xref: /openbmc/u-boot/lib/zlib/trees.c (revision 04ab29ab257598b0e33785c075c9163ea090e6b7)
1 /* trees.c -- output deflated data using Huffman coding
2  * Copyright (C) 1995-2010 Jean-loup Gailly
3  * detect_data_type() function provided freely by Cosmin Truta, 2006
4  * For conditions of distribution and use, see copyright notice in zlib.h
5  */
6 
7 /*
8  *  ALGORITHM
9  *
10  *      The "deflation" process uses several Huffman trees. The more
11  *      common source values are represented by shorter bit sequences.
12  *
13  *      Each code tree is stored in a compressed form which is itself
14  * a Huffman encoding of the lengths of all the code strings (in
15  * ascending order by source values).  The actual code strings are
16  * reconstructed from the lengths in the inflate process, as described
17  * in the deflate specification.
18  *
19  *  REFERENCES
20  *
21  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
22  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
23  *
24  *      Storer, James A.
25  *          Data Compression:  Methods and Theory, pp. 49-50.
26  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
27  *
28  *      Sedgewick, R.
29  *          Algorithms, p290.
30  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
31  */
32 
33 /* @(#) $Id$ */
34 
35 /* #define GEN_TREES_H */
36 
37 #include "deflate.h"
38 
39 #ifdef DEBUG
40 #  include <ctype.h>
41 #endif
42 
43 /* ===========================================================================
44  * Constants
45  */
46 
47 #define MAX_BL_BITS 7
48 /* Bit length codes must not exceed MAX_BL_BITS bits */
49 
50 #define END_BLOCK 256
51 /* end of block literal code */
52 
53 #define REP_3_6      16
54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
55 
56 #define REPZ_3_10    17
57 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
58 
59 #define REPZ_11_138  18
60 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
61 
62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
63    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
64 
65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
66    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
67 
68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
69    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
70 
71 local const uch bl_order[BL_CODES]
72    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
73 /* The lengths of the bit length codes are sent in order of decreasing
74  * probability, to avoid transmitting the lengths for unused bit length codes.
75  */
76 
77 #define Buf_size (8 * 2*sizeof(char))
78 /* Number of bits used within bi_buf. (bi_buf might be implemented on
79  * more than 16 bits on some systems.)
80  */
81 
82 /* ===========================================================================
83  * Local data. These are initialized only once.
84  */
85 
86 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
87 
88 #if defined(GEN_TREES_H) || !defined(STDC)
89 /* non ANSI compilers may not accept trees.h */
90 
91 local ct_data static_ltree[L_CODES+2];
92 /* The static literal tree. Since the bit lengths are imposed, there is no
93  * need for the L_CODES extra codes used during heap construction. However
94  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
95  * below).
96  */
97 
98 local ct_data static_dtree[D_CODES];
99 /* The static distance tree. (Actually a trivial tree since all codes use
100  * 5 bits.)
101  */
102 
103 uch _dist_code[DIST_CODE_LEN];
104 /* Distance codes. The first 256 values correspond to the distances
105  * 3 .. 258, the last 256 values correspond to the top 8 bits of
106  * the 15 bit distances.
107  */
108 
109 uch _length_code[MAX_MATCH-MIN_MATCH+1];
110 /* length code for each normalized match length (0 == MIN_MATCH) */
111 
112 local int base_length[LENGTH_CODES];
113 /* First normalized length for each code (0 = MIN_MATCH) */
114 
115 local int base_dist[D_CODES];
116 /* First normalized distance for each code (0 = distance of 1) */
117 
118 #else
119 #  include "trees.h"
120 #endif /* GEN_TREES_H */
121 
122 struct static_tree_desc_s {
123     const ct_data *static_tree;  /* static tree or NULL */
124     const intf *extra_bits;      /* extra bits for each code or NULL */
125     int     extra_base;          /* base index for extra_bits */
126     int     elems;               /* max number of elements in the tree */
127     int     max_length;          /* max bit length for the codes */
128 };
129 
130 local static_tree_desc  static_l_desc =
131 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
132 
133 local static_tree_desc  static_d_desc =
134 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
135 
136 local static_tree_desc  static_bl_desc =
137 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
138 
139 /* ===========================================================================
140  * Local (static) routines in this file.
141  */
142 
143 local void tr_static_init OF((void));
144 local void init_block     OF((deflate_state *s));
145 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
146 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
147 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
148 local void build_tree     OF((deflate_state *s, tree_desc *desc));
149 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
150 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
151 local int  build_bl_tree  OF((deflate_state *s));
152 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
153                               int blcodes));
154 local void compress_block OF((deflate_state *s, ct_data *ltree,
155                               ct_data *dtree));
156 local int  detect_data_type OF((deflate_state *s));
157 local unsigned bi_reverse OF((unsigned value, int length));
158 local void bi_windup      OF((deflate_state *s));
159 local void bi_flush       OF((deflate_state *s));
160 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
161                               int header));
162 
163 #ifdef GEN_TREES_H
164 local void gen_trees_header OF((void));
165 #endif
166 
167 #ifndef DEBUG
168 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
169    /* Send a code of the given tree. c and tree must not have side effects */
170 
171 #else /* DEBUG */
172 #  define send_code(s, c, tree) \
173      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
174        send_bits(s, tree[c].Code, tree[c].Len); }
175 #endif
176 
177 /* ===========================================================================
178  * Output a short LSB first on the stream.
