1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * FIPS-180-2 compliant SHA-512 and SHA-384 implementation 4 * 5 * SHA-512 code by Jean-Luc Cooke <jlcooke@certainkey.com> 6 * 7 * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com> 8 * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk> 9 * Copyright (c) 2003 Kyle McMartin <kyle@debian.org> 10 * Copyright (c) 2020 Reuben Dowle <reuben.dowle@4rf.com> 11 */ 12 13 #ifndef USE_HOSTCC 14 #include <common.h> 15 #include <linux/string.h> 16 #else 17 #include <string.h> 18 #endif /* USE_HOSTCC */ 19 #include <watchdog.h> 20 #include <u-boot/sha512.h> 21 22 const uint8_t sha384_der_prefix[SHA384_DER_LEN] = { 23 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 24 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 25 0x00, 0x04, 0x30 26 }; 27 28 const uint8_t sha512_der_prefix[SHA512_DER_LEN] = { 29 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 30 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 31 0x00, 0x04, 0x40 32 }; 33 34 #define SHA384_H0 0xcbbb9d5dc1059ed8ULL 35 #define SHA384_H1 0x629a292a367cd507ULL 36 #define SHA384_H2 0x9159015a3070dd17ULL 37 #define SHA384_H3 0x152fecd8f70e5939ULL 38 #define SHA384_H4 0x67332667ffc00b31ULL 39 #define SHA384_H5 0x8eb44a8768581511ULL 40 #define SHA384_H6 0xdb0c2e0d64f98fa7ULL 41 #define SHA384_H7 0x47b5481dbefa4fa4ULL 42 43 #define SHA512_H0 0x6a09e667f3bcc908ULL 44 #define SHA512_H1 0xbb67ae8584caa73bULL 45 #define SHA512_H2 0x3c6ef372fe94f82bULL 46 #define SHA512_H3 0xa54ff53a5f1d36f1ULL 47 #define SHA512_H4 0x510e527fade682d1ULL 48 #define SHA512_H5 0x9b05688c2b3e6c1fULL 49 #define SHA512_H6 0x1f83d9abfb41bd6bULL 50 #define SHA512_H7 0x5be0cd19137e2179ULL 51 52 static inline uint64_t Ch(uint64_t x, uint64_t y, uint64_t z) 53 { 54 return z ^ (x & (y ^ z)); 55 } 56 57 static inline uint64_t Maj(uint64_t x, uint64_t y, uint64_t z) 58 { 59 return (x & y) | (z & (x | y)); 60 } 61 62 static const uint64_t sha512_K[80] = { 63 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 64 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 65 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 66 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 67 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 68 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 69 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 70 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 71 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 72 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 73 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 74 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 75 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 76 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 77 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 78 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 79 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 80 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 81 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 82 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 83 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 84 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 85 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 86 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 87 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 88 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 89 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL, 90 }; 91 92 static inline uint64_t ror64(uint64_t word, unsigned int shift) 93 { 94 return (word >> (shift & 63)) | (word << ((-shift) & 63)); 95 } 96 97 #define e0(x) (ror64(x,28) ^ ror64(x,34) ^ ror64(x,39)) 98 #define e1(x) (ror64(x,14) ^ ror64(x,18) ^ ror64(x,41)) 99 #define s0(x) (ror64(x, 1) ^ ror64(x, 8) ^ (x >> 7)) 100 #define s1(x) (ror64(x,19) ^ ror64(x,61) ^ (x >> 6)) 101 102 /* 103 * 64-bit integer manipulation macros (big endian) 104 */ 105 #ifndef GET_UINT64_BE 106 #define