1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copied from Linux Monitor (LiMon) - Networking.
4 *
5 * Copyright 1994 - 2000 Neil Russell.
6 * (See License)
7 * Copyright 2000 Roland Borde
8 * Copyright 2000 Paolo Scaffardi
9 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de
10 */
11
12 /*
13 * General Desription:
14 *
15 * The user interface supports commands for BOOTP, RARP, and TFTP.
16 * Also, we support ARP internally. Depending on available data,
17 * these interact as follows:
18 *
19 * BOOTP:
20 *
21 * Prerequisites: - own ethernet address
22 * We want: - own IP address
23 * - TFTP server IP address
24 * - name of bootfile
25 * Next step: ARP
26 *
27 * LINK_LOCAL:
28 *
29 * Prerequisites: - own ethernet address
30 * We want: - own IP address
31 * Next step: ARP
32 *
33 * RARP:
34 *
35 * Prerequisites: - own ethernet address
36 * We want: - own IP address
37 * - TFTP server IP address
38 * Next step: ARP
39 *
40 * ARP:
41 *
42 * Prerequisites: - own ethernet address
43 * - own IP address
44 * - TFTP server IP address
45 * We want: - TFTP server ethernet address
46 * Next step: TFTP
47 *
48 * DHCP:
49 *
50 * Prerequisites: - own ethernet address
51 * We want: - IP, Netmask, ServerIP, Gateway IP
52 * - bootfilename, lease time
53 * Next step: - TFTP
54 *
55 * TFTP:
56 *
57 * Prerequisites: - own ethernet address
58 * - own IP address
59 * - TFTP server IP address
60 * - TFTP server ethernet address
61 * - name of bootfile (if unknown, we use a default name
62 * derived from our own IP address)
63 * We want: - load the boot file
64 * Next step: none
65 *
66 * NFS:
67 *
68 * Prerequisites: - own ethernet address
69 * - own IP address
70 * - name of bootfile (if unknown, we use a default name
71 * derived from our own IP address)
72 * We want: - load the boot file
73 * Next step: none
74 *
75 * SNTP:
76 *
77 * Prerequisites: - own ethernet address
78 * - own IP address
79 * We want: - network time
80 * Next step: none
81 *
82 * WOL:
83 *
84 * Prerequisites: - own ethernet address
85 * We want: - magic packet or timeout
86 * Next step: none
87 */
88
89
90 #include <common.h>
91 #include <command.h>
92 #include <console.h>
93 #include <environment.h>
94 #include <errno.h>
95 #include <net.h>
96 #include <net/fastboot.h>
97 #include <net/tftp.h>
98 #include <net/ncsi.h>
99 #if defined(CONFIG_LED_STATUS)
100 #include <miiphy.h>
101 #include <status_led.h>
102 #endif
103 #include <watchdog.h>
104 #include <linux/compiler.h>
105 #include "arp.h"
106 #include "bootp.h"
107 #include "cdp.h"
108 #if defined(CONFIG_CMD_DNS)
109 #include "dns.h"
110 #endif
111 #include "link_local.h"
112 #include "nfs.h"
113 #include "ping.h"
114 #include "rarp.h"
115 #if defined(CONFIG_CMD_SNTP)
116 #include "sntp.h"
117 #endif
118 #if defined(CONFIG_CMD_WOL)
119 #include "wol.h"
120 #endif
121
122 /** BOOTP EXTENTIONS **/
123
124 /* Our subnet mask (0=unknown) */
125 struct in_addr net_netmask;
126 /* Our gateways IP address */
127 struct in_addr net_gateway;
128 /* Our DNS IP address */
129 struct in_addr net_dns_server;
130 #if defined(CONFIG_BOOTP_DNS2)
131 /* Our 2nd DNS IP address */
132 struct in_addr net_dns_server2;
133 #endif
134
135 /** END OF BOOTP EXTENTIONS **/
136
137 /* Our ethernet address */
138 u8 net_ethaddr[6];
139 /* Boot server enet address */
140 u8 net_server_ethaddr[6];
141 /* Our IP addr (0 = unknown) */
142 struct in_addr net_ip;
143 /* Server IP addr (0 = unknown) */
144 struct in_addr net_server_ip;
145 /* Current receive packet */
146 uchar *net_rx_packet;
147 /* Current rx packet length */
148 int net_rx_packet_len;
149 /* IP packet ID */
150 static unsigned net_ip_id;
151 /* Ethernet bcast address */
152 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
153 const u8 net_null_ethaddr[6];
154 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
155 void (*push_packet)(void *, int len) = 0;
156 #endif
157 /* Network loop state */
158 enum net_loop_state net_state;
159 /* Tried all network devices */
160 int net_restart_wrap;
161 /* Network loop restarted */
162 static int net_restarted;
163 /* At least one device configured */
164 static int net_dev_exists;
165
166 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */
167 /* default is without VLAN */
168 ushort net_our_vlan = 0xFFFF;
169 /* ditto */
170 ushort net_native_vlan = 0xFFFF;
171
172 /* Boot File name */
173 char net_boot_file_name[1024];
174 /* Indicates whether the file name was specified on the command line */
175 bool net_boot_file_name_explicit;
176 /* The actual transferred size of the bootfile (in bytes) */
177 u32 net_boot_file_size;
178 /* Boot file size in blocks as reported by the DHCP server */
179 u32 net_boot_file_expected_size_in_blocks;
180
181 #if defined(CONFIG_CMD_SNTP)
182 /* NTP server IP address */
183 struct in_addr net_ntp_server;
184 /* offset time from UTC */
185 int net_ntp_time_offset;
186 #endif
187
188 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN];
189 /* Receive packets */
190 uchar *net_rx_packets[PKTBUFSRX];
191 /* Current UDP RX packet handler */
192 static rxhand_f *udp_packet_handler;
193 /* Current ARP RX packet handler */
194 static rxhand_f *arp_packet_handler;
195 #ifdef CONFIG_CMD_TFTPPUT
196 /* Current ICMP rx handler */
197 static rxhand_icmp_f *packet_icmp_handler;
198 #endif
199 /* Current timeout handler */
200 static thand_f *time_handler;
201 /* Time base value */
202 static ulong time_start;
203 /* Current timeout value */
204 static ulong time_delta;
205 /* THE transmit packet */
206 uchar *net_tx_packet;
207
208 static int net_check_prereq(enum proto_t protocol);
209
210 static int net_try_count;
211
212 int __maybe_unused net_busy_flag;
213
214 /**********************************************************************/
215
on_ipaddr(const char * name,const char * value,enum env_op op,int flags)216 static int on_ipaddr(const char *name, const char *value, enum env_op op,