179  * IN assertion: there is enough room in pendingBuf.
180  */
181 #define put_short(s, w) { \
182     put_byte(s, (uch)((w) & 0xff)); \
183     put_byte(s, (uch)((ush)(w) >> 8)); \
184 }
185 
186 /* ===========================================================================
187  * Send a value on a given number of bits.
188  * IN assertion: length <= 16 and value fits in length bits.
189  */
190 #ifdef DEBUG
191 local void send_bits      OF((deflate_state *s, int value, int length));
192 
193 local void send_bits(s, value, length)
194     deflate_state *s;
195     int value;  /* value to send */
196     int length; /* number of bits */
197 {
198     Tracevv((stderr," l %2d v %4x ", length, value));
199     Assert(length > 0 && length <= 15, "invalid length");
200     s->bits_sent += (ulg)length;
201 
202     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
203      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
204      * unused bits in value.
205      */
206     if (s->bi_valid > (int)Buf_size - length) {
207         s->bi_buf |= (ush)value << s->bi_valid;
208         put_short(s, s->bi_buf);
209         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
210         s->bi_valid += length - Buf_size;
211     } else {
212         s->bi_buf |= (ush)value << s->bi_valid;
213         s->bi_valid += length;
214     }
215 }
216 #else /* !DEBUG */
217 
218 #define send_bits(s, value, length) \
219 { int len = length;\
220   if (s->bi_valid > (int)Buf_size - len) {\
221     int val = value;\
222     s->bi_buf |= (ush)val << s->bi_valid;\
223     put_short(s, s->bi_buf);\
224     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
225     s->bi_valid += len - Buf_size;\
226   } else {\
227     s->bi_buf |= (ush)(value) << s->bi_valid;\
228     s->bi_valid += len;\
229   }\
230 }
231 #endif /* DEBUG */
232 
233 
234 /* the arguments must not have side effects */
235 
236 /* ===========================================================================
237  * Initialize the various 'constant' tables.
238  */
239 local void tr_static_init()
240 {
241 #if defined(GEN_TREES_H) || !defined(STDC)
242     static int static_init_done = 0;
243     int n;        /* iterates over tree elements */
244     int bits;     /* bit counter */
245     int length;   /* length value */
246     int code;     /* code value */
247     int dist;     /* distance index */
248     ush bl_count[MAX_BITS+1];
249     /* number of codes at each bit length for an optimal tree */
250 
251     if (static_init_done) return;
252 
253     /* For some embedded targets, global variables are not initialized: */
254 #ifdef NO_INIT_GLOBAL_POINTERS
255     static_l_desc.static_tree = static_ltree;
256     static_l_desc.extra_bits = extra_lbits;
257     static_d_desc.static_tree = static_dtree;
258     static_d_desc.extra_bits = extra_dbits;
259     static_bl_desc.extra_bits = extra_blbits;
260 #endif
261 
262     /* Initialize the mapping length (0..255) -> length code (0..28) */
263     length = 0;
264     for (code = 0; code < LENGTH_CODES-1; code++) {
265         base_length[code] = length;
266         for (n = 0; n < (1<<extra_lbits[code]); n++) {
267             _length_code[length++] = (uch)code;
268         }
269     }
270     Assert (length == 256, "tr_static_init: length != 256");
271     /* Note that the length 255 (match length 258) can be represented
272      * in two different ways: code 284 + 5 bits or code 285, so we
273      * overwrite length_code[255] to use the best encoding:
274      */
275     _length_code[length-1] = (uch)code;
276 
277     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
278     dist = 0;
279     for (code = 0 ; code < 16; code++) {
280         base_dist[code] = dist;
281         for (n = 0; n < (1<<extra_dbits[code]); n++) {
282             _dist_code[dist++] = (uch)code;
283         }
284     }
285     Assert (dist == 256, "tr_static_init: dist != 256");
286     dist >>= 7; /* from now on, all distances are divided by 128 */
287     for ( ; code < D_CODES; code++) {
288         base_dist[code] = dist << 7;
289         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
290             _dist_code[256 + dist++] = (uch)code;
291         }
292     }
293     Assert (dist == 256, "tr_static_init: 256+dist != 512");
294 
295     /* Construct the codes of the static literal tree */
296     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
297     n = 0;
298     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
299     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
300     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
301     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
302     /* Codes 286 and 287 do not exist, but we must include them in the
303      * tree construction to get a canonical Huffman tree (longest code
304      * all ones)
305      */
306     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
307 
308     /* The static distance tree is trivial: */
309     for (n = 0; n < D_CODES; n++) {
310         static_dtree[n].Len = 5;
311         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
312     }
313     static_init_done = 1;
314 
315 #  ifdef GEN_TREES_H
316     gen_trees_header();
317 #  endif
318 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
319 }
320 
321 /* ===========================================================================
322  * Genererate the file trees.h describing the static trees.
