, enum env_op op,
252 	int flags)
253 {
254 	if (flags & H_PROGRAMMATIC)
255 		return 0;
256 
257 	net_gateway = string_to_ip(value);
258 
259 	return 0;
260 }
261 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip);
262 
263 static int on_netmask(const char *name, const char *value, enum env_op op,
264 	int flags)
265 {
266 	if (flags & H_PROGRAMMATIC)
267 		return 0;
268 
269 	net_netmask = string_to_ip(value);
270 
271 	return 0;
272 }
273 U_BOOT_ENV_CALLBACK(netmask, on_netmask);
274 
275 static int on_serverip(const char *name, const char *value, enum env_op op,
276 	int flags)
277 {
278 	if (flags & H_PROGRAMMATIC)
279 		return 0;
280 
281 	net_server_ip = string_to_ip(value);
282 
283 	return 0;
284 }
285 U_BOOT_ENV_CALLBACK(serverip, on_serverip);
286 
287 static int on_nvlan(const char *name, const char *value, enum env_op op,
288 	int flags)
289 {
290 	if (flags & H_PROGRAMMATIC)
291 		return 0;
292 
293 	net_native_vlan = string_to_vlan(value);
294 
295 	return 0;
296 }
297 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan);
298 
299 static int on_vlan(const char *name, const char *value, enum env_op op,
300 	int flags)
301 {
302 	if (flags & H_PROGRAMMATIC)
303 		return 0;
304 
305 	net_our_vlan = string_to_vlan(value);
306 
307 	return 0;
308 }
309 U_BOOT_ENV_CALLBACK(vlan, on_vlan);
310 
311 #if defined(CONFIG_CMD_DNS)
312 static int on_dnsip(const char *name, const char *value, enum env_op op,
313 	int flags)
314 {
315 	if (flags & H_PROGRAMMATIC)
316 		return 0;
317 
318 	net_dns_server = string_to_ip(value);
319 
320 	return 0;
321 }
322 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip);
323 #endif
324 
325 /*
326  * Check if autoload is enabled. If so, use either NFS or TFTP to download
327  * the boot file.
328  */
329 void net_auto_load(void)
330 {
331 #if defined(CONFIG_CMD_NFS)
332 	const char *s = env_get("autoload");
333 
334 	if (s != NULL && strcmp(s, "NFS") == 0) {
335 		if (net_check_prereq(NFS)) {
336 /* We aren't expecting to get a serverip, so just accept the assigned IP */
337 #ifdef CONFIG_BOOTP_SERVERIP
338 			net_set_state(NETLOOP_SUCCESS);
339 #else
340 			printf("Cannot autoload with NFS\n");
341 			net_set_state(NETLOOP_FAIL);
342 #endif
343 			return;
344 		}
345 		/*
346 		 * Use NFS to load the bootfile.
347 		 */
348 		nfs_start();
349 		return;
350 	}
351 #endif
352 	if (env_get_yesno("autoload") == 0) {
353 		/*
354 		 * Just use BOOTP/RARP to configure system;
355 		 * Do not use TFTP to load the bootfile.
356 		 */
357 		net_set_state(NETLOOP_SUCCESS);
358 		return;
359 	}
360 	if (net_check_prereq(TFTPGET)) {
361 /* We aren't expecting to get a serverip, so just accept the assigned IP */
362 #ifdef CONFIG_BOOTP_SERVERIP
363 		net_set_state(NETLOOP_SUCCESS);
364 #else
365 		printf("Cannot autoload with TFTPGET\n");
366 		net_set_state(NETLOOP_FAIL);
367 #endif
368 		return;
369 	}
370 	tftp_start(TFTPGET);
371 }
372 
373 static void net_init_loop(void)
374 {
375 	if (eth_get_dev())
376 		memcpy(net_ethaddr, eth_get_ethaddr(), 6);
377 
378 	return;
379 }
380 
381 static void net_clear_handlers(void)
382 {
383 	net_set_udp_handler(NULL);
384 	net_set_arp_handler(NULL);
385 	net_set_timeout_handler(0, NULL);
386 }
387 
388 static void net_cleanup_loop(void)
389 {
390 	net_clear_handlers();
391 }
392 
393 void net_init(void)
394 {
395 	static int first_call = 1;
396 
397 	if (first_call) {
398 		/*
399 		 *	Setup packet buffers, aligned correctly.
400 		 */
401 		int i;
402 
403 		net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1);
404 		net_tx_packet -= (ulong)net_tx_packet % PKTALIGN;
405 		for (i = 0; i < PKTBUFSRX; i++) {
406 			net_rx_packets[i] = net_tx_packet +
407 				(i + 1) * PKTSIZE_ALIGN;
408 		}
409 		arp_init();
410 		net_clear_handlers();
411 
412 		/* Only need to setup buffer pointers once. */
413 		first_call = 0;
414 	}
415 
416 	net_init_loop();
417 }
418 
419 /**********************************************************************/
420 /*
421  *	Main network processing loop.
422  */
423 
424 int net_loop(enum proto_t protocol)
425 {
426 	int ret = -EINVAL;
427 	enum net_loop_state prev_net_state = net_state;
428 
429 	net_restarted = 0;
430 	net_dev_exists = 0;
431 	net_try_count = 1;
432 	debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n");
433 
434 	bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start");
435 	net_init();
436 	if (eth_is_on_demand_init() || protocol != NETCONS) {
437 		eth_halt();
438 		eth_set_current();
439 		ret = eth_init();
440 		if (ret < 0) {
441 			eth_halt();
442 			return ret;
443 		}
444 	} else {
445 		eth_init_state_only();
446 	}
447 restart:
448 #ifdef CONFIG_USB_KEYBOARD
449 	net_busy_flag = 0;
450 #endif
451 	net_set_state(NETLOOP_CONTINUE);
452 
453 	/*
454 	 *	Start the ball rolling with the given start function.  From
455 	 *	here on, this code is a state machine driven by received
456 	 *	packets and timer events.
