xref: /openbmc/u-boot/lib/rsa/rsa-sign.c (revision 7aa1a40876a0da0fadf360a352bba0adf8624904)
1 /*
2  * Copyright (c) 2013, Google Inc.
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  */
6 
7 #include "mkimage.h"
8 #include <stdio.h>
9 #include <string.h>
10 #include <image.h>
11 #include <time.h>
12 #include <openssl/rsa.h>
13 #include <openssl/pem.h>
14 #include <openssl/err.h>
15 #include <openssl/ssl.h>
16 #include <openssl/evp.h>
17 
18 #if OPENSSL_VERSION_NUMBER >= 0x10000000L
19 #define HAVE_ERR_REMOVE_THREAD_STATE
20 #endif
21 
22 static int rsa_err(const char *msg)
23 {
24 	unsigned long sslErr = ERR_get_error();
25 
26 	fprintf(stderr, "%s", msg);
27 	fprintf(stderr, ": %s\n",
28 		ERR_error_string(sslErr, 0));
29 
30 	return -1;
31 }
32 
33 /**
34  * rsa_get_pub_key() - read a public key from a .crt file
35  *
36  * @keydir:	Directory containins the key
37  * @name	Name of key file (will have a .crt extension)
38  * @rsap	Returns RSA object, or NULL on failure
39  * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL)
40  */
41 static int rsa_get_pub_key(const char *keydir, const char *name, RSA **rsap)
42 {
43 	char path[1024];
44 	EVP_PKEY *key;
45 	X509 *cert;
46 	RSA *rsa;
47 	FILE *f;
48 	int ret;
49 
50 	*rsap = NULL;
51 	snprintf(path, sizeof(path), "%s/%s.crt", keydir, name);
52 	f = fopen(path, "r");
53 	if (!f) {
54 		fprintf(stderr, "Couldn't open RSA certificate: '%s': %s\n",
55 			path, strerror(errno));
56 		return -EACCES;
57 	}
58 
59 	/* Read the certificate */
60 	cert = NULL;
61 	if (!PEM_read_X509(f, &cert, NULL, NULL)) {
62 		rsa_err("Couldn't read certificate");
63 		ret = -EINVAL;
64 		goto err_cert;
65 	}
66 
67 	/* Get the public key from the certificate. */
68 	key = X509_get_pubkey(cert);
69 	if (!key) {
70 		rsa_err("Couldn't read public key\n");
71 		ret = -EINVAL;
72 		goto err_pubkey;
73 	}
74 
75 	/* Convert to a RSA_style key. */
76 	rsa = EVP_PKEY_get1_RSA(key);
77 	if (!rsa) {
78 		rsa_err("Couldn't convert to a RSA style key");
79 		ret = -EINVAL;
80 		goto err_rsa;
81 	}
82 	fclose(f);
83 	EVP_PKEY_free(key);
84 	X509_free(cert);
85 	*rsap = rsa;
86 
87 	return 0;
88 
89 err_rsa:
90 	EVP_PKEY_free(key);
91 err_pubkey:
92 	X509_free(cert);
93 err_cert:
94 	fclose(f);
95 	return ret;
96 }
97 
98 /**
99  * rsa_get_priv_key() - read a private key from a .key file
100  *
101  * @keydir:	Directory containins the key
102  * @name	Name of key file (will have a .key extension)
103  * @rsap	Returns RSA object, or NULL on failure
104  * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL)
105  */
106 static int rsa_get_priv_key(const char *keydir, const char *name, RSA **rsap)
107 {
108 	char path[1024];
109 	RSA *rsa;
110 	FILE *f;
111 
112 	*rsap = NULL;
113 	snprintf(path, sizeof(path), "%s/%s.key", keydir, name);
114 	f = fopen(path, "r");
115 	if (!f) {
116 		fprintf(stderr, "Couldn't open RSA private key: '%s': %s\n",
117 			path, strerror(errno));
118 		return -ENOENT;
119 	}
120 
121 	rsa = PEM_read_RSAPrivateKey(f, 0, NULL, path);
122 	if (!rsa) {
123 		rsa_err("Failure reading private key");
124 		fclose(f);
125 		return -EPROTO;
126 	}
127 	fclose(f);
128 	*rsap = rsa;
129 
130 	return 0;
131 }
132 
133 static int rsa_init(void)
134 {