217 int flags)
218 {
219 if (flags & H_PROGRAMMATIC)
220 return 0;
221
222 net_ip = string_to_ip(value);
223
224 return 0;
225 }
226 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr);
227
on_gatewayip(const char * name,const char * value,enum env_op op,int flags)228 static int on_gatewayip(const char *name, const char *value, enum env_op op,
229 int flags)
230 {
231 if (flags & H_PROGRAMMATIC)
232 return 0;
233
234 net_gateway = string_to_ip(value);
235
236 return 0;
237 }
238 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip);
239
on_netmask(const char * name,const char * value,enum env_op op,int flags)240 static int on_netmask(const char *name, const char *value, enum env_op op,
241 int flags)
242 {
243 if (flags & H_PROGRAMMATIC)
244 return 0;
245
246 net_netmask = string_to_ip(value);
247
248 return 0;
249 }
250 U_BOOT_ENV_CALLBACK(netmask, on_netmask);
251
on_serverip(const char * name,const char * value,enum env_op op,int flags)252 static int on_serverip(const char *name, const char *value, enum env_op op,
253 int flags)
254 {
255 if (flags & H_PROGRAMMATIC)
256 return 0;
257
258 net_server_ip = string_to_ip(value);
259
260 return 0;
261 }
262 U_BOOT_ENV_CALLBACK(serverip, on_serverip);
263
on_nvlan(const char * name,const char * value,enum env_op op,int flags)264 static int on_nvlan(const char *name, const char *value, enum env_op op,
265 int flags)
266 {
267 if (flags & H_PROGRAMMATIC)
268 return 0;
269
270 net_native_vlan = string_to_vlan(value);
271
272 return 0;
273 }
274 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan);
275
on_vlan(const char * name,const char * value,enum env_op op,int flags)276 static int on_vlan(const char *name, const char *value, enum env_op op,
277 int flags)
278 {
279 if (flags & H_PROGRAMMATIC)
280 return 0;
281
282 net_our_vlan = string_to_vlan(value);
283
284 return 0;
285 }
286 U_BOOT_ENV_CALLBACK(vlan, on_vlan);
287
288 #if defined(CONFIG_CMD_DNS)
on_dnsip(const char * name,const char * value,enum env_op op,int flags)289 static int on_dnsip(const char *name, const char *value, enum env_op op,
290 int flags)
291 {
292 if (flags & H_PROGRAMMATIC)
293 return 0;
294
295 net_dns_server = string_to_ip(value);
296
297 return 0;
298 }
299 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip);
300 #endif
301
302 /*
303 * Check if autoload is enabled. If so, use either NFS or TFTP to download
304 * the boot file.
305 */
net_auto_load(void)306 void net_auto_load(void)
307 {
308 #if defined(CONFIG_CMD_NFS)
309 const char *s = env_get("autoload");
310
311 if (s != NULL && strcmp(s, "NFS") == 0) {
312 if (net_check_prereq(NFS)) {
313 /* We aren't expecting to get a serverip, so just accept the assigned IP */
314 #ifdef CONFIG_BOOTP_SERVERIP
315 net_set_state(NETLOOP_SUCCESS);
316 #else
317 printf("Cannot autoload with NFS\n");
318 net_set_state(NETLOOP_FAIL);
319 #endif
320 return;
321 }
322 /*
323 * Use NFS to load the bootfile.
324 */
325 nfs_start();
326 return;
327 }
328 #endif
329 if (env_get_yesno("autoload") == 0) {
330 /*
331 * Just use BOOTP/RARP to configure system;
332 * Do not use TFTP to load the bootfile.
333 */
334 net_set_state(NETLOOP_SUCCESS);
335 return;
336 }
337 if (net_check_prereq(TFTPGET)) {
338 /* We aren't expecting to get a serverip, so just accept the assigned IP */
339 #ifdef CONFIG_BOOTP_SERVERIP
340 net_set_state(NETLOOP_SUCCESS);
341 #else
342 printf("Cannot autoload with TFTPGET\n");
343 net_set_state(NETLOOP_FAIL);
344 #endif
345 return;
346 }
347 tftp_start(TFTPGET);
348 }
349
net_init_loop(void)350 static void net_init_loop(void)
351 {
352 if (eth_get_dev())
353 memcpy(net_ethaddr, eth_get_ethaddr(), 6);
354
355 return;
356 }
357
net_clear_handlers(void)358 static void net_clear_handlers(void)
359 {
360 net_set_udp_handler(NULL);
361 net_set_arp_handler(NULL);
362 net_set_timeout_handler(0, NULL);
363 }
364
net_cleanup_loop(void)365 static void net_cleanup_loop(void)
366 {
367 net_clear_handlers();
368 }
369
net_init(void)370 void net_init(void)
371 {
372 static int first_call = 1;
373
374 if (first_call) {
375 /*
376 * Setup packet buffers, aligned correctly.
377 */
378 int i;
379
380 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1);
381 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN;
382 for (i = 0; i < PKTBUFSRX; i++) {
383 net_rx_packets[i] = net_tx_packet +
384 (i + 1) * PKTSIZE_ALIGN;
385 }
386 arp_init();
387 net_clear_handlers();
388
389 /* Only need to setup buffer pointers once. */
390 first_call = 0;
391 }
392
393 net_init_loop();
394 }
395
396 /**********************************************************************/
397 /*
398 * Main network processing loop.
399 */
400
net_loop(enum proto_t protocol)401 int net_loop(enum proto_t protocol)
402 {
403 int ret = -EINVAL;
404 enum net_loop_state prev_net_state = net_state;
405
406 net_restarted = 0;
407 net_dev_exists = 0;
408 net_try_count = 1;
409 debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n");
410
411 #ifdef CONFIG_PHY_NCSI
412 if (phy_interface_is_ncsi() && protocol != NCSI && !ncsi_active()) {
413 printf("Configuring NCSI\n");
414 if (net_loop(NCSI) < 0)
415 return ret;
416 eth_init_state_only();
417 goto restart;
418 }
419 #endif
420
421 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start");
422 net_init();
423 if (eth_is_on_demand_init() || protocol != NETCONS) {
424 eth_halt();
425 eth_set_current();
426 ret = eth_init();
427 if (ret < 0) {
428 eth_halt();
429 return ret;
430 }
431 } else {
432 eth_init_state_only();
433 }
434
435 restart:
436 #ifdef CONFIG_USB_KEYBOARD
437 net_busy_flag = 0;
438 #endif
439 net_set_state(NETLOOP_CONTINUE);
440
441 /*
442 * Start the ball rolling with the given start function. From
443 * here on, this code is a state machine driven by received
444 * packets and timer events.