457 	 */
458 	debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n");
459 	net_init_loop();
460 
461 	switch (net_check_prereq(protocol)) {
462 	case 1:
463 		/* network not configured */
464 		eth_halt();
465 		net_set_state(prev_net_state);
466 		return -ENODEV;
467 
468 	case 2:
469 		/* network device not configured */
470 		break;
471 
472 	case 0:
473 		net_dev_exists = 1;
474 		net_boot_file_size = 0;
475 		switch (protocol) {
476 		case TFTPGET:
477 #ifdef CONFIG_CMD_TFTPPUT
478 		case TFTPPUT:
479 #endif
480 			/* always use ARP to get server ethernet address */
481 			tftp_start(protocol);
482 			break;
483 #ifdef CONFIG_CMD_TFTPSRV
484 		case TFTPSRV:
485 			tftp_start_server();
486 			break;
487 #endif
488 #ifdef CONFIG_UDP_FUNCTION_FASTBOOT
489 		case FASTBOOT:
490 			fastboot_start_server();
491 			break;
492 #endif
493 #if defined(CONFIG_CMD_DHCP)
494 		case DHCP:
495 			bootp_reset();
496 			net_ip.s_addr = 0;
497 			dhcp_request();		/* Basically same as BOOTP */
498 			break;
499 #endif
500 
501 		case BOOTP:
502 			bootp_reset();
503 			net_ip.s_addr = 0;
504 			bootp_request();
505 			break;
506 
507 #if defined(CONFIG_CMD_RARP)
508 		case RARP:
509 			rarp_try = 0;
510 			net_ip.s_addr = 0;
511 			rarp_request();
512 			break;
513 #endif
514 #if defined(CONFIG_CMD_PING)
515 		case PING:
516 			ping_start();
517 			break;
518 #endif
519 #if defined(CONFIG_CMD_NFS)
520 		case NFS:
521 			nfs_start();
522 			break;
523 #endif
524 #if defined(CONFIG_CMD_CDP)
525 		case CDP:
526 			cdp_start();
527 			break;
528 #endif
529 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
530 		case NETCONS:
531 			nc_start();
532 			break;
533 #endif
534 #if defined(CONFIG_CMD_SNTP)
535 		case SNTP:
536 			sntp_start();
537 			break;
538 #endif
539 #if defined(CONFIG_CMD_DNS)
540 		case DNS:
541 			dns_start();
542 			break;
543 #endif
544 #if defined(CONFIG_CMD_LINK_LOCAL)
545 		case LINKLOCAL:
546 			link_local_start();
547 			break;
548 #endif
549 #if defined(CONFIG_CMD_WOL)
550 		case WOL:
551 			wol_start();
552 			break;
553 #endif
554 		default:
555 			break;
556 		}
557 
558 		break;
559 	}
560 
561 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
562 #if	defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)	&& \
563 	defined(CONFIG_LED_STATUS)			&& \
564 	defined(CONFIG_LED_STATUS_RED)
565 	/*
566 	 * Echo the inverted link state to the fault LED.
567 	 */
568 	if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR))
569 		status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_OFF);
570 	else
571 		status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_ON);
572 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
573 #endif /* CONFIG_MII, ... */
574 #ifdef CONFIG_USB_KEYBOARD
575 	net_busy_flag = 1;
576 #endif
577 
578 	/*
579 	 *	Main packet reception loop.  Loop receiving packets until
580 	 *	someone sets `net_state' to a state that terminates.
581 	 */
582 	for (;;) {
583 		WATCHDOG_RESET();
584 #ifdef CONFIG_SHOW_ACTIVITY
585 		show_activity(1);
586 #endif
587 		if (arp_timeout_check() > 0)
588 			time_start = get_timer(0);
589 
590 		/*
591 		 *	Check the ethernet for a new packet.  The ethernet
592 		 *	receive routine will process it.
593 		 *	Most drivers return the most recent packet size, but not
594 		 *	errors that may have happened.
595 		 */
596 		eth_rx();
597 
598 		/*
599 		 *	Abort if ctrl-c was pressed.
600 		 */
601 		if (ctrlc()) {
602 			/* cancel any ARP that may not have completed */
603 			net_arp_wait_packet_ip.s_addr = 0;
604 
605 			net_cleanup_loop();
606 			eth_halt();
607 			/* Invalidate the last protocol */
608 			eth_set_last_protocol(BOOTP);
609 
610 			puts("\nAbort\n");
611 			/* include a debug print as well incase the debug
612 			   messages are directed to stderr */
613 			debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n");
614 			ret = -EINTR;
615 			goto done;
616 		}
617 
618 		/*
619 		 *	Check for a timeout, and run the timeout handler
620 		 *	if we have one.
621 		 */
622 		if (time_handler &&
623 		    ((get_timer(0) - time_start) > time_delta)) {
624 			thand_f *x;
625 
626 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
627 #if	defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)	&& \
628 	defined(CONFIG_LED_STATUS)			&& \
629 	defined(CONFIG_LED_STATUS_RED)
630 			/*
631 			 * Echo the inverted link state to the fault LED.