323  */
324 #ifdef GEN_TREES_H
325 #  ifndef DEBUG
326 #    include <stdio.h>
327 #  endif
328 
329 #  define SEPARATOR(i, last, width) \
330       ((i) == (last)? "\n};\n\n" :    \
331        ((i) % (width) == (width)-1 ? ",\n" : ", "))
332 
333 void gen_trees_header()
334 {
335     FILE *header = fopen("trees.h", "w");
336     int i;
337 
338     Assert (header != NULL, "Can't open trees.h");
339     fprintf(header,
340             "/* header created automatically with -DGEN_TREES_H */\n\n");
341 
342     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
343     for (i = 0; i < L_CODES+2; i++) {
344         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
345                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
346     }
347 
348     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
349     for (i = 0; i < D_CODES; i++) {
350         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
351                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
352     }
353 
354     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
355     for (i = 0; i < DIST_CODE_LEN; i++) {
356         fprintf(header, "%2u%s", _dist_code[i],
357                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
358     }
359 
360     fprintf(header,
361         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
362     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
363         fprintf(header, "%2u%s", _length_code[i],
364                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
365     }
366 
367     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
368     for (i = 0; i < LENGTH_CODES; i++) {
369         fprintf(header, "%1u%s", base_length[i],
370                 SEPARATOR(i, LENGTH_CODES-1, 20));
371     }
372 
373     fprintf(header, "local const int base_dist[D_CODES] = {\n");
374     for (i = 0; i < D_CODES; i++) {
375         fprintf(header, "%5u%s", base_dist[i],
376                 SEPARATOR(i, D_CODES-1, 10));
377     }
378 
379     fclose(header);
380 }
381 #endif /* GEN_TREES_H */
382 
383 /* ===========================================================================
384  * Initialize the tree data structures for a new zlib stream.
385  */
386 void ZLIB_INTERNAL _tr_init(s)
387     deflate_state *s;
388 {
389     tr_static_init();
390 
391     s->l_desc.dyn_tree = s->dyn_ltree;
392     s->l_desc.stat_desc = &static_l_desc;
393 
394     s->d_desc.dyn_tree = s->dyn_dtree;
395     s->d_desc.stat_desc = &static_d_desc;
396 
397     s->bl_desc.dyn_tree = s->bl_tree;
398     s->bl_desc.stat_desc = &static_bl_desc;
399 
400     s->bi_buf = 0;
401     s->bi_valid = 0;
402     s->last_eob_len = 8; /* enough lookahead for inflate */
403 #ifdef DEBUG
404     s->compressed_len = 0L;
405     s->bits_sent = 0L;
406 #endif
407 
408     /* Initialize the first block of the first file: */
409     init_block(s);
410 }
411 
412 /* ===========================================================================
413  * Initialize a new block.
414  */
415 local void init_block(s)
416     deflate_state *s;
417 {
418     int n; /* iterates over tree elements */
419 
420     /* Initialize the trees. */
421     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
422     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
423     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
424 
425     s->dyn_ltree[END_BLOCK].Freq = 1;
426     s->opt_len = s->static_len = 0L;
427     s->last_lit = s->matches = 0;
428 }
429 
430 #define SMALLEST 1
431 /* Index within the heap array of least frequent node in the Huffman tree */
432 
433 
434 /* ===========================================================================
435  * Remove the smallest element from the heap and recreate the heap with
436  * one less element. Updates heap and heap_len.
437  */
438 #define pqremove(s, tree, top) \
439 {\
440     top = s->heap[SMALLEST]; \
441     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
442     pqdownheap(s, tree, SMALLEST); \
443 }
444 
445 /* ===========================================================================
446  * Compares to subtrees, using the tree depth as tie breaker when
447  * the subtrees have equal frequency. This minimizes the worst case length.
448  */
449 #define smaller(tree, n, m, depth) \
450    (tree[n].Freq < tree[m].Freq || \
451    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
452 
453 /* ===========================================================================
454  * Restore the heap property by moving down the tree starting at node k,
455  * exchanging a node with the smallest of its two sons if necessary, stopping
456  * when the heap property is re-established (each father smaller than its
457  * two sons).
458  */
459 local void pqdownheap(s, tree, k)
460     deflate_state *s;
461     ct_data *tree;  /* the tree to restore */
462     int k;               /* node to move down */
463 {
464     int v = s->heap[k];
465     int j = k << 1;  /* left son of k */
466     while (j <= s->heap_len) {
467         /* Set j to the smallest of the two sons: */
468         if (j < s->heap_len &&
469             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
470             j++;
471         }
472         /* Exit if v is smaller than both sons */
473         if (smaller(tree, v, s->heap[j], s->depth)) break;
474 
475         /* Exchange v with the smallest son */
476         s->heap[k] = s->heap[j];  k = j;
477 
478         /* And continue down the tree, setting j to the left son of k */
479         j <<= 1;
480     }
481     s->heap[k] = v;
482 }
483 
484 /* ===========================================================================
485  * Compute the optimal bit lengths for a tree and update the total bit length
486  * for the current block.
487  * IN assertion: the fields freq and dad are set, heap[heap_max] and
488  *    above are the tree nodes sorted by increasing frequency.