445 */
446 debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n");
447 net_init_loop();
448
449 switch (net_check_prereq(protocol)) {
450 case 1:
451 /* network not configured */
452 eth_halt();
453 net_set_state(prev_net_state);
454 return -ENODEV;
455
456 case 2:
457 /* network device not configured */
458 break;
459
460 case 0:
461 net_dev_exists = 1;
462 net_boot_file_size = 0;
463 switch (protocol) {
464 case TFTPGET:
465 #ifdef CONFIG_CMD_TFTPPUT
466 case TFTPPUT:
467 #endif
468 /* always use ARP to get server ethernet address */
469 tftp_start(protocol);
470 break;
471 #ifdef CONFIG_CMD_TFTPSRV
472 case TFTPSRV:
473 tftp_start_server();
474 break;
475 #endif
476 #ifdef CONFIG_UDP_FUNCTION_FASTBOOT
477 case FASTBOOT:
478 fastboot_start_server();
479 break;
480 #endif
481 #if defined(CONFIG_CMD_DHCP)
482 case DHCP:
483 bootp_reset();
484 net_ip.s_addr = 0;
485 dhcp_request(); /* Basically same as BOOTP */
486 break;
487 #endif
488
489 case BOOTP:
490 bootp_reset();
491 net_ip.s_addr = 0;
492 bootp_request();
493 break;
494
495 #if defined(CONFIG_CMD_RARP)
496 case RARP:
497 rarp_try = 0;
498 net_ip.s_addr = 0;
499 rarp_request();
500 break;
501 #endif
502 #if defined(CONFIG_CMD_PING)
503 case PING:
504 ping_start();
505 break;
506 #endif
507 #if defined(CONFIG_CMD_NFS)
508 case NFS:
509 nfs_start();
510 break;
511 #endif
512 #if defined(CONFIG_CMD_CDP)
513 case CDP:
514 cdp_start();
515 break;
516 #endif
517 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
518 case NETCONS:
519 nc_start();
520 break;
521 #endif
522 #if defined(CONFIG_CMD_SNTP)
523 case SNTP:
524 sntp_start();
525 break;
526 #endif
527 #if defined(CONFIG_CMD_DNS)
528 case DNS:
529 dns_start();
530 break;
531 #endif
532 #if defined(CONFIG_CMD_LINK_LOCAL)
533 case LINKLOCAL:
534 link_local_start();
535 break;
536 #endif
537 #if defined(CONFIG_CMD_WOL)
538 case WOL:
539 wol_start();
540 break;
541 #endif
542 #if defined(CONFIG_CMD_NCSI)
543 case NCSI:
544 ncsi_probe_packages();
545 break;
546 #endif
547 default:
548 break;
549 }
550
551 break;
552 }
553
554 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
555 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
556 defined(CONFIG_LED_STATUS) && \
557 defined(CONFIG_LED_STATUS_RED)
558 /*
559 * Echo the inverted link state to the fault LED.
560 */
561 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR))
562 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_OFF);
563 else
564 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_ON);
565 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
566 #endif /* CONFIG_MII, ... */
567 #ifdef CONFIG_USB_KEYBOARD
568 net_busy_flag = 1;
569 #endif
570
571 /*
572 * Main packet reception loop. Loop receiving packets until
573 * someone sets `net_state' to a state that terminates.
574 */
575 for (;;) {
576 WATCHDOG_RESET();
577 #ifdef CONFIG_SHOW_ACTIVITY
578 show_activity(1);
579 #endif
580 if (arp_timeout_check() > 0)
581 time_start = get_timer(0);
582
583 /*
584 * Check the ethernet for a new packet. The ethernet
585 * receive routine will process it.
586 * Most drivers return the most recent packet size, but not
587 * errors that may have happened.
588 */
589 eth_rx();
590
591 /*
592 * Abort if ctrl-c was pressed.
593 */
594 if (ctrlc()) {
595 /* cancel any ARP that may not have completed */
596 net_arp_wait_packet_ip.s_addr = 0;
597
598 net_cleanup_loop();
599 eth_halt();
600 /* Invalidate the last protocol */
601 eth_set_last_protocol(BOOTP);
602
603 puts("\nAbort\n");
604 /* include a debug print as well incase the debug
605 messages are directed to stderr */
606 debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n");
607 ret = -EINTR;
608 goto done;
609 }
610
611 /*
612 * Check for a timeout, and run the timeout handler
613 * if we have one.
614 */
615 if (time_handler &&
616 ((get_timer(0) - time_start) > time_delta)) {
617 thand_f *x;
618
619 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
620 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
621 defined(CONFIG_LED_STATUS) && \
622 defined(CONFIG_LED_STATUS_RED)
623 /*
624 * Echo the inverted link state to the fault LED.
625 */
626 if (miiphy_link(eth_get_dev()->name,
627 CONFIG_SYS_FAULT_MII_ADDR))
628 status_led_set(CONFIG_LED_STATUS_RED,
629 CONFIG_LED_STATUS_OFF);
630 else
631 status_led_set(CONFIG_LED_STATUS_RED,
632 CONFIG_LED_STATUS_ON);
633 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
634 #endif /* CONFIG_MII, ... */
635 debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n");
636 x = time_handler;
637 time_handler = (thand_f *)0;
638 (*x)();
639 }
640
641 if (net_state == NETLOOP_FAIL)
642 ret = net_start_again();
643
644 switch (net_state) {
645 case NETLOOP_RESTART:
646 net_restarted = 1;
647 goto restart;
648
649 case NETLOOP_SUCCESS:
650 net_cleanup_loop();
651 if (net_boot_file_size > 0) {
652 printf("Bytes transferred = %d (%x hex)\n",
653 net_boot_file_size, net_boot_file_size);
654 env_set_hex("filesize", net_boot_file_size);
655 env_set_hex("fileaddr", load_addr);
656 }
657 if (protocol != NETCONS && protocol != NCSI)
658 eth_halt();
659 else
660 eth_halt_state_only();
661
662 eth_set_last_protocol(protocol);
663
664 ret = net_boot_file_size;
665 debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n");
666 goto done;
667
668 case NETLOOP_FAIL:
669 net_cleanup_loop();
670 /* Invalidate the last protocol */
671 eth_set_last_protocol(BOOTP);
672 debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n");
673 ret = -ENONET;
674 goto done;
675
676 case NETLOOP_CONTINUE:
677 continue;
678 }
679 }
680
681 done:
682 #ifdef CONFIG_USB_KEYBOARD
683 net_busy_flag = 0;
684 #endif
685 #ifdef CONFIG_CMD_TFTPPUT
686 /* Clear out the handlers */
687 net_set_udp_handler(NULL);
688 net_set_icmp_handler(NULL);
689 #endif
690 net_set_state(prev_net_state);
691 return ret;
692 }
693
694 /**********************************************************************/
695
start_again_timeout_handler(void)696 static void start_again_timeout_handler(void)
697 {
698 net_set_state(NETLOOP_RESTART);
699 }
700
net_start_again(void)701 int net_start_again(void)
702 {
703 char *nretry;
704 int retry_forever = 0;
705 unsigned long retrycnt = 0;
706 int ret;
707
708 nretry = env_get("netretry");
709 if (nretry) {
710 if (!strcmp(nretry, "yes"))
711 retry_forever = 1;
712 else if (!strcmp(nretry, "no"))
713 retrycnt = 0;
714 else if (!strcmp(nretry, "once"))
715 retrycnt = 1;
716 else
717 retrycnt = simple_strtoul(nretry, NULL, 0);
718 } else {
719 retrycnt = 0;
720 retry_forever = 0;
721 }
722
723 if ((!retry_forever) && (net_try_count > retrycnt)) {
724 eth_halt();
725 net_set_state(NETLOOP_FAIL);
726 /*
727 * We don't provide a way for the protocol to return an error,
728 * but this is almost always the reason.