632 			 */
633 			if (miiphy_link(eth_get_dev()->name,
634 					CONFIG_SYS_FAULT_MII_ADDR))
635 				status_led_set(CONFIG_LED_STATUS_RED,
636 					       CONFIG_LED_STATUS_OFF);
637 			else
638 				status_led_set(CONFIG_LED_STATUS_RED,
639 					       CONFIG_LED_STATUS_ON);
640 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
641 #endif /* CONFIG_MII, ... */
642 			debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n");
643 			x = time_handler;
644 			time_handler = (thand_f *)0;
645 			(*x)();
646 		}
647 
648 		if (net_state == NETLOOP_FAIL)
649 			ret = net_start_again();
650 
651 		switch (net_state) {
652 		case NETLOOP_RESTART:
653 			net_restarted = 1;
654 			goto restart;
655 
656 		case NETLOOP_SUCCESS:
657 			net_cleanup_loop();
658 			if (net_boot_file_size > 0) {
659 				printf("Bytes transferred = %d (%x hex)\n",
660 				       net_boot_file_size, net_boot_file_size);
661 				env_set_hex("filesize", net_boot_file_size);
662 				env_set_hex("fileaddr", load_addr);
663 			}
664 			if (protocol != NETCONS)
665 				eth_halt();
666 			else
667 				eth_halt_state_only();
668 
669 			eth_set_last_protocol(protocol);
670 
671 			ret = net_boot_file_size;
672 			debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n");
673 			goto done;
674 
675 		case NETLOOP_FAIL:
676 			net_cleanup_loop();
677 			/* Invalidate the last protocol */
678 			eth_set_last_protocol(BOOTP);
679 			debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n");
680 			goto done;
681 
682 		case NETLOOP_CONTINUE:
683 			continue;
684 		}
685 	}
686 
687 done:
688 #ifdef CONFIG_USB_KEYBOARD
689 	net_busy_flag = 0;
690 #endif
691 #ifdef CONFIG_CMD_TFTPPUT
692 	/* Clear out the handlers */
693 	net_set_udp_handler(NULL);
694 	net_set_icmp_handler(NULL);
695 #endif
696 	net_set_state(prev_net_state);
697 	return ret;
698 }
699 
700 /**********************************************************************/
701 
702 static void start_again_timeout_handler(void)
703 {
704 	net_set_state(NETLOOP_RESTART);
705 }
706 
707 int net_start_again(void)
708 {
709 	char *nretry;
710 	int retry_forever = 0;
711 	unsigned long retrycnt = 0;
712 	int ret;
713 
714 	nretry = env_get("netretry");
715 	if (nretry) {
716 		if (!strcmp(nretry, "yes"))
717 			retry_forever = 1;
718 		else if (!strcmp(nretry, "no"))
719 			retrycnt = 0;
720 		else if (!strcmp(nretry, "once"))
721 			retrycnt = 1;
722 		else
723 			retrycnt = simple_strtoul(nretry, NULL, 0);
724 	} else {
725 		retrycnt = 0;
726 		retry_forever = 0;
727 	}
728 
729 	if ((!retry_forever) && (net_try_count > retrycnt)) {
730 		eth_halt();
731 		net_set_state(NETLOOP_FAIL);
732 		/*
733 		 * We don't provide a way for the protocol to return an error,
734 		 * but this is almost always the reason.
735 		 */
736 		return -ETIMEDOUT;
737 	}
738 
739 	net_try_count++;
740 
741 	eth_halt();
742 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER)
743 	eth_try_another(!net_restarted);
744 #endif
745 	ret = eth_init();
746 	if (net_restart_wrap) {
747 		net_restart_wrap = 0;
748 		if (net_dev_exists) {
749 			net_set_timeout_handler(10000UL,
750 						start_again_timeout_handler);
751 			net_set_udp_handler(NULL);
752 		} else {
753 			net_set_state(NETLOOP_FAIL);
754 		}
755 	} else {
756 		net_set_state(NETLOOP_RESTART);
757 	}
758 	return ret;
759 }
760 
761 /**********************************************************************/
762 /*
763  *	Miscelaneous bits.
764  */
765 
766 static void dummy_handler(uchar *pkt, unsigned dport,
767 			struct in_addr sip, unsigned sport,
768 			unsigned len)
769 {
770 }
771 
772 rxhand_f *net_get_udp_handler(void)
773 {
774 	return udp_packet_handler;
775 }
776 
777 void net_set_udp_handler(rxhand_f *f)
778 {
779 	debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f);
780 	if (f == NULL)
781 		udp_packet_handler = dummy_handler;
782 	else
783 		udp_packet_handler = f;
784 }
785 
786 rxhand_f *net_get_arp_handler(void)
787 {
788 	return arp_packet_handler;
789 }
790 
791 void net_set_arp_handler(rxhand_f *f)
792 {
793 	debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f);
794 	if (f == NULL)
795 		arp_packet_handler = dummy_handler;
796 	else
797 		arp_packet_handler = f;
798 }
799 
800 #ifdef CONFIG_CMD_TFTPPUT
801 void net_set_icmp_handler(rxhand_icmp_f *f)
802 {
803 	packet_icmp_handler = f;
804 }
805 #endif
806 
807 void net_set_timeout_handler(ulong iv, thand_f *f)
808 {
809 	if (iv == 0) {
810 		debug_cond(DEBUG_INT_STATE,
811 			   "--- net_loop timeout handler cancelled\n");
812 		time_handler = (thand_f *)0;
813 	} else {
814 		debug_cond(DEBUG_INT_STATE,
815 			   "--- net_loop timeout handler set (%p)\n", f);
816 		time_handler = f;
817 		time_start = get_timer(0);
818 		time_delta = iv * CONFIG_SYS_HZ / 1000;
819 	}
