xref: /openbmc/u-boot/lib/rsa/rsa-sign.c (revision ea818dbbcd59300b56014ac2d67798a54994eb9b)
1 /*
2  * Copyright (c) 2013, Google Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation; either version 2 of
7  * the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
17  * MA 02111-1307 USA
18  */
19 
20 #include "mkimage.h"
21 #include <stdio.h>
22 #include <string.h>
23 #include <image.h>
24 #include <time.h>
25 #include <openssl/rsa.h>
26 #include <openssl/pem.h>
27 #include <openssl/err.h>
28 #include <openssl/ssl.h>
29 #include <openssl/evp.h>
30 
31 #if OPENSSL_VERSION_NUMBER >= 0x10000000L
32 #define HAVE_ERR_REMOVE_THREAD_STATE
33 #endif
34 
35 static int rsa_err(const char *msg)
36 {
37 	unsigned long sslErr = ERR_get_error();
38 
39 	fprintf(stderr, "%s", msg);
40 	fprintf(stderr, ": %s\n",
41 		ERR_error_string(sslErr, 0));
42 
43 	return -1;
44 }
45 
46 /**
47  * rsa_get_pub_key() - read a public key from a .crt file
48  *
49  * @keydir:	Directory containins the key
50  * @name	Name of key file (will have a .crt extension)
51  * @rsap	Returns RSA object, or NULL on failure
52  * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL)
53  */
54 static int rsa_get_pub_key(const char *keydir, const char *name, RSA **rsap)
55 {
56 	char path[1024];
57 	EVP_PKEY *key;
58 	X509 *cert;
59 	RSA *rsa;
60 	FILE *f;
61 	int ret;
62 
63 	*rsap = NULL;
64 	snprintf(path, sizeof(path), "%s/%s.crt", keydir, name);
65 	f = fopen(path, "r");
66 	if (!f) {
67 		fprintf(stderr, "Couldn't open RSA certificate: '%s': %s\n",
68 			path, strerror(errno));
69 		return -EACCES;
70 	}
71 
72 	/* Read the certificate */
73 	cert = NULL;
74 	if (!PEM_read_X509(f, &cert, NULL, NULL)) {
75 		rsa_err("Couldn't read certificate");
76 		ret = -EINVAL;
77 		goto err_cert;
78 	}
79 
80 	/* Get the public key from the certificate. */
81 	key = X509_get_pubkey(cert);
82 	if (!key) {
83 		rsa_err("Couldn't read public key\n");
84 		ret = -EINVAL;
85 		goto err_pubkey;
86 	}
87 
88 	/* Convert to a RSA_style key. */
89 	rsa = EVP_PKEY_get1_RSA(key);
90 	if (!rsa) {
91 		rsa_err("Couldn't convert to a RSA style key");
92 		goto err_rsa;
93 	}
94 	fclose(f);
95 	EVP_PKEY_free(key);
96 	X509_free(cert);
97 	*rsap = rsa;
98 
99 	return 0;
100 
101 err_rsa:
102 	EVP_PKEY_free(key);
103 err_pubkey:
104 	X509_free(cert);
105 err_cert:
106 	fclose(f);
107 	return ret;
108 }
109 
110 /**
111  * rsa_get_priv_key() - read a private key from a .key file
112  *
113  * @keydir:	Directory containins the key
114  * @name	Name of key file (will have a .key extension)
115  * @rsap	Returns RSA object, or NULL on failure
116  * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL)
117  */
118 static int rsa_get_priv_key(const char *keydir, const char *name, RSA **rsap)
119 {
120 	char path[1024];
121 	RSA *rsa;
122 	FILE *f;
123 
124 	*rsap = NULL;
125 	snprintf(path, sizeof(path), "%s/%s.key", keydir, name);