729 */
730 return -ETIMEDOUT;
731 }
732
733 net_try_count++;
734
735 eth_halt();
736 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER)
737 eth_try_another(!net_restarted);
738 #endif
739 ret = eth_init();
740 if (net_restart_wrap) {
741 net_restart_wrap = 0;
742 if (net_dev_exists) {
743 net_set_timeout_handler(10000UL,
744 start_again_timeout_handler);
745 net_set_udp_handler(NULL);
746 } else {
747 net_set_state(NETLOOP_FAIL);
748 }
749 } else {
750 net_set_state(NETLOOP_RESTART);
751 }
752 return ret;
753 }
754
755 /**********************************************************************/
756 /*
757 * Miscelaneous bits.
758 */
759
dummy_handler(uchar * pkt,unsigned dport,struct in_addr sip,unsigned sport,unsigned len)760 static void dummy_handler(uchar *pkt, unsigned dport,
761 struct in_addr sip, unsigned sport,
762 unsigned len)
763 {
764 }
765
net_get_udp_handler(void)766 rxhand_f *net_get_udp_handler(void)
767 {
768 return udp_packet_handler;
769 }
770
net_set_udp_handler(rxhand_f * f)771 void net_set_udp_handler(rxhand_f *f)
772 {
773 debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f);
774 if (f == NULL)
775 udp_packet_handler = dummy_handler;
776 else
777 udp_packet_handler = f;
778 }
779
net_get_arp_handler(void)780 rxhand_f *net_get_arp_handler(void)
781 {
782 return arp_packet_handler;
783 }
784
net_set_arp_handler(rxhand_f * f)785 void net_set_arp_handler(rxhand_f *f)
786 {
787 debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f);
788 if (f == NULL)
789 arp_packet_handler = dummy_handler;
790 else
791 arp_packet_handler = f;
792 }
793
794 #ifdef CONFIG_CMD_TFTPPUT
net_set_icmp_handler(rxhand_icmp_f * f)795 void net_set_icmp_handler(rxhand_icmp_f *f)
796 {
797 packet_icmp_handler = f;
798 }
799 #endif
800
net_set_timeout_handler(ulong iv,thand_f * f)801 void net_set_timeout_handler(ulong iv, thand_f *f)
802 {
803 if (iv == 0) {
804 debug_cond(DEBUG_INT_STATE,
805 "--- net_loop timeout handler cancelled\n");
806 time_handler = (thand_f *)0;
807 } else {
808 debug_cond(DEBUG_INT_STATE,
809 "--- net_loop timeout handler set (%p)\n", f);
810 time_handler = f;
811 time_start = get_timer(0);
812 time_delta = iv * CONFIG_SYS_HZ / 1000;
813 }
814 }
815
net_get_async_tx_pkt_buf(void)816 uchar *net_get_async_tx_pkt_buf(void)
817 {
818 if (arp_is_waiting())
819 return arp_tx_packet; /* If we are waiting, we already sent */
820 else
821 return net_tx_packet;
822 }
823
net_send_udp_packet(uchar * ether,struct in_addr dest,int dport,int sport,int payload_len)824 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport,
825 int payload_len)
826 {
827 return net_send_ip_packet(ether, dest, dport, sport, payload_len,
828 IPPROTO_UDP, 0, 0, 0);
829 }
830
net_send_ip_packet(uchar * ether,struct in_addr dest,int dport,int sport,int payload_len,int proto,u8 action,u32 tcp_seq_num,u32 tcp_ack_num)831 int net_send_ip_packet(uchar *ether, struct in_addr dest, int dport, int sport,
832 int payload_len, int proto, u8 action, u32 tcp_seq_num,
833 u32 tcp_ack_num)
834 {
835 uchar *pkt;
836 int eth_hdr_size;
837 int pkt_hdr_size;
838
839 /* make sure the net_tx_packet is initialized (net_init() was called) */
840 assert(net_tx_packet != NULL);
841 if (net_tx_packet == NULL)
842 return -1;
843
844 /* convert to new style broadcast */
845 if (dest.s_addr == 0)
846 dest.s_addr = 0xFFFFFFFF;
847
848 /* if broadcast, make the ether address a broadcast and don't do ARP */
849 if (dest.s_addr == 0xFFFFFFFF)
850 ether = (uchar *)net_bcast_ethaddr;
851
852 pkt = (uchar *)net_tx_packet;
853
854 eth_hdr_size = net_set_ether(pkt, ether, PROT_IP);
855
856 switch (proto) {
857 case IPPROTO_UDP:
858 net_set_udp_header(pkt + eth_hdr_size, dest, dport, sport,
859 payload_len);
860 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE;
861 break;
862 default:
863 return -EINVAL;
864 }
865
866 /* if MAC address was not discovered yet, do an ARP request */
867 if (memcmp(ether, net_null_ethaddr, 6) == 0) {
868 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest);
869
870 /* save the ip and eth addr for the packet to send after arp */
871 net_arp_wait_packet_ip = dest;
872 arp_wait_packet_ethaddr = ether;
873
874 /* size of the waiting packet */
875 arp_wait_tx_packet_size = pkt_hdr_size + payload_len;
876
877 /* and do the ARP request */
878 arp_wait_try = 1;
879 arp_wait_timer_start = get_timer(0);
880 arp_request();
881 return 1; /* waiting */
882 } else {
883 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n",
884 &dest, ether);
885 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len);
886 return 0; /* transmitted */
887 }
888 }
889
890 #ifdef CONFIG_IP_DEFRAG
891 /*
892 * This function collects fragments in a single packet, according
893 * to the algorithm in RFC815. It returns NULL or the pointer to
894 * a complete packet, in static storage
895 */
896 #ifndef CONFIG_NET_MAXDEFRAG
897 #define CONFIG_NET_MAXDEFRAG 16384
898 #endif
899 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG)
900
901 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE)
902
903 /*
904 * this is the packet being assembled, either data or frag control.