820 }
821 
822 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport,
823 		int payload_len)
824 {
825 	uchar *pkt;
826 	int eth_hdr_size;
827 	int pkt_hdr_size;
828 
829 	/* make sure the net_tx_packet is initialized (net_init() was called) */
830 	assert(net_tx_packet != NULL);
831 	if (net_tx_packet == NULL)
832 		return -1;
833 
834 	/* convert to new style broadcast */
835 	if (dest.s_addr == 0)
836 		dest.s_addr = 0xFFFFFFFF;
837 
838 	/* if broadcast, make the ether address a broadcast and don't do ARP */
839 	if (dest.s_addr == 0xFFFFFFFF)
840 		ether = (uchar *)net_bcast_ethaddr;
841 
842 	pkt = (uchar *)net_tx_packet;
843 
844 	eth_hdr_size = net_set_ether(pkt, ether, PROT_IP);
845 	pkt += eth_hdr_size;
846 	net_set_udp_header(pkt, dest, dport, sport, payload_len);
847 	pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE;
848 
849 	/* if MAC address was not discovered yet, do an ARP request */
850 	if (memcmp(ether, net_null_ethaddr, 6) == 0) {
851 		debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest);
852 
853 		/* save the ip and eth addr for the packet to send after arp */
854 		net_arp_wait_packet_ip = dest;
855 		arp_wait_packet_ethaddr = ether;
856 
857 		/* size of the waiting packet */
858 		arp_wait_tx_packet_size = pkt_hdr_size + payload_len;
859 
860 		/* and do the ARP request */
861 		arp_wait_try = 1;
862 		arp_wait_timer_start = get_timer(0);
863 		arp_request();
864 		return 1;	/* waiting */
865 	} else {
866 		debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n",
867 			   &dest, ether);
868 		net_send_packet(net_tx_packet, pkt_hdr_size + payload_len);
869 		return 0;	/* transmitted */
870 	}
871 }
872 
873 #ifdef CONFIG_IP_DEFRAG
874 /*
875  * This function collects fragments in a single packet, according
876  * to the algorithm in RFC815. It returns NULL or the pointer to
877  * a complete packet, in static storage
878  */
879 #ifndef CONFIG_NET_MAXDEFRAG
880 #define CONFIG_NET_MAXDEFRAG 16384
881 #endif
882 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG)
883 
884 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE)
885 
886 /*
887  * this is the packet being assembled, either data or frag control.
888  * Fragments go by 8 bytes, so this union must be 8 bytes long
889  */
890 struct hole {
891 	/* first_byte is address of this structure */
892 	u16 last_byte;	/* last byte in this hole + 1 (begin of next hole) */
893 	u16 next_hole;	/* index of next (in 8-b blocks), 0 == none */
894 	u16 prev_hole;	/* index of prev, 0 == none */
895 	u16 unused;
896 };
897 
898 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp)
899 {
900 	static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN);
901 	static u16 first_hole, total_len;
902 	struct hole *payload, *thisfrag, *h, *newh;
903 	struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff;
904 	uchar *indata = (uchar *)ip;
905 	int offset8, start, len, done = 0;
906 	u16 ip_off = ntohs(ip->ip_off);
907 
908 	/* payload starts after IP header, this fragment is in there */
909 	payload = (struct hole *)(pkt_buff + IP_HDR_SIZE);
910 	offset8 =  (ip_off & IP_OFFS);
911 	thisfrag = payload + offset8;
912 	start = offset8 * 8;
913 	len = ntohs(ip->ip_len) - IP_HDR_SIZE;
914 
915 	if (start + len > IP_MAXUDP) /* fragment extends too far */
916 		return NULL;
917 
918 	if (!total_len || localip->ip_id != ip->ip_id) {
919 		/* new (or different) packet, reset structs */
920 		total_len = 0xffff;
921 		payload[0].last_byte = ~0;
922 		payload[0].next_hole = 0;
923 		payload[0].prev_hole = 0;
924 		first_hole = 0;
925 		/* any IP header will work, copy the first we received */
926 		memcpy(localip, ip, IP_HDR_SIZE);
927 	}
928 
929 	/*
930 	 * What follows is the reassembly algorithm. We use the payload
931 	 * array as a linked list of hole descriptors, as each hole starts
932 	 * at a multiple of 8 bytes. However, last byte can be whatever value,
933 	 * so it is represented as byte count, not as 8-byte blocks.
934 	 */
935 
936 	h = payload + first_hole;
937 	while (h->last_byte < start) {
938 		if (!h->next_hole) {
939 			/* no hole that far away */
940 			return NULL;
941 		}
942 		h = payload + h->next_hole;
943 	}
944 
945 	/* last fragment may be 1..7 bytes, the "+7" forces acceptance */
946 	if (offset8 + ((len + 7) / 8) <= h - payload) {
947 		/* no overlap with holes (dup fragment?) */
948 		return NULL;
949 	}
950 
951 	if (!(ip_off & IP_FLAGS_MFRAG)) {
952 		/* no more fragmentss: truncate this (last) hole */
953 		total_len = start + len;
954 		h->last_byte = start + len;
955 	}
956 
957 	/*
958 	 * There is some overlap: fix the hole list. This code doesn't
959 	 * deal with a fragment that overlaps with two different holes
960 	 * (thus being a superset of a previously-received fragment).