126 	f = fopen(path, "r");
127 	if (!f) {
128 		fprintf(stderr, "Couldn't open RSA private key: '%s': %s\n",
129 			path, strerror(errno));
130 		return -ENOENT;
131 	}
132 
133 	rsa = PEM_read_RSAPrivateKey(f, 0, NULL, path);
134 	if (!rsa) {
135 		rsa_err("Failure reading private key");
136 		fclose(f);
137 		return -EPROTO;
138 	}
139 	fclose(f);
140 	*rsap = rsa;
141 
142 	return 0;
143 }
144 
145 static int rsa_init(void)
146 {
147 	int ret;
148 
149 	ret = SSL_library_init();
150 	if (!ret) {
151 		fprintf(stderr, "Failure to init SSL library\n");
152 		return -1;
153 	}
154 	SSL_load_error_strings();
155 
156 	OpenSSL_add_all_algorithms();
157 	OpenSSL_add_all_digests();
158 	OpenSSL_add_all_ciphers();
159 
160 	return 0;
161 }
162 
163 static void rsa_remove(void)
164 {
165 	CRYPTO_cleanup_all_ex_data();
166 	ERR_free_strings();
167 #ifdef HAVE_ERR_REMOVE_THREAD_STATE
168 	ERR_remove_thread_state(NULL);
169 #else
170 	ERR_remove_state(0);
171 #endif
172 	EVP_cleanup();
173 }
174 
175 static int rsa_sign_with_key(RSA *rsa, const struct image_region region[],
176 		int region_count, uint8_t **sigp, uint *sig_size)
177 {
178 	EVP_PKEY *key;
179 	EVP_MD_CTX *context;
180 	int size, ret = 0;
181 	uint8_t *sig;
182 	int i;
183 
184 	key = EVP_PKEY_new();
185 	if (!key)
186 		return rsa_err("EVP_PKEY object creation failed");
187 
188 	if (!EVP_PKEY_set1_RSA(key, rsa)) {
189 		ret = rsa_err("EVP key setup failed");
190 		goto err_set;
191 	}
192 
193 	size = EVP_PKEY_size(key);
194 	sig = malloc(size);
195 	if (!sig) {
196 		fprintf(stderr, "Out of memory for signature (%d bytes)\n",
197 			size);
198 		ret = -ENOMEM;
199 		goto err_alloc;
200 	}
201 
202 	context = EVP_MD_CTX_create();
203 	if (!context) {
204 		ret = rsa_err("EVP context creation failed");
205 		goto err_create;
206 	}
207 	EVP_MD_CTX_init(context);
208 	if (!EVP_SignInit(context, EVP_sha1())) {
209 		ret = rsa_err("Signer setup failed");
210 		goto err_sign;
211 	}
212 
213 	for (i = 0; i < region_count; i++) {
214 		if (!EVP_SignUpdate(context, region[i].data, region[i].size)) {
215 			ret = rsa_err("Signing data failed");
216 			goto err_sign;
217 		}
218 	}
219 
220 	if (!EVP_SignFinal(context, sig, sig_size, key)) {
221 		ret = rsa_err("Could not obtain signature");
222 		goto err_sign;
223 	}
224 	EVP_MD_CTX_cleanup(context);
225 	EVP_MD_CTX_destroy(context);
226 	EVP_PKEY_free(key);
227 
228 	debug("Got signature: %d bytes, expected %d\n", *sig_size, size);
229 	*sigp = sig;
230 	*sig_size = size;
231 
232 	return 0;
233 
234 err_sign:
235 	EVP_MD_CTX_destroy(context);
236 err_create:
237 	free(sig);
238 err_alloc:
239 err_set:
240 	EVP_PKEY_free(key);
241 	return ret;
242 }
243 
244 int rsa_sign(struct image_sign_info *info,
245 	     const struct image_region region[], int region_count,
246 	     uint8_t **sigp, uint *sig_len)
247 {
248 	RSA *rsa;
249 	int ret;