905 * Fragments go by 8 bytes, so this union must be 8 bytes long
906 */
907 struct hole {
908 /* first_byte is address of this structure */
909 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */
910 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */
911 u16 prev_hole; /* index of prev, 0 == none */
912 u16 unused;
913 };
914
__net_defragment(struct ip_udp_hdr * ip,int * lenp)915 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp)
916 {
917 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN);
918 static u16 first_hole, total_len;
919 struct hole *payload, *thisfrag, *h, *newh;
920 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff;
921 uchar *indata = (uchar *)ip;
922 int offset8, start, len, done = 0;
923 u16 ip_off = ntohs(ip->ip_off);
924
925 /* payload starts after IP header, this fragment is in there */
926 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE);
927 offset8 = (ip_off & IP_OFFS);
928 thisfrag = payload + offset8;
929 start = offset8 * 8;
930 len = ntohs(ip->ip_len) - IP_HDR_SIZE;
931
932 if (start + len > IP_MAXUDP) /* fragment extends too far */
933 return NULL;
934
935 if (!total_len || localip->ip_id != ip->ip_id) {
936 /* new (or different) packet, reset structs */
937 total_len = 0xffff;
938 payload[0].last_byte = ~0;
939 payload[0].next_hole = 0;
940 payload[0].prev_hole = 0;
941 first_hole = 0;
942 /* any IP header will work, copy the first we received */
943 memcpy(localip, ip, IP_HDR_SIZE);
944 }
945
946 /*
947 * What follows is the reassembly algorithm. We use the payload
948 * array as a linked list of hole descriptors, as each hole starts
949 * at a multiple of 8 bytes. However, last byte can be whatever value,
950 * so it is represented as byte count, not as 8-byte blocks.
951 */
952
953 h = payload + first_hole;
954 while (h->last_byte < start) {
955 if (!h->next_hole) {
956 /* no hole that far away */
957 return NULL;
958 }
959 h = payload + h->next_hole;
960 }
961
962 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */
963 if (offset8 + ((len + 7) / 8) <= h - payload) {
964 /* no overlap with holes (dup fragment?) */
965 return NULL;
966 }
967
968 if (!(ip_off & IP_FLAGS_MFRAG)) {
969 /* no more fragmentss: truncate this (last) hole */
970 total_len = start + len;
971 h->last_byte = start + len;
972 }
973
974 /*
975 * There is some overlap: fix the hole list. This code doesn't
976 * deal with a fragment that overlaps with two different holes
977 * (thus being a superset of a previously-received fragment).
978 */
979
980 if ((h >= thisfrag) && (h->last_byte <= start + len)) {
981 /* complete overlap with hole: remove hole */
982 if (!h->prev_hole && !h->next_hole) {
983 /* last remaining hole */
984 done = 1;
985 } else if (!h->prev_hole) {
986 /* first hole */
987 first_hole = h->next_hole;
988 payload[h->next_hole].prev_hole = 0;
989 } else if (!h->next_hole) {
990 /* last hole */
991 payload[h->prev_hole].next_hole = 0;
992 } else {
993 /* in the middle of the list */
994 payload[h->next_hole].prev_hole = h->prev_hole;
995 payload[h->prev_hole].next_hole = h->next_hole;
996 }
997
998 } else if (h->last_byte <= start + len) {
999 /* overlaps with final part of the hole: shorten this hole */
1000 h->last_byte = start;
1001
1002 } else if (h >= thisfrag) {
1003 /* overlaps with initial part of the hole: move this hole */
1004 newh = thisfrag + (len / 8);
1005 *newh = *h;
1006 h = newh;
1007 if (h->next_hole)
1008 payload[h->next_hole].prev_hole = (h - payload);
1009 if (h->prev_hole)
1010 payload[h->prev_hole].next_hole = (h - payload);
1011 else
1012 first_hole = (h - payload);
1013
1014 } else {
1015 /* fragment sits in the middle: split the hole */
1016 newh = thisfrag + (len / 8);
1017 *newh = *h;
1018 h->last_byte = start;
1019 h->next_hole = (newh - payload);
1020 newh->prev_hole = (h - payload);
1021 if (newh->next_hole)
1022 payload[newh->next_hole].prev_hole = (newh - payload);
1023 }
1024
1025 /* finally copy this fragment and possibly return whole packet */
1026 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len);
1027 if (!done)
1028 return NULL;
1029
1030 localip->ip_len = htons(total_len);
1031 *lenp = total_len + IP_HDR_SIZE;
1032 return localip;
1033 }
1034
net_defragment(struct ip_udp_hdr * ip,int * lenp)1035 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
1036 int *lenp)
1037 {
1038 u16 ip_off = ntohs(ip->ip_off);
1039 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
1040 return ip; /* not a fragment */
1041 return __net_defragment(ip, lenp);
1042 }
1043
1044 #else /* !CONFIG_IP_DEFRAG */
1045
net_defragment(struct ip_udp_hdr * ip,int * lenp)1046 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
1047 int *lenp)
1048 {
1049 u16 ip_off = ntohs(ip->ip_off);
1050 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
1051 return ip; /* not a fragment */
1052 return NULL;
1053 }
1054 #endif
1055
1056 /**
1057 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently
1058 * drop others.