961 	 */
962 
963 	if ((h >= thisfrag) && (h->last_byte <= start + len)) {
964 		/* complete overlap with hole: remove hole */
965 		if (!h->prev_hole && !h->next_hole) {
966 			/* last remaining hole */
967 			done = 1;
968 		} else if (!h->prev_hole) {
969 			/* first hole */
970 			first_hole = h->next_hole;
971 			payload[h->next_hole].prev_hole = 0;
972 		} else if (!h->next_hole) {
973 			/* last hole */
974 			payload[h->prev_hole].next_hole = 0;
975 		} else {
976 			/* in the middle of the list */
977 			payload[h->next_hole].prev_hole = h->prev_hole;
978 			payload[h->prev_hole].next_hole = h->next_hole;
979 		}
980 
981 	} else if (h->last_byte <= start + len) {
982 		/* overlaps with final part of the hole: shorten this hole */
983 		h->last_byte = start;
984 
985 	} else if (h >= thisfrag) {
986 		/* overlaps with initial part of the hole: move this hole */
987 		newh = thisfrag + (len / 8);
988 		*newh = *h;
989 		h = newh;
990 		if (h->next_hole)
991 			payload[h->next_hole].prev_hole = (h - payload);
992 		if (h->prev_hole)
993 			payload[h->prev_hole].next_hole = (h - payload);
994 		else
995 			first_hole = (h - payload);
996 
997 	} else {
998 		/* fragment sits in the middle: split the hole */
999 		newh = thisfrag + (len / 8);
1000 		*newh = *h;
1001 		h->last_byte = start;
1002 		h->next_hole = (newh - payload);
1003 		newh->prev_hole = (h - payload);
1004 		if (newh->next_hole)
1005 			payload[newh->next_hole].prev_hole = (newh - payload);
1006 	}
1007 
1008 	/* finally copy this fragment and possibly return whole packet */
1009 	memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len);
1010 	if (!done)
1011 		return NULL;
1012 
1013 	localip->ip_len = htons(total_len);
1014 	*lenp = total_len + IP_HDR_SIZE;
1015 	return localip;
1016 }
1017 
1018 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
1019 	int *lenp)
1020 {
1021 	u16 ip_off = ntohs(ip->ip_off);
1022 	if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
1023 		return ip; /* not a fragment */
1024 	return __net_defragment(ip, lenp);
1025 }
1026 
1027 #else /* !CONFIG_IP_DEFRAG */
1028 
1029 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
1030 	int *lenp)
1031 {
1032 	u16 ip_off = ntohs(ip->ip_off);
1033 	if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
1034 		return ip; /* not a fragment */
1035 	return NULL;
1036 }
1037 #endif
1038 
1039 /**
1040  * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently
1041  * drop others.
1042  *
1043  * @parma ip	IP packet containing the ICMP
1044  */
1045 static void receive_icmp(struct ip_udp_hdr *ip, int len,
1046 			struct in_addr src_ip, struct ethernet_hdr *et)
1047 {
1048 	struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src;
1049 
1050 	switch (icmph->type) {
1051 	case ICMP_REDIRECT:
1052 		if (icmph->code != ICMP_REDIR_HOST)
1053 			return;
1054 		printf(" ICMP Host Redirect to %pI4 ",
1055 		       &icmph->un.gateway);
1056 		break;
1057 	default:
1058 #if defined(CONFIG_CMD_PING)
1059 		ping_receive(et, ip, len);
1060 #endif
1061 #ifdef CONFIG_CMD_TFTPPUT
1062 		if (packet_icmp_handler)
1063 			packet_icmp_handler(icmph->type, icmph->code,
1064 					    ntohs(ip->udp_dst), src_ip,
1065 					    ntohs(ip->udp_src), icmph->un.data,
1066 					    ntohs(ip->udp_len));
1067 #endif
1068 		break;
1069 	}
1070 }
1071 
1072 void net_process_received_packet(uchar *in_packet, int len)
1073 {
1074 	struct ethernet_hdr *et;
1075 	struct ip_udp_hdr *ip;
1076 	struct in_addr dst_ip;
1077 	struct in_addr src_ip;
1078 	int eth_proto;
1079 #if defined(CONFIG_CMD_CDP)
1080 	int iscdp;
1081 #endif
1082 	ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid;
1083 
1084 	debug_cond(DEBUG_NET_PKT, "packet received\n");
1085 
1086 	net_rx_packet = in_packet;
1087 	net_rx_packet_len = len;
1088 	et = (struct ethernet_hdr *)in_packet;
1089 
1090 	/* too small packet? */
1091 	if (len < ETHER_HDR_SIZE)
1092 		return;
1093 
1094 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
1095 	if (push_packet) {
1096 		(*push_packet)(in_packet, len);
1097 		return;
1098 	}
1099 #endif
1100 
1101 #if defined(CONFIG_CMD_CDP)
1102 	/* keep track if packet is CDP */
1103 	iscdp = is_cdp_packet(et->et_dest);
1104 #endif
1105 
1106 	myvlanid = ntohs(net_our_vlan);
1107 	if (myvlanid == (ushort)-1)
1108 		myvlanid = VLAN_NONE;
1109 	mynvlanid = ntohs(net_native_vlan);
1110 	if (mynvlanid == (ushort)-1)
1111 		mynvlanid = VLAN_NONE;
1112 
1113 	eth_proto = ntohs(et->et_protlen);
1114 
1115 	if (eth_proto < 1514) {
1116 		struct e802_hdr *et802 = (struct e802_hdr *)et;
1117 		/*
1118 		 *	Got a 802.2 packet.  Check the other protocol field.
1119 		 *	XXX VLAN over 802.2+SNAP not implemented!