489  * OUT assertions: the field len is set to the optimal bit length, the
490  *     array bl_count contains the frequencies for each bit length.
491  *     The length opt_len is updated; static_len is also updated if stree is
492  *     not null.
493  */
494 local void gen_bitlen(s, desc)
495     deflate_state *s;
496     tree_desc *desc;    /* the tree descriptor */
497 {
498     ct_data *tree        = desc->dyn_tree;
499     int max_code         = desc->max_code;
500     const ct_data *stree = desc->stat_desc->static_tree;
501     const intf *extra    = desc->stat_desc->extra_bits;
502     int base             = desc->stat_desc->extra_base;
503     int max_length       = desc->stat_desc->max_length;
504     int h;              /* heap index */
505     int n, m;           /* iterate over the tree elements */
506     int bits;           /* bit length */
507     int xbits;          /* extra bits */
508     ush f;              /* frequency */
509     int overflow = 0;   /* number of elements with bit length too large */
510 
511     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
512 
513     /* In a first pass, compute the optimal bit lengths (which may
514      * overflow in the case of the bit length tree).
515      */
516     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
517 
518     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
519         n = s->heap[h];
520         bits = tree[tree[n].Dad].Len + 1;
521         if (bits > max_length) bits = max_length, overflow++;
522         tree[n].Len = (ush)bits;
523         /* We overwrite tree[n].Dad which is no longer needed */
524 
525         if (n > max_code) continue; /* not a leaf node */
526 
527         s->bl_count[bits]++;
528         xbits = 0;
529         if (n >= base) xbits = extra[n-base];
530         f = tree[n].Freq;
531         s->opt_len += (ulg)f * (bits + xbits);
532         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
533     }
534     if (overflow == 0) return;
535 
536     Trace((stderr,"\nbit length overflow\n"));
537     /* This happens for example on obj2 and pic of the Calgary corpus */
538 
539     /* Find the first bit length which could increase: */
540     do {
541         bits = max_length-1;
542         while (s->bl_count[bits] == 0) bits--;
543         s->bl_count[bits]--;      /* move one leaf down the tree */
544         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
545         s->bl_count[max_length]--;
546         /* The brother of the overflow item also moves one step up,
547          * but this does not affect bl_count[max_length]
548          */
549         overflow -= 2;
550     } while (overflow > 0);
551 
552     /* Now recompute all bit lengths, scanning in increasing frequency.
553      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
554      * lengths instead of fixing only the wrong ones. This idea is taken
555      * from 'ar' written by Haruhiko Okumura.)
556      */
557     for (bits = max_length; bits != 0; bits--) {
558         n = s->bl_count[bits];
559         while (n != 0) {
560             m = s->heap[--h];
561             if (m > max_code) continue;
562             if ((unsigned) tree[m].Len != (unsigned) bits) {
563                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
564                 s->opt_len += ((long)bits - (long)tree[m].Len)
565                               *(long)tree[m].Freq;
566                 tree[m].Len = (ush)bits;
567             }
568             n--;
569         }
570     }
571 }
572 
573 /* ===========================================================================
574  * Generate the codes for a given tree and bit counts (which need not be
575  * optimal).
576  * IN assertion: the array bl_count contains the bit length statistics for
577  * the given tree and the field len is set for all tree elements.
578  * OUT assertion: the field code is set for all tree elements of non
579  *     zero code length.
580  */
581 local void gen_codes (tree, max_code, bl_count)
582     ct_data *tree;             /* the tree to decorate */
583     int max_code;              /* largest code with non zero frequency */
584     ushf *bl_count;            /* number of codes at each bit length */
585 {
586     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
587     ush code = 0;              /* running code value */
588     int bits;                  /* bit index */
589     int n;                     /* code index */
590 
591     /* The distribution counts are first used to generate the code values
592      * without bit reversal.
593      */
594     for (bits = 1; bits <= MAX_BITS; bits++) {
595         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
596     }
597     /* Check that the bit counts in bl_count are consistent. The last code
598      * must be all ones.
599      */
600     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
601             "inconsistent bit counts");
602     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
603 
604     for (n = 0;  n <= max_code; n++) {
605         int len = tree[n].Len;
606         if (len == 0) continue;
607         /* Now reverse the bits */
608         tree[n].Code = bi_reverse(next_code[len]++, len);
609 
610         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
611              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
612     }
613 }
614 
615 /* ===========================================================================
616  * Construct one Huffman tree and assigns the code bit strings and lengths.
617  * Update the total bit length for the current block.
618  * IN assertion: the field freq is set for all tree elements.
619  * OUT assertions: the fields len and code are set to the optimal bit length
620  *     and corresponding code. The length opt_len is updated; static_len is
621  *     also updated if stree is not null. The field max_code is set.
622  */
623 local void build_tree(s, desc)
624     deflate_state *s;
625     tree_desc *desc; /* the tree descriptor */
626 {
627     ct_data *tree         = desc->dyn_tree;
628     const ct_data *stree  = desc->stat_desc->static_tree;
629     int elems             = desc->stat_desc->elems;
630     int n, m;          /* iterate over heap elements */
631     int max_code = -1; /* largest code with non zero frequency */
632     int node;          /* new node being created */
633 
634     /* Construct the initial heap, with least frequent element in
635      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
636      * heap[0] is not used.