135 	int ret;
136 
137 	ret = SSL_library_init();
138 	if (!ret) {
139 		fprintf(stderr, "Failure to init SSL library\n");
140 		return -1;
141 	}
142 	SSL_load_error_strings();
143 
144 	OpenSSL_add_all_algorithms();
145 	OpenSSL_add_all_digests();
146 	OpenSSL_add_all_ciphers();
147 
148 	return 0;
149 }
150 
151 static void rsa_remove(void)
152 {
153 	CRYPTO_cleanup_all_ex_data();
154 	ERR_free_strings();
155 #ifdef HAVE_ERR_REMOVE_THREAD_STATE
156 	ERR_remove_thread_state(NULL);
157 #else
158 	ERR_remove_state(0);
159 #endif
160 	EVP_cleanup();
161 }
162 
163 static int rsa_sign_with_key(RSA *rsa, struct checksum_algo *checksum_algo,
164 		const struct image_region region[], int region_count,
165 		uint8_t **sigp, uint *sig_size)
166 {
167 	EVP_PKEY *key;
168 	EVP_MD_CTX *context;
169 	int size, ret = 0;
170 	uint8_t *sig;
171 	int i;
172 
173 	key = EVP_PKEY_new();
174 	if (!key)
175 		return rsa_err("EVP_PKEY object creation failed");
176 
177 	if (!EVP_PKEY_set1_RSA(key, rsa)) {
178 		ret = rsa_err("EVP key setup failed");
179 		goto err_set;
180 	}
181 
182 	size = EVP_PKEY_size(key);
183 	sig = malloc(size);
184 	if (!sig) {
185 		fprintf(stderr, "Out of memory for signature (%d bytes)\n",
186 			size);
187 		ret = -ENOMEM;
188 		goto err_alloc;
189 	}
190 
191 	context = EVP_MD_CTX_create();
192 	if (!context) {
193 		ret = rsa_err("EVP context creation failed");
194 		goto err_create;
195 	}
196 	EVP_MD_CTX_init(context);
197 	if (!EVP_SignInit(context, checksum_algo->calculate_sign())) {
198 		ret = rsa_err("Signer setup failed");
199 		goto err_sign;
200 	}
201 
202 	for (i = 0; i < region_count; i++) {
203 		if (!EVP_SignUpdate(context, region[i].data, region[i].size)) {
204 			ret = rsa_err("Signing data failed");
205 			goto err_sign;
206 		}
207 	}
208 
209 	if (!EVP_SignFinal(context, sig, sig_size, key)) {
210 		ret = rsa_err("Could not obtain signature");
211 		goto err_sign;
212 	}
213 	EVP_MD_CTX_cleanup(context);
214 	EVP_MD_CTX_destroy(context);
215 	EVP_PKEY_free(key);
216 
217 	debug("Got signature: %d bytes, expected %d\n", *sig_size, size);
218 	*sigp = sig;
219 	*sig_size = size;
220 
221 	return 0;
222 
223 err_sign:
224 	EVP_MD_CTX_destroy(context);
225 err_create:
226 	free(sig);
227 err_alloc:
228 err_set:
229 	EVP_PKEY_free(key);
230 	return ret;
231 }
232 
233 int rsa_sign(struct image_sign_info *info,
234 	     const struct image_region region[], int region_count,
235 	     uint8_t **sigp, uint *sig_len)
236 {
237 	RSA *rsa;
238 	int ret;
239 
240 	ret = rsa_init();
241 	if (ret)
242 		return ret;
243 
244 	ret = rsa_get_priv_key(info->keydir, info->keyname, &rsa);
245 	if (ret)
246 		goto err_priv;
247 	ret = rsa_sign_with_key(rsa, info->checksum, region,
248 				region_count, sigp, sig_len);
249 	if (ret)
250 		goto err_sign;
251 
252 	RSA_free(rsa);
253 	rsa_remove();
254 
255 	return ret;
256 
257 err_sign:
258 	RSA_free(rsa);
259 err_priv:
260 	rsa_remove();
261 	return ret;
262 }
263 
264 /*
265  * rsa_get_exponent(): - Get the public exponent from an RSA key
266  */
267 static int rsa_get_exponent(RSA *key, uint64_t *e)
268 {
269 	int ret;
270 	BIGNUM *bn_te;
271 	uint64_t te;
272 
273 	ret = -EINVAL;
274 	bn_te = NULL;
275 
276 	if (!e)
277 		goto cleanup;
278 