1120 		 */
1121 		eth_proto = ntohs(et802->et_prot);
1122 
1123 		ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE);
1124 		len -= E802_HDR_SIZE;
1125 
1126 	} else if (eth_proto != PROT_VLAN) {	/* normal packet */
1127 		ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE);
1128 		len -= ETHER_HDR_SIZE;
1129 
1130 	} else {			/* VLAN packet */
1131 		struct vlan_ethernet_hdr *vet =
1132 			(struct vlan_ethernet_hdr *)et;
1133 
1134 		debug_cond(DEBUG_NET_PKT, "VLAN packet received\n");
1135 
1136 		/* too small packet? */
1137 		if (len < VLAN_ETHER_HDR_SIZE)
1138 			return;
1139 
1140 		/* if no VLAN active */
1141 		if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE
1142 #if defined(CONFIG_CMD_CDP)
1143 				&& iscdp == 0
1144 #endif
1145 				)
1146 			return;
1147 
1148 		cti = ntohs(vet->vet_tag);
1149 		vlanid = cti & VLAN_IDMASK;
1150 		eth_proto = ntohs(vet->vet_type);
1151 
1152 		ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE);
1153 		len -= VLAN_ETHER_HDR_SIZE;
1154 	}
1155 
1156 	debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto);
1157 
1158 #if defined(CONFIG_CMD_CDP)
1159 	if (iscdp) {
1160 		cdp_receive((uchar *)ip, len);
1161 		return;
1162 	}
1163 #endif
1164 
1165 	if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) {
1166 		if (vlanid == VLAN_NONE)
1167 			vlanid = (mynvlanid & VLAN_IDMASK);
1168 		/* not matched? */
1169 		if (vlanid != (myvlanid & VLAN_IDMASK))
1170 			return;
1171 	}
1172 
1173 	switch (eth_proto) {
1174 	case PROT_ARP:
1175 		arp_receive(et, ip, len);
1176 		break;
1177 
1178 #ifdef CONFIG_CMD_RARP
1179 	case PROT_RARP:
1180 		rarp_receive(ip, len);
1181 		break;
1182 #endif
1183 	case PROT_IP:
1184 		debug_cond(DEBUG_NET_PKT, "Got IP\n");
1185 		/* Before we start poking the header, make sure it is there */
1186 		if (len < IP_UDP_HDR_SIZE) {
1187 			debug("len bad %d < %lu\n", len,
1188 			      (ulong)IP_UDP_HDR_SIZE);
1189 			return;
1190 		}
1191 		/* Check the packet length */
1192 		if (len < ntohs(ip->ip_len)) {
1193 			debug("len bad %d < %d\n", len, ntohs(ip->ip_len));
1194 			return;
1195 		}
1196 		len = ntohs(ip->ip_len);
1197 		debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n",
1198 			   len, ip->ip_hl_v & 0xff);
1199 
1200 		/* Can't deal with anything except IPv4 */
1201 		if ((ip->ip_hl_v & 0xf0) != 0x40)
1202 			return;
1203 		/* Can't deal with IP options (headers != 20 bytes) */
1204 		if ((ip->ip_hl_v & 0x0f) > 0x05)
1205 			return;
1206 		/* Check the Checksum of the header */
1207 		if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) {
1208 			debug("checksum bad\n");
1209 			return;
1210 		}
1211 		/* If it is not for us, ignore it */
1212 		dst_ip = net_read_ip(&ip->ip_dst);
1213 		if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr &&
1214 		    dst_ip.s_addr != 0xFFFFFFFF) {
1215 #ifdef CONFIG_MCAST_TFTP
1216 			if (net_mcast_addr != dst_ip)
1217 #endif
1218 				return;
1219 		}
1220 		/* Read source IP address for later use */
1221 		src_ip = net_read_ip(&ip->ip_src);
1222 		/*
1223 		 * The function returns the unchanged packet if it's not
1224 		 * a fragment, and either the complete packet or NULL if
1225 		 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL)
1226 		 */
1227 		ip = net_defragment(ip, &len);
1228 		if (!ip)
1229 			return;
1230 		/*
1231 		 * watch for ICMP host redirects
1232 		 *
1233 		 * There is no real handler code (yet). We just watch
1234 		 * for ICMP host redirect messages. In case anybody
1235 		 * sees these messages: please contact me
1236 		 * (wd@denx.de), or - even better - send me the
1237 		 * necessary fixes :-)
1238 		 *
1239 		 * Note: in all cases where I have seen this so far
1240 		 * it was a problem with the router configuration,
1241 		 * for instance when a router was configured in the
1242 		 * BOOTP reply, but the TFTP server was on the same
1243 		 * subnet. So this is probably a warning that your
1244 		 * configuration might be wrong. But I'm not really
1245 		 * sure if there aren't any other situations.
1246 		 *
1247 		 * Simon Glass <sjg@chromium.org>: We get an ICMP when
1248 		 * we send a tftp packet to a dead connection, or when
1249 		 * there is no server at the other end.