637      */
638     s->heap_len = 0, s->heap_max = HEAP_SIZE;
639 
640     for (n = 0; n < elems; n++) {
641         if (tree[n].Freq != 0) {
642             s->heap[++(s->heap_len)] = max_code = n;
643             s->depth[n] = 0;
644         } else {
645             tree[n].Len = 0;
646         }
647     }
648 
649     /* The pkzip format requires that at least one distance code exists,
650      * and that at least one bit should be sent even if there is only one
651      * possible code. So to avoid special checks later on we force at least
652      * two codes of non zero frequency.
653      */
654     while (s->heap_len < 2) {
655         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
656         tree[node].Freq = 1;
657         s->depth[node] = 0;
658         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
659         /* node is 0 or 1 so it does not have extra bits */
660     }
661     desc->max_code = max_code;
662 
663     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
664      * establish sub-heaps of increasing lengths:
665      */
666     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
667 
668     /* Construct the Huffman tree by repeatedly combining the least two
669      * frequent nodes.
670      */
671     node = elems;              /* next internal node of the tree */
672     do {
673         pqremove(s, tree, n);  /* n = node of least frequency */
674         m = s->heap[SMALLEST]; /* m = node of next least frequency */
675 
676         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
677         s->heap[--(s->heap_max)] = m;
678 
679         /* Create a new node father of n and m */
680         tree[node].Freq = tree[n].Freq + tree[m].Freq;
681         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
682                                 s->depth[n] : s->depth[m]) + 1);
683         tree[n].Dad = tree[m].Dad = (ush)node;
684 #ifdef DUMP_BL_TREE
685         if (tree == s->bl_tree) {
686             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
687                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
688         }
689 #endif
690         /* and insert the new node in the heap */
691         s->heap[SMALLEST] = node++;
692         pqdownheap(s, tree, SMALLEST);
693 
694     } while (s->heap_len >= 2);
695 
696     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
697 
698     /* At this point, the fields freq and dad are set. We can now
699      * generate the bit lengths.
700      */
701     gen_bitlen(s, (tree_desc *)desc);
702 
703     /* The field len is now set, we can generate the bit codes */
704     gen_codes ((ct_data *)tree, max_code, s->bl_count);
705 }
706 
707 /* ===========================================================================
708  * Scan a literal or distance tree to determine the frequencies of the codes
709  * in the bit length tree.
710  */
711 local void scan_tree (s, tree, max_code)
712     deflate_state *s;
713     ct_data *tree;   /* the tree to be scanned */
714     int max_code;    /* and its largest code of non zero frequency */
715 {
716     int n;                     /* iterates over all tree elements */
717     int prevlen = -1;          /* last emitted length */
718     int curlen;                /* length of current code */
719     int nextlen = tree[0].Len; /* length of next code */
720     int count = 0;             /* repeat count of the current code */
721     int max_count = 7;         /* max repeat count */
722     int min_count = 4;         /* min repeat count */
723 
724     if (nextlen == 0) max_count = 138, min_count = 3;
725     tree[max_code+1].Len = (ush)0xffff; /* guard */
726 
727     for (n = 0; n <= max_code; n++) {
728         curlen = nextlen; nextlen = tree[n+1].Len;
729         if (++count < max_count && curlen == nextlen) {
730             continue;
731         } else if (count < min_count) {
732             s->bl_tree[curlen].Freq += count;
733         } else if (curlen != 0) {
734             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
735             s->bl_tree[REP_3_6].Freq++;
736         } else if (count <= 10) {
737             s->bl_tree[REPZ_3_10].Freq++;
738         } else {
739             s->bl_tree[REPZ_11_138].Freq++;
740         }
741         count = 0; prevlen = curlen;
742         if (nextlen == 0) {
743             max_count = 138, min_count = 3;
744         } else if (curlen == nextlen) {
745             max_count = 6, min_count = 3;
746         } else {
747             max_count = 7, min_count = 4;
748         }
749     }
750 }
751 
752 /* ===========================================================================
753  * Send a literal or distance tree in compressed form, using the codes in
754  * bl_tree.
755  */
756 local void send_tree (s, tree, max_code)
757     deflate_state *s;
758     ct_data *tree; /* the tree to be scanned */
759     int max_code;       /* and its largest code of non zero frequency */
760 {
761     int n;                     /* iterates over all tree elements */
762     int prevlen = -1;          /* last emitted length */
763     int curlen;                /* length of current code */
764     int nextlen = tree[0].Len; /* length of next code */
765     int count = 0;             /* repeat count of the current code */
766     int max_count = 7;         /* max repeat count */
767     int min_count = 4;         /* min repeat count */
768 
769     /* tree[max_code+1].Len = -1; */  /* guard already set */
770     if (nextlen == 0) max_count = 138, min_count = 3;
771 
772     for (n = 0; n <= max_code; n++) {
773         curlen = nextlen; nextlen = tree[n+1].Len;
774         if (++count < max_count && curlen == nextlen) {
775             continue;
776         } else if (count < min_count) {
777             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
778 
779         } else if (curlen != 0) {
780             if (curlen != prevlen) {
781                 send_code(s, curlen, s->bl_tree); count--;
782             }
783             Assert(count >= 3 && count <= 6, " 3_6?");
784             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
785 
786         } else if (count <= 10) {
787             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
788 
789         } else {
790             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
791         }
792         count = 0; prevlen = curlen;
793         if (nextlen == 0) {
794             max_count = 138, min_count = 3;
795         } else if (curlen == nextlen) {
796             max_count = 6, min_count = 3;
797         } else {
798             max_count = 7, min_count = 4;
799         }
800     }
801 }
802 
803 /* ===========================================================================
804  * Construct the Huffman tree for the bit lengths and return the index in
805  * bl_order of the last bit length code to send.