1059 *
1060 * @parma ip IP packet containing the ICMP
1061 */
receive_icmp(struct ip_udp_hdr * ip,int len,struct in_addr src_ip,struct ethernet_hdr * et)1062 static void receive_icmp(struct ip_udp_hdr *ip, int len,
1063 struct in_addr src_ip, struct ethernet_hdr *et)
1064 {
1065 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src;
1066
1067 switch (icmph->type) {
1068 case ICMP_REDIRECT:
1069 if (icmph->code != ICMP_REDIR_HOST)
1070 return;
1071 printf(" ICMP Host Redirect to %pI4 ",
1072 &icmph->un.gateway);
1073 break;
1074 default:
1075 #if defined(CONFIG_CMD_PING)
1076 ping_receive(et, ip, len);
1077 #endif
1078 #ifdef CONFIG_CMD_TFTPPUT
1079 if (packet_icmp_handler)
1080 packet_icmp_handler(icmph->type, icmph->code,
1081 ntohs(ip->udp_dst), src_ip,
1082 ntohs(ip->udp_src), icmph->un.data,
1083 ntohs(ip->udp_len));
1084 #endif
1085 break;
1086 }
1087 }
1088
net_process_received_packet(uchar * in_packet,int len)1089 void net_process_received_packet(uchar *in_packet, int len)
1090 {
1091 struct ethernet_hdr *et;
1092 struct ip_udp_hdr *ip;
1093 struct in_addr dst_ip;
1094 struct in_addr src_ip;
1095 int eth_proto;
1096 #if defined(CONFIG_CMD_CDP)
1097 int iscdp;
1098 #endif
1099 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid;
1100
1101 debug_cond(DEBUG_NET_PKT, "packet received\n");
1102
1103 net_rx_packet = in_packet;
1104 net_rx_packet_len = len;
1105 et = (struct ethernet_hdr *)in_packet;
1106
1107 /* too small packet? */
1108 if (len < ETHER_HDR_SIZE)
1109 return;
1110
1111 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
1112 if (push_packet) {
1113 (*push_packet)(in_packet, len);
1114 return;
1115 }
1116 #endif
1117
1118 #if defined(CONFIG_CMD_CDP)
1119 /* keep track if packet is CDP */
1120 iscdp = is_cdp_packet(et->et_dest);
1121 #endif
1122
1123 myvlanid = ntohs(net_our_vlan);
1124 if (myvlanid == (ushort)-1)
1125 myvlanid = VLAN_NONE;
1126 mynvlanid = ntohs(net_native_vlan);
1127 if (mynvlanid == (ushort)-1)
1128 mynvlanid = VLAN_NONE;
1129
1130 eth_proto = ntohs(et->et_protlen);
1131
1132 if (eth_proto < 1514) {
1133 struct e802_hdr *et802 = (struct e802_hdr *)et;
1134 /*
1135 * Got a 802.2 packet. Check the other protocol field.
1136 * XXX VLAN over 802.2+SNAP not implemented!
1137 */
1138 eth_proto = ntohs(et802->et_prot);
1139
1140 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE);
1141 len -= E802_HDR_SIZE;
1142
1143 } else if (eth_proto != PROT_VLAN) { /* normal packet */
1144 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE);
1145 len -= ETHER_HDR_SIZE;
1146
1147 } else { /* VLAN packet */
1148 struct vlan_ethernet_hdr *vet =
1149 (struct vlan_ethernet_hdr *)et;
1150
1151 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n");
1152
1153 /* too small packet? */
1154 if (len < VLAN_ETHER_HDR_SIZE)
1155 return;
1156
1157 /* if no VLAN active */
1158 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE
1159 #if defined(CONFIG_CMD_CDP)
1160 && iscdp == 0
1161 #endif
1162 )
1163 return;
1164
1165 cti = ntohs(vet->vet_tag);
1166 vlanid = cti & VLAN_IDMASK;
1167 eth_proto = ntohs(vet->vet_type);
1168
1169 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE);
1170 len -= VLAN_ETHER_HDR_SIZE;
1171 }
1172
1173 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto);
1174
1175 #if defined(CONFIG_CMD_CDP)
1176 if (iscdp) {
1177 cdp_receive((uchar *)ip, len);
1178 return;
1179 }
1180 #endif
1181
1182 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) {
1183 if (vlanid == VLAN_NONE)
1184 vlanid = (mynvlanid & VLAN_IDMASK);
1185 /* not matched? */
1186 if (vlanid != (myvlanid & VLAN_IDMASK))
1187 return;
1188 }
1189
1190 switch (eth_proto) {
1191 case PROT_ARP:
1192 arp_receive(et, ip, len);
1193 break;
1194
1195 #ifdef CONFIG_CMD_RARP
1196 case PROT_RARP:
1197 rarp_receive(ip, len);
1198 break;
1199 #endif
1200 case PROT_IP:
1201 debug_cond(DEBUG_NET_PKT, "Got IP\n");
1202 /* Before we start poking the header, make sure it is there */
1203 if (len < IP_UDP_HDR_SIZE) {
1204 debug("len bad %d < %lu\n", len,
1205 (ulong)IP_UDP_HDR_SIZE);
1206 return;
1207 }
1208 /* Check the packet length */
1209 if (len < ntohs(ip->ip_len)) {
1210 debug("len bad %d < %d\n", len, ntohs(ip->ip_len));
1211 return;
1212 }
1213 len = ntohs(ip->ip_len);
1214 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n",
1215 len, ip->ip_hl_v & 0xff);
1216
1217 /* Can't deal with anything except IPv4 */
1218 if ((ip->ip_hl_v & 0xf0) != 0x40)
1219 return;
1220 /* Can't deal with IP options (headers != 20 bytes) */
1221 if ((ip->ip_hl_v & 0x0f) > 0x05)
1222 return;
1223 /* Check the Checksum of the header */
1224 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) {
1225 debug("checksum bad\n");
1226 return;
1227 }
1228 /* If it is not for us, ignore it */
1229 dst_ip = net_read_ip(&ip->ip_dst);
1230 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr &&
1231 dst_ip.s_addr != 0xFFFFFFFF) {
1232 return;
1233 }
1234 /* Read source IP address for later use */
1235 src_ip = net_read_ip(&ip->ip_src);
1236 /*
1237 * The function returns the unchanged packet if it's not
1238 * a fragment, and either the complete packet or NULL if
1239 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL)
1240 */
1241 ip = net_defragment(ip, &len);
1242 if (!ip)
1243 return;
1244 /*
1245 * watch for ICMP host redirects
1246 *
1247 * There is no real handler code (yet). We just watch
1248 * for ICMP host redirect messages. In case anybody
1249 * sees these messages: please contact me
1250 * (wd@denx.de), or - even better - send me the
1251 * necessary fixes :-)
1252 *
1253 * Note: in all cases where I have seen this so far
1254 * it was a problem with the router configuration,
1255 * for instance when a router was configured in the
1256 * BOOTP reply, but the TFTP server was on the same
1257 * subnet. So this is probably a warning that your
1258 * configuration might be wrong. But I'm not really
1259 * sure if there aren't any other situations.