250 
251 	ret = rsa_init();
252 	if (ret)
253 		return ret;
254 
255 	ret = rsa_get_priv_key(info->keydir, info->keyname, &rsa);
256 	if (ret)
257 		goto err_priv;
258 	ret = rsa_sign_with_key(rsa, region, region_count, sigp, sig_len);
259 	if (ret)
260 		goto err_sign;
261 
262 	RSA_free(rsa);
263 	rsa_remove();
264 
265 	return ret;
266 
267 err_sign:
268 	RSA_free(rsa);
269 err_priv:
270 	rsa_remove();
271 	return ret;
272 }
273 
274 /*
275  * rsa_get_params(): - Get the important parameters of an RSA public key
276  */
277 int rsa_get_params(RSA *key, uint32_t *n0_invp, BIGNUM **modulusp,
278 		   BIGNUM **r_squaredp)
279 {
280 	BIGNUM *big1, *big2, *big32, *big2_32;
281 	BIGNUM *n, *r, *r_squared, *tmp;
282 	BN_CTX *bn_ctx = BN_CTX_new();
283 	int ret = 0;
284 
285 	/* Initialize BIGNUMs */
286 	big1 = BN_new();
287 	big2 = BN_new();
288 	big32 = BN_new();
289 	r = BN_new();
290 	r_squared = BN_new();
291 	tmp = BN_new();
292 	big2_32 = BN_new();
293 	n = BN_new();
294 	if (!big1 || !big2 || !big32 || !r || !r_squared || !tmp || !big2_32 ||
295 	    !n) {
296 		fprintf(stderr, "Out of memory (bignum)\n");
297 		return -ENOMEM;
298 	}
299 
300 	if (!BN_copy(n, key->n) || !BN_set_word(big1, 1L) ||
301 	    !BN_set_word(big2, 2L) || !BN_set_word(big32, 32L))
302 		ret = -1;
303 
304 	/* big2_32 = 2^32 */
305 	if (!BN_exp(big2_32, big2, big32, bn_ctx))
306 		ret = -1;
307 
308 	/* Calculate n0_inv = -1 / n[0] mod 2^32 */
309 	if (!BN_mod_inverse(tmp, n, big2_32, bn_ctx) ||
310 	    !BN_sub(tmp, big2_32, tmp))
311 		ret = -1;
312 	*n0_invp = BN_get_word(tmp);
313 
314 	/* Calculate R = 2^(# of key bits) */
315 	if (!BN_set_word(tmp, BN_num_bits(n)) ||
316 	    !BN_exp(r, big2, tmp, bn_ctx))
317 		ret = -1;
318 
319 	/* Calculate r_squared = R^2 mod n */
320 	if (!BN_copy(r_squared, r) ||
321 	    !BN_mul(tmp, r_squared, r, bn_ctx) ||
322 	    !BN_mod(r_squared, tmp, n, bn_ctx))
323 		ret = -1;
324 
325 	*modulusp = n;
326 	*r_squaredp = r_squared;
327 
328 	BN_free(big1);
329 	BN_free(big2);
330 	BN_free(big32);
331 	BN_free(r);
332 	BN_free(tmp);
333 	BN_free(big2_32);
334 	if (ret) {
335 		fprintf(stderr, "Bignum operations failed\n");
336 		return -ENOMEM;
337 	}
338 
339 	return ret;
340 }
341 
342 static int fdt_add_bignum(void *blob, int noffset, const char *prop_name,
343 			  BIGNUM *num, int num_bits)
344 {
345 	int nwords = num_bits / 32;
346 	int size;
347 	uint32_t *buf, *ptr;
348 	BIGNUM *tmp, *big2, *big32, *big2_32;
349 	BN_CTX *ctx;
350 	int ret;
351 
352 	tmp = BN_new();
353 	big2 = BN_new();
354 	big32 = BN_new();
355 	big2_32 = BN_new();
356 	if (!tmp || !big2 || !big32 || !big2_32) {
357 		fprintf(stderr, "Out of memory (bignum)\n");
358 		return -ENOMEM;
359 	}
360 	ctx = BN_CTX_new();
361 	if (!tmp) {
362 		fprintf(stderr, "Out of memory (bignum context)\n");
363 		return -ENOMEM;
364 	}
365 	BN_set_word(big2, 2L);
366 	BN_set_word(big32, 32L);