806  */
807 local int build_bl_tree(s)
808     deflate_state *s;
809 {
810     int max_blindex;  /* index of last bit length code of non zero freq */
811 
812     /* Determine the bit length frequencies for literal and distance trees */
813     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
814     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
815 
816     /* Build the bit length tree: */
817     build_tree(s, (tree_desc *)(&(s->bl_desc)));
818     /* opt_len now includes the length of the tree representations, except
819      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
820      */
821 
822     /* Determine the number of bit length codes to send. The pkzip format
823      * requires that at least 4 bit length codes be sent. (appnote.txt says
824      * 3 but the actual value used is 4.)
825      */
826     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
827         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
828     }
829     /* Update opt_len to include the bit length tree and counts */
830     s->opt_len += 3*(max_blindex+1) + 5+5+4;
831     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
832             s->opt_len, s->static_len));
833 
834     return max_blindex;
835 }
836 
837 /* ===========================================================================
838  * Send the header for a block using dynamic Huffman trees: the counts, the
839  * lengths of the bit length codes, the literal tree and the distance tree.
840  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
841  */
842 local void send_all_trees(s, lcodes, dcodes, blcodes)
843     deflate_state *s;
844     int lcodes, dcodes, blcodes; /* number of codes for each tree */
845 {
846     int rank;                    /* index in bl_order */
847 
848     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
849     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
850             "too many codes");
851     Tracev((stderr, "\nbl counts: "));
852     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
853     send_bits(s, dcodes-1,   5);
854     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
855     for (rank = 0; rank < blcodes; rank++) {
856         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
857         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
858     }
859     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
860 
861     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
862     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
863 
864     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
865     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
866 }
867 
868 /* ===========================================================================
869  * Send a stored block
870  */
871 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
872     deflate_state *s;
873     charf *buf;       /* input block */
874     ulg stored_len;   /* length of input block */
875     int last;         /* one if this is the last block for a file */
876 {
877     send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
878 #ifdef DEBUG
879     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
880     s->compressed_len += (stored_len + 4) << 3;
881 #endif
882     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
883 }
884 
885 /* ===========================================================================
886  * Send one empty static block to give enough lookahead for inflate.
887  * This takes 10 bits, of which 7 may remain in the bit buffer.
888  * The current inflate code requires 9 bits of lookahead. If the
889  * last two codes for the previous block (real code plus EOB) were coded
890  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
891  * the last real code. In this case we send two empty static blocks instead
892  * of one. (There are no problems if the previous block is stored or fixed.)
893  * To simplify the code, we assume the worst case of last real code encoded
894  * on one bit only.
895  */
896 void ZLIB_INTERNAL _tr_align(s)
897     deflate_state *s;
898 {
899     send_bits(s, STATIC_TREES<<1, 3);
900     send_code(s, END_BLOCK, static_ltree);
901 #ifdef DEBUG
902     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
903 #endif
904     bi_flush(s);
905     /* Of the 10 bits for the empty block, we have already sent
906      * (10 - bi_valid) bits. The lookahead for the last real code (before
907      * the EOB of the previous block) was thus at least one plus the length
908      * of the EOB plus what we have just sent of the empty static block.
909      */
910     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
911         send_bits(s, STATIC_TREES<<1, 3);
912         send_code(s, END_BLOCK, static_ltree);
913 #ifdef DEBUG
914         s->compressed_len += 10L;
915 #endif
916         bi_flush(s);
917     }
918     s->last_eob_len = 7;
919 }
920 
921 /* ===========================================================================
922  * Determine the best encoding for the current block: dynamic trees, static
923  * trees or store, and output the encoded block to the zip file.
924  */
925 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
926     deflate_state *s;
927     charf *buf;       /* input block, or NULL if too old */
928     ulg stored_len;   /* length of input block */
929     int last;         /* one if this is the last block for a file */
930 {
931     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
932     int max_blindex = 0;  /* index of last bit length code of non zero freq */
933 
934     /* Build the Huffman trees unless a stored block is forced */
935     if (s->level > 0) {
936 
937         /* Check if the file is binary or text */
938         if (s->strm->data_type == Z_UNKNOWN)
939             s->strm->data_type = detect_data_type(s);
940 
941         /* Construct the literal and distance trees */
942         build_tree(s, (tree_desc *)(&(s->l_desc)));
943         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
944                 s->static_len));
945 
946         build_tree(s, (tree_desc *)(&(s->d_desc)));
947         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
948                 s->static_len));
949         /* At this point, opt_len and static_len are the total bit lengths of
950          * the compressed block data, excluding the tree representations.