GET_UINT64_BE(n,b,i) { \ 107 (n) = ( (unsigned long long) (b)[(i) ] << 56 ) \ 108 | ( (unsigned long long) (b)[(i) + 1] << 48 ) \ 109 | ( (unsigned long long) (b)[(i) + 2] << 40 ) \ 110 | ( (unsigned long long) (b)[(i) + 3] << 32 ) \ 111 | ( (unsigned long long) (b)[(i) + 4] << 24 ) \ 112 | ( (unsigned long long) (b)[(i) + 5] << 16 ) \ 113 | ( (unsigned long long) (b)[(i) + 6] << 8 ) \ 114 | ( (unsigned long long) (b)[(i) + 7] ); \ 115 } 116 #endif 117 #ifndef PUT_UINT64_BE 118 #define PUT_UINT64_BE(n,b,i) { \ 119 (b)[(i) ] = (unsigned char) ( (n) >> 56 ); \ 120 (b)[(i) + 1] = (unsigned char) ( (n) >> 48 ); \ 121 (b)[(i) + 2] = (unsigned char) ( (n) >> 40 ); \ 122 (b)[(i) + 3] = (unsigned char) ( (n) >> 32 ); \ 123 (b)[(i) + 4] = (unsigned char) ( (n) >> 24 ); \ 124 (b)[(i) + 5] = (unsigned char) ( (n) >> 16 ); \ 125 (b)[(i) + 6] = (unsigned char) ( (n) >> 8 ); \ 126 (b)[(i) + 7] = (unsigned char) ( (n) ); \ 127 } 128 #endif 129 130 static inline void LOAD_OP(int I, uint64_t *W, const uint8_t *input) 131 { 132 GET_UINT64_BE(W[I], input, I*8); 133 } 134 135 static inline void BLEND_OP(int I, uint64_t *W) 136 { 137 W[I & 15] += s1(W[(I-2) & 15]) + W[(I-7) & 15] + s0(W[(I-15) & 15]); 138 } 139 140 static void 141 sha512_transform(uint64_t *state, const uint8_t *input) 142 { 143 uint64_t a, b, c, d, e, f, g, h, t1, t2; 144 145 int i; 146 uint64_t W[16]; 147 148 /* load the state into our registers */ 149 a=state[0]; b=state[1]; c=state[2]; d=state[3]; 150 e=state[4]; f=state[5]; g=state[6]; h=state[7]; 151 152 /* now iterate */ 153 for (i=0; i<80; i+=8) { 154 if (!(i & 8)) { 155 int j; 156 157 if (i < 16) { 158 /* load the input */ 159 for (j = 0; j < 16; j++) 160 LOAD_OP(i + j, W, input); 161 } else { 162 for (j = 0; j < 16; j++) { 163 BLEND_OP(i + j, W); 164 } 165 } 166 } 167 168 t1 = h + e1(e) + Ch(e,f,g) + sha512_K[i ] + W[(i & 15)]; 169 t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2; 170 t1 = g + e1(d) + Ch(d,e,f) + sha512_K[i+1] + W[(i & 15) + 1]; 171 t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2; 172 t1 = f + e1(c) + Ch(c,d,e) + sha512_K[i+2] + W[(i & 15) + 2]; 173 t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2; 174 t1 = e + e1(b) + Ch(b,c,d) + sha512_K[i+3] + W[(i & 15) + 3]; 175 t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2; 176 t1 = d + e1(a) + Ch(a,b,c) + sha512_K[i+4] + W[(i & 15) + 4]; 177 t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2; 178 t1 = c + e1(h) + Ch(h,a,b) + sha512_K[i+5] + W[(i & 15) + 5]; 179 t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2; 180 t1 = b + e1(g) + Ch(g,h,a) + sha512_K[i+6] + W[(i & 15) + 6]; 181 t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2; 182 t1 = a + e1(f) + Ch(f,g,h) + sha512_K[i+7] + W[(i & 15) + 7]; 183 t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2; 184 } 185 186 state[0] += a; state[1] += b; state[2] += c; state[3] += d; 187 state[4] += e; state[5] += f; state[6] += g; state[7] += h; 188 189 /* erase our data */ 190 a = b = c = d = e = f = g = h = t1 = t2 = 0; 191 } 192 193 static void sha512_block_fn(sha512_context *sst, const uint8_t *src, 194 int blocks) 195 { 196 while (blocks--) { 197 sha512_transform(sst->state, src); 198 src += SHA512_BLOCK_SIZE; 199 } 200 } 201 202 static void sha512_base_do_update(sha512_context *sctx, 203 const uint8_t *data, 204 unsigned int len) 205 { 206 unsigned int partial = sctx->count[0] % SHA512_BLOCK_SIZE; 207 208 sctx->count[0] += len; 209 if (sctx->count[0] < len) 210 sctx->count[1]++; 211 212 if (unlikely((partial + len) >= SHA512_BLOCK_SIZE)) { 213 int blocks; 214 215 if (partial) { 216 int p = SHA512_BLOCK_SIZE - partial; 217 218 memcpy(sctx->buf + partial, data, p); 219 data += p; 220 len -= p; 221 222 sha512_block_fn(sctx, sctx->buf, 1); 223 } 224 225 blocks = len / SHA512_BLOCK_SIZE; 226 len %= SHA512_BLOCK_SIZE; 227 228 if (blocks) { 229 sha512_block_fn(sctx, data, blocks); 230 data += blocks * SHA512_BLOCK_SIZE; 231 } 232 partial = 0; 233 } 234 if (len) 235 memcpy(sctx->buf + partial, data, len); 236 } 237 238 static void sha512_base_do_finalize(sha512_context *sctx) 239 { 240 const int bit_offset = SHA512_BLOCK_SIZE - sizeof(uint64_t[2]); 241 uint64_t *bits = (uint64_t *)(sctx->buf + bit_offset); 242 unsigned int partial = sctx->count[0] % SHA512_BLOCK_SIZE; 243 244 sctx->buf[partial++] = 0x80; 245 if (partial > bit_offset) { 246 memset(sctx->buf + partial, 0x0, SHA512_BLOCK_SIZE - partial); 247 partial = 0; 248 249 sha512_block_fn(sctx, sctx->buf, 1); 250 } 251 252 memset(sctx->buf + partial, 0x0, bit_offset - partial); 253 bits[0] = cpu_to_be64(sctx->count[1] << 3 | sctx->count[0] >> 61); 254 bits[1] = cpu_to_be64(sctx->count[0] << 3); 255 sha512_block_fn(sctx, sctx->buf, 1); 256 } 257 258 #if defined(CONFIG_SHA384) 259 void sha384_starts(sha512_context * ctx) 260 { 261 ctx->state[0] = SHA384_H0; 262 ctx->state[1] = SHA384_H1; 263 ctx->state[2] = SHA384_H2; 264 ctx->state[3] = SHA384_H3; 265 ctx->state[4] = SHA384_H4; 266 ctx->state[5] = SHA384_H5; 267 ctx->state[6] = SHA384_H6; 268 ctx->state[7] = SHA384_H7; 269 ctx->count[0] = ctx->count[1] = 0; 270 } 271 272 void sha384_update(sha512_context *ctx, const uint8_t *input, uint32_t length) 273 { 274 sha512_base_do_update(ctx, input, length); 275 } 276 277 void sha384_finish(sha512_context * ctx, uint8_t digest[SHA384_SUM_LEN]) 278 { 279 int i; 280 281 sha512_base_do_finalize(ctx); 282 for(i=0; i<SHA384_SUM_LEN / sizeof(uint64_t); i++) 283 PUT_UINT64_BE(ctx->state[i], digest, i * 8); 284 } 285 286 /* 287 * Output = SHA-512( input buffer ). Trigger the watchdog every 'chunk_sz' 288 * bytes of input processed. 289 */ 290 void sha384_csum_wd(const unsigned char *input, unsigned int ilen, 291 unsigned char *output, unsigned int chunk_sz) 292 { 293 sha512_context ctx; 294 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) 295 const unsigned char *end; 296 unsigned char *curr; 297 int chunk; 298 #endif 299 300 sha384_starts(&ctx); 301 302 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) 303 curr = (unsigned char *)input; 304 end = input + ilen; 305 while (curr < end) { 306 chunk = end - curr; 307 if (chunk > chunk_sz) 308 chunk = chunk_sz; 309 sha384_update(&ctx, curr, chunk); 310 curr += chunk; 311 WATCHDOG_RESET(); 312 } 313 #else 314 sha384_update(&ctx, input, ilen); 315 #endif 316 317 sha384_finish(&ctx, output); 318 } 319 320 #endif 321 322 #if defined(CONFIG_SHA512) 323 void sha512_starts(sha512_context * ctx) 324 { 325 ctx->state[0] = SHA512_H0; 326 ctx->state[1] = SHA512_H1; 327 ctx->state[2] = SHA512_H2; 328 ctx->state[3] = SHA512_H3; 329 ctx->state[4] = SHA512_H4; 330 ctx->state[5] = SHA512_H5; 331 ctx->state[6] = SHA512_H6; 332 ctx->state[7] = SHA512_H7; 333 ctx->count[0] = ctx->count[1] = 0; 334 } 335 336 void sha512_update(sha512_context *ctx, const uint8_t *input, uint32_t length) 337 { 338 sha512_base_do_update(ctx, input, length); 339 } 340 341 void sha512_finish(sha512_context * ctx, uint8_t digest[SHA512_SUM_LEN]) 342 { 343 int i; 344 345 sha512_base_do_finalize(ctx); 346 for(i=0; i<SHA512_SUM_LEN / sizeof(uint64_t); i++) 347 PUT_UINT64_BE(ctx->state[i], digest, i * 8); 348 } 349 350 /* 351 * Output = SHA-512( input buffer ). Trigger the watchdog every 'chunk_sz' 352 * bytes of input processed. 353 */ 354 void sha512_csum_wd(const unsigned char *input, unsigned int ilen, 355 unsigned char *output, unsigned int chunk_sz) 356 { 357 sha512_context ctx; 358 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) 359 const unsigned char *end; 360 unsigned char *curr; 361 int chunk; 362 #endif 363 364 sha512_starts(&ctx); 365 366 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) 367 curr = (unsigned char *)input; 368 end = input + ilen; 369 while (curr < end) { 370 chunk = end - curr; 371 if (chunk > chunk_sz) 372 chunk = chunk_sz; 373 sha512_update(&ctx, curr, chunk); 374 curr += chunk; 375 WATCHDOG_RESET(); 376 } 377 #else 378 sha512_update(&ctx, input, ilen); 379 #endif 380 381 sha512_finish(&ctx, output); 382 } 383 #endif 384