279 	if (BN_num_bits(key->e) > 64)
280 		goto cleanup;
281 
282 	*e = BN_get_word(key->e);
283 
284 	if (BN_num_bits(key->e) < 33) {
285 		ret = 0;
286 		goto cleanup;
287 	}
288 
289 	bn_te = BN_dup(key->e);
290 	if (!bn_te)
291 		goto cleanup;
292 
293 	if (!BN_rshift(bn_te, bn_te, 32))
294 		goto cleanup;
295 
296 	if (!BN_mask_bits(bn_te, 32))
297 		goto cleanup;
298 
299 	te = BN_get_word(bn_te);
300 	te <<= 32;
301 	*e |= te;
302 	ret = 0;
303 
304 cleanup:
305 	if (bn_te)
306 		BN_free(bn_te);
307 
308 	return ret;
309 }
310 
311 /*
312  * rsa_get_params(): - Get the important parameters of an RSA public key
313  */
314 int rsa_get_params(RSA *key, uint64_t *exponent, uint32_t *n0_invp,
315 		   BIGNUM **modulusp, BIGNUM **r_squaredp)
316 {
317 	BIGNUM *big1, *big2, *big32, *big2_32;
318 	BIGNUM *n, *r, *r_squared, *tmp;
319 	BN_CTX *bn_ctx = BN_CTX_new();
320 	int ret = 0;
321 
322 	/* Initialize BIGNUMs */
323 	big1 = BN_new();
324 	big2 = BN_new();
325 	big32 = BN_new();
326 	r = BN_new();
327 	r_squared = BN_new();
328 	tmp = BN_new();
329 	big2_32 = BN_new();
330 	n = BN_new();
331 	if (!big1 || !big2 || !big32 || !r || !r_squared || !tmp || !big2_32 ||
332 	    !n) {
333 		fprintf(stderr, "Out of memory (bignum)\n");
334 		return -ENOMEM;
335 	}
336 
337 	if (0 != rsa_get_exponent(key, exponent))
338 		ret = -1;
339 
340 	if (!BN_copy(n, key->n) || !BN_set_word(big1, 1L) ||
341 	    !BN_set_word(big2, 2L) || !BN_set_word(big32, 32L))
342 		ret = -1;
343 
344 	/* big2_32 = 2^32 */
345 	if (!BN_exp(big2_32, big2, big32, bn_ctx))
346 		ret = -1;
347 
348 	/* Calculate n0_inv = -1 / n[0] mod 2^32 */
349 	if (!BN_mod_inverse(tmp, n, big2_32, bn_ctx) ||
350 	    !BN_sub(tmp, big2_32, tmp))
351 		ret = -1;
352 	*n0_invp = BN_get_word(tmp);
353 
354 	/* Calculate R = 2^(# of key bits) */
355 	if (!BN_set_word(tmp, BN_num_bits(n)) ||
356 	    !BN_exp(r, big2, tmp, bn_ctx))
357 		ret = -1;
358 
359 	/* Calculate r_squared = R^2 mod n */
360 	if (!BN_copy(r_squared, r) ||
361 	    !BN_mul(tmp, r_squared, r, bn_ctx) ||
362 	    !BN_mod(r_squared, tmp, n, bn_ctx))
363 		ret = -1;
364 
365 	*modulusp = n;
366 	*r_squaredp = r_squared;
367 
368 	BN_free(big1);
369 	BN_free(big2);
370 	BN_free(big32);
371 	BN_free(r);
372 	BN_free(tmp);
373 	BN_free(big2_32);
374 	if (ret) {
375 		fprintf(stderr, "Bignum operations failed\n");
376 		return -ENOMEM;
377 	}
378 
379 	return ret;
380 }
381 
382 static int fdt_add_bignum(void *blob, int noffset, const char *prop_name,
383 			  BIGNUM *num, int num_bits)
384 {
385 	int nwords = num_bits / 32;
386 	int size;
387 	uint32_t *buf, *ptr;
388 	BIGNUM *tmp, *big2, *big32, *big2_32;
389 	BN_CTX *ctx;
390 	int ret;
391 
392 	tmp = BN_new();
393 	big2 = BN_new();
394 	big32 = BN_new();
395 	big2_32 = BN_new();
396 	if (!tmp || !big2 || !big32 || !big2_32) {
397 		fprintf(stderr, "Out of memory (bignum)\n");
398 		return -ENOMEM;
399 	}
400 	ctx = BN_CTX_new();
401 	if (!tmp) {
402 		fprintf(stderr, "Out of memory (bignum context)\n");
403 		return -ENOMEM;
404 	}
405 	BN_set_word(big2, 2L);
406 	BN_set_word(big32, 32L);
407 	BN_exp(big2_32, big2, big32, ctx); /* B = 2^32 */
408 
409 	size = nwords * sizeof(uint32_t);
410 	buf = malloc(size);
411 	if (!buf) {