1250 		 */
1251 		if (ip->ip_p == IPPROTO_ICMP) {
1252 			receive_icmp(ip, len, src_ip, et);
1253 			return;
1254 		} else if (ip->ip_p != IPPROTO_UDP) {	/* Only UDP packets */
1255 			return;
1256 		}
1257 
1258 		debug_cond(DEBUG_DEV_PKT,
1259 			   "received UDP (to=%pI4, from=%pI4, len=%d)\n",
1260 			   &dst_ip, &src_ip, len);
1261 
1262 #ifdef CONFIG_UDP_CHECKSUM
1263 		if (ip->udp_xsum != 0) {
1264 			ulong   xsum;
1265 			ushort *sumptr;
1266 			ushort  sumlen;
1267 
1268 			xsum  = ip->ip_p;
1269 			xsum += (ntohs(ip->udp_len));
1270 			xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff;
1271 			xsum += (ntohl(ip->ip_src.s_addr) >>  0) & 0x0000ffff;
1272 			xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff;
1273 			xsum += (ntohl(ip->ip_dst.s_addr) >>  0) & 0x0000ffff;
1274 
1275 			sumlen = ntohs(ip->udp_len);
1276 			sumptr = (ushort *)&(ip->udp_src);
1277 
1278 			while (sumlen > 1) {
1279 				ushort sumdata;
1280 
1281 				sumdata = *sumptr++;
1282 				xsum += ntohs(sumdata);
1283 				sumlen -= 2;
1284 			}
1285 			if (sumlen > 0) {
1286 				ushort sumdata;
1287 
1288 				sumdata = *(unsigned char *)sumptr;
1289 				sumdata = (sumdata << 8) & 0xff00;
1290 				xsum += sumdata;
1291 			}
1292 			while ((xsum >> 16) != 0) {
1293 				xsum = (xsum & 0x0000ffff) +
1294 				       ((xsum >> 16) & 0x0000ffff);
1295 			}
1296 			if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) {
1297 				printf(" UDP wrong checksum %08lx %08x\n",
1298 				       xsum, ntohs(ip->udp_xsum));
1299 				return;
1300 			}
1301 		}
1302 #endif
1303 
1304 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
1305 		nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE,
1306 				src_ip,
1307 				ntohs(ip->udp_dst),
1308 				ntohs(ip->udp_src),
1309 				ntohs(ip->udp_len) - UDP_HDR_SIZE);
1310 #endif
1311 		/*
1312 		 * IP header OK.  Pass the packet to the current handler.
1313 		 */
1314 		(*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE,
1315 				      ntohs(ip->udp_dst),
1316 				      src_ip,
1317 				      ntohs(ip->udp_src),
1318 				      ntohs(ip->udp_len) - UDP_HDR_SIZE);
1319 		break;
1320 #ifdef CONFIG_CMD_WOL
1321 	case PROT_WOL:
1322 		wol_receive(ip, len);
1323 		break;
1324 #endif
1325 	}
1326 }
1327 
1328 /**********************************************************************/
1329 
1330 static int net_check_prereq(enum proto_t protocol)
1331 {
1332 	switch (protocol) {
1333 		/* Fall through */
1334 #if defined(CONFIG_CMD_PING)
1335 	case PING:
1336 		if (net_ping_ip.s_addr == 0) {
1337 			puts("*** ERROR: ping address not given\n");
1338 			return 1;
1339 		}
1340 		goto common;
1341 #endif
1342 #if defined(CONFIG_CMD_SNTP)
1343 	case SNTP:
1344 		if (net_ntp_server.s_addr == 0) {
1345 			puts("*** ERROR: NTP server address not given\n");
1346 			return 1;
1347 		}
1348 		goto common;
1349 #endif
1350 #if defined(CONFIG_CMD_DNS)
1351 	case DNS:
1352 		if (net_dns_server.s_addr == 0) {
1353 			puts("*** ERROR: DNS server address not given\n");
1354 			return 1;
1355 		}
1356 		goto common;
1357 #endif
1358 #if defined(CONFIG_CMD_NFS)
1359 	case NFS:
1360 #endif
1361 		/* Fall through */
1362 	case TFTPGET:
1363 	case TFTPPUT:
1364 		if (net_server_ip.s_addr == 0 && !is_serverip_in_cmd()) {
1365 			puts("*** ERROR: `serverip' not set\n");
1366 			return 1;
1367 		}
1368 #if	defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \
1369 	defined(CONFIG_CMD_DNS)
1370 common:
1371 #endif
1372 		/* Fall through */
1373 
1374 	case NETCONS:
1375 	case FASTBOOT:
1376 	case TFTPSRV:
1377 		if (net_ip.s_addr == 0) {
1378 			puts("*** ERROR: `ipaddr' not set\n");
1379 			return 1;
1380 		}
1381 		/* Fall through */
1382 
1383 #ifdef CONFIG_CMD_RARP
1384 	case RARP:
1385 #endif
1386 	case BOOTP:
1387 	case CDP:
1388 	case DHCP:
1389 	case LINKLOCAL:
1390 		if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) {
1391 			int num = eth_get_dev_index();
1392 
1393 			switch (num) {
1394 			case -1:
1395 				puts("*** ERROR: No ethernet found.\n");
1396 				return 1;
1397 			case 0:
1398 				puts("*** ERROR: `ethaddr' not set\n");
1399 				break;
1400 			default:
1401 				printf("*** ERROR: `eth%daddr' not set\n",
1402 				       num);
1403 				break;
1404 			}
1405 
1406 			net_start_again();
1407 			return 2;
1408 		}
1409 		/* Fall through */
1410 	default:
1411 		return 0;
1412 	}
1413 	return 0;		/* OK */
1414 }
1415 /**********************************************************************/
1416 
1417 int
1418 net_eth_hdr_size(void)
1419 {
1420 	ushort myvlanid;
1421 
1422 	myvlanid = ntohs(net_our_vlan);
1423 	if (myvlanid == (ushort)-1)
1424 		myvlanid = VLAN_NONE;
1425 
1426 	return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE :
1427 		VLAN_ETHER_HDR_SIZE;
1428 }
1429 
1430 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot)
1431 {
1432 	struct ethernet_hdr *et = (struct ethernet_hdr *)xet;
1433 	ushort myvlanid;
1434 
1435 	myvlanid = ntohs(net_our_vlan);
1436 	if (myvlanid == (ushort)-1)
1437 		myvlanid = VLAN_NONE;
1438 
1439 	memcpy(et->et_dest, dest_ethaddr, 6);
1440 	memcpy(et->et_src, net_ethaddr, 6);
1441 	if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) {
1442 		et->et_protlen = htons(prot);
1443 		return ETHER_HDR_SIZE;
1444 	} else {
1445 		struct vlan_ethernet_hdr *vet =
1446 			(struct vlan_ethernet_hdr *)xet;
1447 
1448 		vet->vet_vlan_type = htons(PROT_VLAN);
1449 		vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK));
1450 		vet->vet_type = htons(prot);
1451 		return VLAN_ETHER_HDR_SIZE;
1452 	}
1453 }
1454 
1455 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot)
1456 {
1457 	ushort protlen;
1458 
1459 	memcpy(et->et_dest, addr, 6);
1460 	memcpy(et->et_src, net_ethaddr, 6);
1461 	protlen = ntohs(et->et_protlen);
1462 	if (protlen == PROT_VLAN) {
1463 		struct vlan_ethernet_hdr *vet =
1464 			(struct vlan_ethernet_hdr *)et;
1465 		vet->vet_type = htons(prot);
1466 		return VLAN_ETHER_HDR_SIZE;
1467 	} else if (protlen > 1514) {
1468 		et->et_protlen = htons(prot);
1469 		return ETHER_HDR_SIZE;
1470 	} else {
1471 		/* 802.2 + SNAP */
1472 		struct e802_hdr *et802 = (struct e802_hdr *)et;
1473 		et802->et_prot = htons(prot);
1474 		return E802_HDR_SIZE;
1475 	}
1476 }
1477 
1478 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source)
1479 {
1480 	struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1481 
1482 	/*
1483 	 *	Construct an IP header.