951          */
952 
953         /* Build the bit length tree for the above two trees, and get the index
954          * in bl_order of the last bit length code to send.
955          */
956         max_blindex = build_bl_tree(s);
957 
958         /* Determine the best encoding. Compute the block lengths in bytes. */
959         opt_lenb = (s->opt_len+3+7)>>3;
960         static_lenb = (s->static_len+3+7)>>3;
961 
962         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
963                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
964                 s->last_lit));
965 
966         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
967 
968     } else {
969         Assert(buf != (char*)0, "lost buf");
970         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
971     }
972 
973 #ifdef FORCE_STORED
974     if (buf != (char*)0) { /* force stored block */
975 #else
976     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
977                        /* 4: two words for the lengths */
978 #endif
979         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
980          * Otherwise we can't have processed more than WSIZE input bytes since
981          * the last block flush, because compression would have been
982          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
983          * transform a block into a stored block.
984          */
985         _tr_stored_block(s, buf, stored_len, last);
986 
987 #ifdef FORCE_STATIC
988     } else if (static_lenb >= 0) { /* force static trees */
989 #else
990     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
991 #endif
992         send_bits(s, (STATIC_TREES<<1)+last, 3);
993         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
994 #ifdef DEBUG
995         s->compressed_len += 3 + s->static_len;
996 #endif
997     } else {
998         send_bits(s, (DYN_TREES<<1)+last, 3);
999         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
1000                        max_blindex+1);
1001         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
1002 #ifdef DEBUG
1003         s->compressed_len += 3 + s->opt_len;
1004 #endif
1005     }
1006     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1007     /* The above check is made mod 2^32, for files larger than 512 MB
1008      * and uLong implemented on 32 bits.
1009      */
1010     init_block(s);
1011 
1012     if (last) {
1013         bi_windup(s);
1014 #ifdef DEBUG
1015         s->compressed_len += 7;  /* align on byte boundary */
1016 #endif
1017     }
1018     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1019            s->compressed_len-7*last));
1020 }
1021 
1022 /* ===========================================================================
1023  * Save the match info and tally the frequency counts. Return true if
1024  * the current block must be flushed.
1025  */
1026 int ZLIB_INTERNAL _tr_tally (s, dist, lc)
1027     deflate_state *s;
1028     unsigned dist;  /* distance of matched string */
1029     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
1030 {
1031     s->d_buf[s->last_lit] = (ush)dist;
1032     s->l_buf[s->last_lit++] = (uch)lc;
1033     if (dist == 0) {
1034         /* lc is the unmatched char */
1035         s->dyn_ltree[lc].Freq++;
1036     } else {
1037         s->matches++;
1038         /* Here, lc is the match length - MIN_MATCH */
1039         dist--;             /* dist = match distance - 1 */
1040         Assert((ush)dist < (ush)MAX_DIST(s) &&
1041                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1042                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1043 
1044         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1045         s->dyn_dtree[d_code(dist)].Freq++;
1046     }
1047 
1048 #ifdef TRUNCATE_BLOCK
1049     /* Try to guess if it is profitable to stop the current block here */
1050     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1051         /* Compute an upper bound for the compressed length */
1052         ulg out_length = (ulg)s->last_lit*8L;
1053         ulg in_length = (ulg)((long)s->strstart - s->block_start);
1054         int dcode;
1055         for (dcode = 0; dcode < D_CODES; dcode++) {
1056             out_length += (ulg)s->dyn_dtree[dcode].Freq *
1057                 (5L+extra_dbits[dcode]);
1058         }
1059         out_length >>= 3;
1060         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1061                s->last_lit, in_length, out_length,
1062                100L - out_length*100L/in_length));
1063         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1064     }
1065 #endif
1066     return (s->last_lit == s->lit_bufsize-1);
1067     /* We avoid equality with lit_bufsize because of wraparound at 64K
1068      * on 16 bit machines and because stored blocks are restricted to
1069      * 64K-1 bytes.
1070      */
1071 }
1072 
1073 /* ===========================================================================
1074  * Send the block data compressed using the given Huffman trees
1075  */
1076 local void compress_block(s, ltree, dtree)
1077     deflate_state *s;
1078     ct_data *ltree; /* literal tree */
1079     ct_data *dtree; /* distance tree */
1080 {
1081     unsigned dist;      /* distance of matched string */
1082     int lc;             /* match length or unmatched char (if dist == 0) */
1083     unsigned lx = 0;    /* running index in l_buf */
1084     unsigned code;      /* the code to send */
1085     int extra;          /* number of extra bits to send */
1086 
1087     if (s->last_lit != 0) do {
1088         dist = s->d_buf[lx];
1089         lc = s->l_buf[lx++];
1090         if (dist == 0) {
1091             send_code(s, lc, ltree); /* send a literal byte */
1092             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1093         } else {
1094             /* Here, lc is the match length - MIN_MATCH */
1095             code = _length_code[lc];
1096             send_code(s, code+LITERALS+1, ltree); /* send the length code */
1097             extra = extra_lbits[code];
1098             if (extra != 0) {
1099                 lc -= base_length[code];
1100                 send_bits(s, lc, extra);       /* send the extra length bits */
1101             }
1102             dist--; /* dist is now the match distance - 1 */
1103             code = d_code(dist);
1104             Assert (code < D_CODES, "bad d_code");
1105 
1106             send_code(s, code, dtree);       /* send the distance code */
1107             extra = extra_dbits[code];
1108             if (extra != 0) {
1109                 dist -= base_dist[code];
1110                 send_bits(s, dist, extra);   /* send the extra distance bits */
1111             }
1112         } /* literal or match pair ? */
1113 
1114         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1115         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1116                "pendingBuf overflow");
1117 
1118     } while (lx < s->last_lit);
1119 
1120     send_code(s, END_BLOCK, ltree);
1121     s->last_eob_len = ltree[END_BLOCK].Len;
1122 }
1123 
1124 /* ===========================================================================
1125  * Check if the data type is TEXT or BINARY, using the following algorithm:
1126  * - TEXT if the two conditions below are satisfied:
1127  *    a) There are no non-portable control characters belonging to the
1128  *       "black list" (0..6, 14..25, 28..31).