412 		fprintf(stderr, "Out of memory (%d bytes)\n", size);
413 		return -ENOMEM;
414 	}
415 
416 	/* Write out modulus as big endian array of integers */
417 	for (ptr = buf + nwords - 1; ptr >= buf; ptr--) {
418 		BN_mod(tmp, num, big2_32, ctx); /* n = N mod B */
419 		*ptr = cpu_to_fdt32(BN_get_word(tmp));
420 		BN_rshift(num, num, 32); /*  N = N/B */
421 	}
422 
423 	/*
424 	 * We try signing with successively increasing size values, so this
425 	 * might fail several times
426 	 */
427 	ret = fdt_setprop(blob, noffset, prop_name, buf, size);
428 	if (ret)
429 		return -FDT_ERR_NOSPACE;
430 	free(buf);
431 	BN_free(tmp);
432 	BN_free(big2);
433 	BN_free(big32);
434 	BN_free(big2_32);
435 
436 	return ret;
437 }
438 
439 int rsa_add_verify_data(struct image_sign_info *info, void *keydest)
440 {
441 	BIGNUM *modulus, *r_squared;
442 	uint64_t exponent;
443 	uint32_t n0_inv;
444 	int parent, node;
445 	char name[100];
446 	int ret;
447 	int bits;
448 	RSA *rsa;
449 
450 	debug("%s: Getting verification data\n", __func__);
451 	ret = rsa_get_pub_key(info->keydir, info->keyname, &rsa);
452 	if (ret)
453 		return ret;
454 	ret = rsa_get_params(rsa, &exponent, &n0_inv, &modulus, &r_squared);
455 	if (ret)
456 		return ret;
457 	bits = BN_num_bits(modulus);
458 	parent = fdt_subnode_offset(keydest, 0, FIT_SIG_NODENAME);
459 	if (parent == -FDT_ERR_NOTFOUND) {
460 		parent = fdt_add_subnode(keydest, 0, FIT_SIG_NODENAME);
461 		if (parent < 0) {
462 			ret = parent;
463 			if (ret != -FDT_ERR_NOSPACE) {
464 				fprintf(stderr, "Couldn't create signature node: %s\n",
465 					fdt_strerror(parent));
466 			}
467 		}
468 	}
469 	if (ret)
470 		goto done;
471 
472 	/* Either create or overwrite the named key node */
473 	snprintf(name, sizeof(name), "key-%s", info->keyname);
474 	node = fdt_subnode_offset(keydest, parent, name);
475 	if (node == -FDT_ERR_NOTFOUND) {
476 		node = fdt_add_subnode(keydest, parent, name);
477 		if (node < 0) {
478 			ret = node;
479 			if (ret != -FDT_ERR_NOSPACE) {
480 				fprintf(stderr, "Could not create key subnode: %s\n",
481 					fdt_strerror(node));
482 			}
483 		}
484 	} else if (node < 0) {
485 		fprintf(stderr, "Cannot select keys parent: %s\n",
486 			fdt_strerror(node));
487 		ret = node;
488 	}
489 
490 	if (!ret) {
491 		ret = fdt_setprop_string(keydest, node, "key-name-hint",
492 				 info->keyname);
493 	}
494 	if (!ret)
495 		ret = fdt_setprop_u32(keydest, node, "rsa,num-bits", bits);
496 	if (!ret)
497 		ret = fdt_setprop_u32(keydest, node, "rsa,n0-inverse", n0_inv);
498 	if (!ret) {
499 		ret = fdt_setprop_u64(keydest, node, "rsa,exponent", exponent);
500 	}
501 	if (!ret) {
502 		ret = fdt_add_bignum(keydest, node, "rsa,modulus", modulus,
503 				     bits);
504 	}
505 	if (!ret) {
506 		ret = fdt_add_bignum(keydest, node, "rsa,r-squared", r_squared,
507 				     bits);
508 	}
509 	if (!ret) {
510 		ret = fdt_setprop_string(keydest, node, FIT_ALGO_PROP,
511 					 info->name);
512 	}
513 	if (!ret && info->require_keys) {
514 		ret = fdt_setprop_string(keydest, node, "required",
515 					 info->require_keys);
516 	}
517 done:
518 	BN_free(modulus);
519 	BN_free(r_squared);
520 	if (ret)
521 		return ret == -FDT_ERR_NOSPACE ? -ENOSPC : -EIO;
522 
523 	return 0;
524 }
525