1260 *
1261 * Simon Glass <sjg@chromium.org>: We get an ICMP when
1262 * we send a tftp packet to a dead connection, or when
1263 * there is no server at the other end.
1264 */
1265 if (ip->ip_p == IPPROTO_ICMP) {
1266 receive_icmp(ip, len, src_ip, et);
1267 return;
1268 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */
1269 return;
1270 }
1271
1272 if (ntohs(ip->udp_len) < UDP_HDR_SIZE || ntohs(ip->udp_len) > ntohs(ip->ip_len))
1273 return;
1274
1275 debug_cond(DEBUG_DEV_PKT,
1276 "received UDP (to=%pI4, from=%pI4, len=%d)\n",
1277 &dst_ip, &src_ip, len);
1278
1279 #ifdef CONFIG_UDP_CHECKSUM
1280 if (ip->udp_xsum != 0) {
1281 ulong xsum;
1282 ushort *sumptr;
1283 ushort sumlen;
1284
1285 xsum = ip->ip_p;
1286 xsum += (ntohs(ip->udp_len));
1287 xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff;
1288 xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff;
1289 xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff;
1290 xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff;
1291
1292 sumlen = ntohs(ip->udp_len);
1293 sumptr = (ushort *)&(ip->udp_src);
1294
1295 while (sumlen > 1) {
1296 ushort sumdata;
1297
1298 sumdata = *sumptr++;
1299 xsum += ntohs(sumdata);
1300 sumlen -= 2;
1301 }
1302 if (sumlen > 0) {
1303 ushort sumdata;
1304
1305 sumdata = *(unsigned char *)sumptr;
1306 sumdata = (sumdata << 8) & 0xff00;
1307 xsum += sumdata;
1308 }
1309 while ((xsum >> 16) != 0) {
1310 xsum = (xsum & 0x0000ffff) +
1311 ((xsum >> 16) & 0x0000ffff);
1312 }
1313 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) {
1314 printf(" UDP wrong checksum %08lx %08x\n",
1315 xsum, ntohs(ip->udp_xsum));
1316 return;
1317 }
1318 }
1319 #endif
1320
1321 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
1322 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE,
1323 src_ip,
1324 ntohs(ip->udp_dst),
1325 ntohs(ip->udp_src),
1326 ntohs(ip->udp_len) - UDP_HDR_SIZE);
1327 #endif
1328 /*
1329 * IP header OK. Pass the packet to the current handler.
1330 */
1331 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE,
1332 ntohs(ip->udp_dst),
1333 src_ip,
1334 ntohs(ip->udp_src),
1335 ntohs(ip->udp_len) - UDP_HDR_SIZE);
1336 break;
1337 #ifdef CONFIG_CMD_WOL
1338 case PROT_WOL:
1339 wol_receive(ip, len);
1340 break;
1341 #endif
1342 #ifdef CONFIG_PHY_NCSI
1343 case PROT_NCSI:
1344 ncsi_receive(et, ip, len);
1345 break;
1346 #endif
1347 }
1348 }
1349
1350 /**********************************************************************/
1351
net_check_prereq(enum proto_t protocol)1352 static int net_check_prereq(enum proto_t protocol)
1353 {
1354 switch (protocol) {
1355 /* Fall through */
1356 #if defined(CONFIG_CMD_PING)
1357 case PING:
1358 if (net_ping_ip.s_addr == 0) {
1359 puts("*** ERROR: ping address not given\n");
1360 return 1;
1361 }
1362 goto common;
1363 #endif
1364 #if defined(CONFIG_CMD_SNTP)
1365 case SNTP:
1366 if (net_ntp_server.s_addr == 0) {
1367 puts("*** ERROR: NTP server address not given\n");
1368 return 1;
1369 }
1370 goto common;
1371 #endif
1372 #if defined(CONFIG_CMD_DNS)
1373 case DNS:
1374 if (net_dns_server.s_addr == 0) {
1375 puts("*** ERROR: DNS server address not given\n");
1376 return 1;
1377 }
1378 goto common;
1379 #endif
1380 #if defined(CONFIG_CMD_NFS)
1381 case NFS:
1382 #endif
1383 /* Fall through */
1384 case TFTPGET:
1385 case TFTPPUT:
1386 if (net_server_ip.s_addr == 0 && !is_serverip_in_cmd()) {
1387 puts("*** ERROR: `serverip' not set\n");
1388 return 1;
1389 }
1390 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \
1391 defined(CONFIG_CMD_DNS)
1392 common:
1393 #endif
1394 /* Fall through */
1395
1396 case NETCONS:
1397 case FASTBOOT:
1398 case TFTPSRV:
1399 if (net_ip.s_addr == 0) {
1400 puts("*** ERROR: `ipaddr' not set\n");
1401 return 1;
1402 }
1403 /* Fall through */
1404
1405 #ifdef CONFIG_CMD_RARP
1406 case RARP:
1407 #endif
1408 #ifdef CONFIG_CMD_NCSI
1409 case NCSI:
1410 #endif
1411 case BOOTP:
1412 case CDP:
1413 case DHCP:
1414 case LINKLOCAL:
1415 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) {
1416 int num = eth_get_dev_index();
1417
1418 switch (num) {
1419 case -1:
1420 puts("*** ERROR: No ethernet found.\n");
1421 return 1;
1422 case 0:
1423 puts("*** ERROR: `ethaddr' not set\n");
1424 break;
1425 default:
1426 printf("*** ERROR: `eth%daddr' not set\n",
1427 num);
1428 break;
1429 }
1430
1431 net_start_again();
1432 return 2;
1433 }
1434 /* Fall through */
1435 default:
1436 return 0;
1437 }
1438 return 0; /* OK */
1439 }
1440 /**********************************************************************/
1441
1442 int
net_eth_hdr_size(void)1443 net_eth_hdr_size(void)
1444 {
1445 ushort myvlanid;
1446
1447 myvlanid = ntohs(net_our_vlan);
1448 if (myvlanid == (ushort)-1)
1449 myvlanid = VLAN_NONE;
1450
1451 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE :
1452 VLAN_ETHER_HDR_SIZE;
1453 }
1454
net_set_ether(uchar * xet,const uchar * dest_ethaddr,uint prot)1455 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot)
1456 {
1457 struct ethernet_hdr *et = (struct ethernet_hdr *)xet;
1458 ushort myvlanid;
1459
1460 myvlanid = ntohs(net_our_vlan);
1461 if (myvlanid == (ushort)-1)
1462 myvlanid = VLAN_NONE;
1463
1464 memcpy(et->et_dest, dest_ethaddr, 6);
1465 memcpy(et->et_src, net_ethaddr, 6);
1466 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) {
1467 et->et_protlen = htons(prot);
1468 return ETHER_HDR_SIZE;
1469 } else {
1470 struct vlan_ethernet_hdr *vet =
1471 (struct vlan_ethernet_hdr *)xet;
1472
1473 vet->vet_vlan_type = htons(PROT_VLAN);
1474 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK));
1475 vet->vet_type = htons(prot);
1476 return VLAN_ETHER_HDR_SIZE;
1477 }
1478 }
1479
net_update_ether(struct ethernet_hdr * et,uchar * addr,uint prot)1480 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot)
1481 {
1482 ushort protlen;
1483
1484 memcpy(et->et_dest, addr, 6);
1485 memcpy(et->et_src, net_ethaddr, 6);
1486 protlen = ntohs(et->et_protlen);
1487 if (protlen == PROT_VLAN) {
1488 struct vlan_ethernet_hdr *vet =
1489 (struct vlan_ethernet_hdr *)et;
1490 vet->vet_type = htons(prot);
1491 return VLAN_ETHER_HDR_SIZE;
1492 } else if (protlen > 1514) {
1493 et->et_protlen = htons(prot);
1494 return ETHER_HDR_SIZE;
1495 } else {
1496 /* 802.2 + SNAP */
1497 struct e802_hdr *et802 = (struct e802_hdr *)et;
1498 et802->et_prot = htons(prot);
1499 return E802_HDR_SIZE;
1500 }
1501 }
1502
net_set_ip_header(uchar * pkt,struct in_addr dest,struct in_addr source,u16 pkt_len,u8 proto)1503 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source,
1504 u16 pkt_len, u8 proto)
1505 {
1506 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1507
1508 /*
1509 * Construct an IP header.