1129  *    b) There is at least one printable character belonging to the
1130  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1131  * - BINARY otherwise.
1132  * - The following partially-portable control characters form a
1133  *   "gray list" that is ignored in this detection algorithm:
1134  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1135  * IN assertion: the fields Freq of dyn_ltree are set.
1136  */
1137 local int detect_data_type(s)
1138     deflate_state *s;
1139 {
1140     /* black_mask is the bit mask of black-listed bytes
1141      * set bits 0..6, 14..25, and 28..31
1142      * 0xf3ffc07f = binary 11110011111111111100000001111111
1143      */
1144     unsigned long black_mask = 0xf3ffc07fUL;
1145     int n;
1146 
1147     /* Check for non-textual ("black-listed") bytes. */
1148     for (n = 0; n <= 31; n++, black_mask >>= 1)
1149         if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1150             return Z_BINARY;
1151 
1152     /* Check for textual ("white-listed") bytes. */
1153     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1154             || s->dyn_ltree[13].Freq != 0)
1155         return Z_TEXT;
1156     for (n = 32; n < LITERALS; n++)
1157         if (s->dyn_ltree[n].Freq != 0)
1158             return Z_TEXT;
1159 
1160     /* There are no "black-listed" or "white-listed" bytes:
1161      * this stream either is empty or has tolerated ("gray-listed") bytes only.
1162      */
1163     return Z_BINARY;
1164 }
1165 
1166 /* ===========================================================================
1167  * Reverse the first len bits of a code, using straightforward code (a faster
1168  * method would use a table)
1169  * IN assertion: 1 <= len <= 15
1170  */
1171 local unsigned bi_reverse(value, len)
1172     unsigned value; /* the value to invert */
1173     int len;       /* its bit length */
1174 {
1175     register unsigned res = 0;
1176     do {
1177         res |= value & 1;
1178         value >>= 1, res <<= 1;
1179     } while (--len > 0);
1180     return res >> 1;
1181 }
1182 
1183 /* ===========================================================================
1184  * Flush the bit buffer, keeping at most 7 bits in it.
1185  */
1186 local void bi_flush(s)
1187     deflate_state *s;
1188 {
1189     if (s->bi_valid == 16) {
1190         put_short(s, s->bi_buf);
1191         s->bi_buf = 0;
1192         s->bi_valid = 0;
1193     } else if (s->bi_valid >= 8) {
1194         put_byte(s, (Byte)s->bi_buf);
1195         s->bi_buf >>= 8;
1196         s->bi_valid -= 8;
1197     }
1198 }
1199 
1200 /* ===========================================================================
1201  * Flush the bit buffer and align the output on a byte boundary
1202  */
1203 local void bi_windup(s)
1204     deflate_state *s;
1205 {
1206     if (s->bi_valid > 8) {
1207         put_short(s, s->bi_buf);
1208     } else if (s->bi_valid > 0) {
1209         put_byte(s, (Byte)s->bi_buf);
1210     }
1211     s->bi_buf = 0;
1212     s->bi_valid = 0;
1213 #ifdef DEBUG
1214     s->bits_sent = (s->bits_sent+7) & ~7;
1215 #endif
1216 }
1217 
1218 /* ===========================================================================
1219  * Copy a stored block, storing first the length and its
1220  * one's complement if requested.
1221  */
1222 local void copy_block(s, buf, len, header)
1223     deflate_state *s;
1224     charf    *buf;    /* the input data */
1225     unsigned len;     /* its length */
1226     int      header;  /* true if block header must be written */
1227 {
1228     bi_windup(s);        /* align on byte boundary */
1229     s->last_eob_len = 8; /* enough lookahead for inflate */
1230 
1231     if (header) {
1232         put_short(s, (ush)len);
1233         put_short(s, (ush)~len);
1234 #ifdef DEBUG
1235         s->bits_sent += 2*16;
1236 #endif
1237     }
1238 #ifdef DEBUG
1239     s->bits_sent += (ulg)len<<3;
1240 #endif
1241     while (len--) {
1242         put_byte(s, *buf++);
1243     }
1244 }
1245