1484 	 */
1485 	/* IP_HDR_SIZE / 4 (not including UDP) */
1486 	ip->ip_hl_v  = 0x45;
1487 	ip->ip_tos   = 0;
1488 	ip->ip_len   = htons(IP_HDR_SIZE);
1489 	ip->ip_id    = htons(net_ip_id++);
1490 	ip->ip_off   = htons(IP_FLAGS_DFRAG);	/* Don't fragment */
1491 	ip->ip_ttl   = 255;
1492 	ip->ip_sum   = 0;
1493 	/* already in network byte order */
1494 	net_copy_ip((void *)&ip->ip_src, &source);
1495 	/* already in network byte order */
1496 	net_copy_ip((void *)&ip->ip_dst, &dest);
1497 }
1498 
1499 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport,
1500 			int len)
1501 {
1502 	struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1503 
1504 	/*
1505 	 *	If the data is an odd number of bytes, zero the
1506 	 *	byte after the last byte so that the checksum
1507 	 *	will work.
1508 	 */
1509 	if (len & 1)
1510 		pkt[IP_UDP_HDR_SIZE + len] = 0;
1511 
1512 	net_set_ip_header(pkt, dest, net_ip);
1513 	ip->ip_len   = htons(IP_UDP_HDR_SIZE + len);
1514 	ip->ip_p     = IPPROTO_UDP;
1515 	ip->ip_sum   = compute_ip_checksum(ip, IP_HDR_SIZE);
1516 
1517 	ip->udp_src  = htons(sport);
1518 	ip->udp_dst  = htons(dport);
1519 	ip->udp_len  = htons(UDP_HDR_SIZE + len);
1520 	ip->udp_xsum = 0;
1521 }
1522 
1523 void copy_filename(char *dst, const char *src, int size)
1524 {
1525 	if (src && *src && (*src == '"')) {
1526 		++src;
1527 		--size;
1528 	}
1529 
1530 	while ((--size > 0) && src && *src && (*src != '"'))
1531 		*dst++ = *src++;
1532 	*dst = '\0';
1533 }
1534 
1535 int is_serverip_in_cmd(void)
1536 {
1537 	return !!strchr(net_boot_file_name, ':');
1538 }
1539 
1540 #if	defined(CONFIG_CMD_NFS)		|| \
1541 	defined(CONFIG_CMD_SNTP)	|| \
1542 	defined(CONFIG_CMD_DNS)
1543 /*
1544  * make port a little random (1024-17407)
1545  * This keeps the math somewhat trivial to compute, and seems to work with
1546  * all supported protocols/clients/servers
1547  */
1548 unsigned int random_port(void)
1549 {
1550 	return 1024 + (get_timer(0) % 0x4000);
1551 }
1552 #endif
1553 
1554 void ip_to_string(struct in_addr x, char *s)
1555 {
1556 	x.s_addr = ntohl(x.s_addr);
1557 	sprintf(s, "%d.%d.%d.%d",
1558 		(int) ((x.s_addr >> 24) & 0xff),
1559 		(int) ((x.s_addr >> 16) & 0xff),
1560 		(int) ((x.s_addr >> 8) & 0xff),
1561 		(int) ((x.s_addr >> 0) & 0xff)
1562 	);
1563 }
1564 
1565 void vlan_to_string(ushort x, char *s)
1566 {
1567 	x = ntohs(x);
1568 
1569 	if (x == (ushort)-1)
1570 		x = VLAN_NONE;
1571 
1572 	if (x == VLAN_NONE)
1573 		strcpy(s, "none");
1574 	else
1575 		sprintf(s, "%d", x & VLAN_IDMASK);
1576 }
1577 
1578 ushort string_to_vlan(const char *s)
1579 {
1580 	ushort id;
1581 
1582 	if (s == NULL)
1583 		return htons(VLAN_NONE);
1584 
1585 	if (*s < '0' || *s > '9')
1586 		id = VLAN_NONE;
1587 	else
1588 		id = (ushort)simple_strtoul(s, NULL, 10);
1589 
1590 	return htons(id);
1591 }
1592 
1593 ushort env_get_vlan(char *var)
1594 {
1595 	return string_to_vlan(env_get(var));
1596 }
1597