1510 */
1511 /* IP_HDR_SIZE / 4 (not including UDP) */
1512 ip->ip_hl_v = 0x45;
1513 ip->ip_tos = 0;
1514 ip->ip_len = htons(pkt_len);
1515 ip->ip_p = proto;
1516 ip->ip_id = htons(net_ip_id++);
1517 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */
1518 ip->ip_ttl = 255;
1519 ip->ip_sum = 0;
1520 /* already in network byte order */
1521 net_copy_ip((void *)&ip->ip_src, &source);
1522 /* already in network byte order */
1523 net_copy_ip((void *)&ip->ip_dst, &dest);
1524
1525 ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE);
1526 }
1527
net_set_udp_header(uchar * pkt,struct in_addr dest,int dport,int sport,int len)1528 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport,
1529 int len)
1530 {
1531 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1532
1533 /*
1534 * If the data is an odd number of bytes, zero the
1535 * byte after the last byte so that the checksum
1536 * will work.
1537 */
1538 if (len & 1)
1539 pkt[IP_UDP_HDR_SIZE + len] = 0;
1540
1541 net_set_ip_header(pkt, dest, net_ip, IP_UDP_HDR_SIZE + len,
1542 IPPROTO_UDP);
1543
1544 ip->udp_src = htons(sport);
1545 ip->udp_dst = htons(dport);
1546 ip->udp_len = htons(UDP_HDR_SIZE + len);
1547 ip->udp_xsum = 0;
1548 }
1549
copy_filename(char * dst,const char * src,int size)1550 void copy_filename(char *dst, const char *src, int size)
1551 {
1552 if (src && *src && (*src == '"')) {
1553 ++src;
1554 --size;
1555 }
1556
1557 while ((--size > 0) && src && *src && (*src != '"'))
1558 *dst++ = *src++;
1559 *dst = '\0';
1560 }
1561
is_serverip_in_cmd(void)1562 int is_serverip_in_cmd(void)
1563 {
1564 return !!strchr(net_boot_file_name, ':');
1565 }
1566
net_parse_bootfile(struct in_addr * ipaddr,char * filename,int max_len)1567 int net_parse_bootfile(struct in_addr *ipaddr, char *filename, int max_len)
1568 {
1569 char *colon;
1570
1571 if (net_boot_file_name[0] == '\0')
1572 return 0;
1573
1574 colon = strchr(net_boot_file_name, ':');
1575 if (colon) {
1576 if (ipaddr)
1577 *ipaddr = string_to_ip(net_boot_file_name);
1578 strncpy(filename, colon + 1, max_len);
1579 } else {
1580 strncpy(filename, net_boot_file_name, max_len);
1581 }
1582 filename[max_len - 1] = '\0';
1583
1584 return 1;
1585 }
1586
1587 #if defined(CONFIG_CMD_NFS) || \
1588 defined(CONFIG_CMD_SNTP) || \
1589 defined(CONFIG_CMD_DNS)
1590 /*
1591 * make port a little random (1024-17407)
1592 * This keeps the math somewhat trivial to compute, and seems to work with
1593 * all supported protocols/clients/servers
1594 */
random_port(void)1595 unsigned int random_port(void)
1596 {
1597 return 1024 + (get_timer(0) % 0x4000);
1598 }
1599 #endif
1600
ip_to_string(struct in_addr x,char * s)1601 void ip_to_string(struct in_addr x, char *s)
1602 {
1603 x.s_addr = ntohl(x.s_addr);
1604 sprintf(s, "%d.%d.%d.%d",
1605 (int) ((x.s_addr >> 24) & 0xff),
1606 (int) ((x.s_addr >> 16) & 0xff),
1607 (int) ((x.s_addr >> 8) & 0xff),
1608 (int) ((x.s_addr >> 0) & 0xff)
1609 );
1610 }
1611
vlan_to_string(ushort x,char * s)1612 void vlan_to_string(ushort x, char *s)
1613 {
1614 x = ntohs(x);
1615
1616 if (x == (ushort)-1)
1617 x = VLAN_NONE;
1618
1619 if (x == VLAN_NONE)
1620 strcpy(s, "none");
1621 else
1622 sprintf(s, "%d", x & VLAN_IDMASK);
1623 }
1624
string_to_vlan(const char * s)1625 ushort string_to_vlan(const char *s)
1626 {
1627 ushort id;
1628
1629 if (s == NULL)
1630 return htons(VLAN_NONE);
1631
1632 if (*s < '0' || *s > '9')
1633 id = VLAN_NONE;
1634 else
1635 id = (ushort)simple_strtoul(s, NULL, 10);
1636
1637 return htons(id);
1638 }
1639
env_get_vlan(char * var)1640 ushort env_get_vlan(char *var)
1641 {
1642 return string_to_vlan(env_get(var));
1643 }
1644