367 	BN_exp(big2_32, big2, big32, ctx); /* B = 2^32 */
368 
369 	size = nwords * sizeof(uint32_t);
370 	buf = malloc(size);
371 	if (!buf) {
372 		fprintf(stderr, "Out of memory (%d bytes)\n", size);
373 		return -ENOMEM;
374 	}
375 
376 	/* Write out modulus as big endian array of integers */
377 	for (ptr = buf + nwords - 1; ptr >= buf; ptr--) {
378 		BN_mod(tmp, num, big2_32, ctx); /* n = N mod B */
379 		*ptr = cpu_to_fdt32(BN_get_word(tmp));
380 		BN_rshift(num, num, 32); /*  N = N/B */
381 	}
382 
383 	ret = fdt_setprop(blob, noffset, prop_name, buf, size);
384 	if (ret) {
385 		fprintf(stderr, "Failed to write public key to FIT\n");
386 		return -ENOSPC;
387 	}
388 	free(buf);
389 	BN_free(tmp);
390 	BN_free(big2);
391 	BN_free(big32);
392 	BN_free(big2_32);
393 
394 	return ret;
395 }
396 
397 int rsa_add_verify_data(struct image_sign_info *info, void *keydest)
398 {
399 	BIGNUM *modulus, *r_squared;
400 	uint32_t n0_inv;
401 	int parent, node;
402 	char name[100];
403 	int ret;
404 	int bits;
405 	RSA *rsa;
406 
407 	debug("%s: Getting verification data\n", __func__);
408 	ret = rsa_get_pub_key(info->keydir, info->keyname, &rsa);
409 	if (ret)
410 		return ret;
411 	ret = rsa_get_params(rsa, &n0_inv, &modulus, &r_squared);
412 	if (ret)
413 		return ret;
414 	bits = BN_num_bits(modulus);
415 	parent = fdt_subnode_offset(keydest, 0, FIT_SIG_NODENAME);
416 	if (parent == -FDT_ERR_NOTFOUND) {
417 		parent = fdt_add_subnode(keydest, 0, FIT_SIG_NODENAME);
418 		if (parent < 0) {
419 			fprintf(stderr, "Couldn't create signature node: %s\n",
420 				fdt_strerror(parent));
421 			return -EINVAL;
422 		}
423 	}
424 
425 	/* Either create or overwrite the named key node */
426 	snprintf(name, sizeof(name), "key-%s", info->keyname);
427 	node = fdt_subnode_offset(keydest, parent, name);
428 	if (node == -FDT_ERR_NOTFOUND) {
429 		node = fdt_add_subnode(keydest, parent, name);
430 		if (node < 0) {
431 			fprintf(stderr, "Could not create key subnode: %s\n",
432 				fdt_strerror(node));
433 			return -EINVAL;
434 		}
435 	} else if (node < 0) {
436 		fprintf(stderr, "Cannot select keys parent: %s\n",
437 			fdt_strerror(node));
438 		return -ENOSPC;
439 	}
440 
441 	ret = fdt_setprop_string(keydest, node, "key-name-hint",
442 				 info->keyname);
443 	ret |= fdt_setprop_u32(keydest, node, "rsa,num-bits", bits);
444 	ret |= fdt_setprop_u32(keydest, node, "rsa,n0-inverse", n0_inv);
445 	ret |= fdt_add_bignum(keydest, node, "rsa,modulus", modulus, bits);
446 	ret |= fdt_add_bignum(keydest, node, "rsa,r-squared", r_squared, bits);
447 	ret |= fdt_setprop_string(keydest, node, FIT_ALGO_PROP,
448 				  info->algo->name);
449 	if (info->require_keys) {
450 		fdt_setprop_string(keydest, node, "required",
451 				   info->require_keys);
452 	}
453 	BN_free(modulus);
454 	BN_free(r_squared);
455 	if (ret)
456 		return -EIO;
457 
458 	return 0;
459 }
460