xref: /openbmc/u-boot/lib/rsa/rsa-sign.c (revision 2cb0e55a)
1 /*
2  * Copyright (c) 2013, Google Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License as
6  * published by the Free Software Foundation; either version 2 of
7  * the License, or (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
17  * MA 02111-1307 USA
18  */
19 
20 #include "mkimage.h"
21 #include <stdio.h>
22 #include <string.h>
23 #include <error.h>
24 #include <image.h>
25 #include <time.h>
26 #include <openssl/rsa.h>
27 #include <openssl/pem.h>
28 #include <openssl/err.h>
29 #include <openssl/ssl.h>
30 #include <openssl/evp.h>
31 
32 #if OPENSSL_VERSION_NUMBER >= 0x10000000L
33 #define HAVE_ERR_REMOVE_THREAD_STATE
34 #endif
35 
36 static int rsa_err(const char *msg)
37 {
38 	unsigned long sslErr = ERR_get_error();
39 
40 	fprintf(stderr, "%s", msg);
41 	fprintf(stderr, ": %s\n",
42 		ERR_error_string(sslErr, 0));
43 
44 	return -1;
45 }
46 
47 /**
48  * rsa_get_pub_key() - read a public key from a .crt file
49  *
50  * @keydir:	Directory containins the key
51  * @name	Name of key file (will have a .crt extension)
52  * @rsap	Returns RSA object, or NULL on failure
53  * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL)
54  */
55 static int rsa_get_pub_key(const char *keydir, const char *name, RSA **rsap)
56 {
57 	char path[1024];
58 	EVP_PKEY *key;
59 	X509 *cert;
60 	RSA *rsa;
61 	FILE *f;
62 	int ret;
63 
64 	*rsap = NULL;
65 	snprintf(path, sizeof(path), "%s/%s.crt", keydir, name);
66 	f = fopen(path, "r");
67 	if (!f) {
68 		fprintf(stderr, "Couldn't open RSA certificate: '%s': %s\n",
69 			path, strerror(errno));
70 		return -EACCES;
71 	}
72 
73 	/* Read the certificate */
74 	cert = NULL;
75 	if (!PEM_read_X509(f, &cert, NULL, NULL)) {
76 		rsa_err("Couldn't read certificate");
77 		ret = -EINVAL;
78 		goto err_cert;
79 	}
80 
81 	/* Get the public key from the certificate. */
82 	key = X509_get_pubkey(cert);
83 	if (!key) {
84 		rsa_err("Couldn't read public key\n");
85 		ret = -EINVAL;
86 		goto err_pubkey;
87 	}
88 
89 	/* Convert to a RSA_style key. */
90 	rsa = EVP_PKEY_get1_RSA(key);
91 	if (!rsa) {
92 		rsa_err("Couldn't convert to a RSA style key");
93 		goto err_rsa;
94 	}
95 	fclose(f);
96 	EVP_PKEY_free(key);
97 	X509_free(cert);
98 	*rsap = rsa;
99 
100 	return 0;
101 
102 err_rsa:
103 	EVP_PKEY_free(key);
104 err_pubkey:
105 	X509_free(cert);
106 err_cert:
107 	fclose(f);
108 	return ret;
109 }
110 
111 /**
112  * rsa_get_priv_key() - read a private key from a .key file
113  *
114  * @keydir:	Directory containins the key
115  * @name	Name of key file (will have a .key extension)
116  * @rsap	Returns RSA object, or NULL on failure
117  * @return 0 if ok, -ve on error (in which case *rsap will be set to NULL)
118  */
119 static int rsa_get_priv_key(const char *keydir, const char *name, RSA **rsap)
120 {
121 	char path[1024];
122 	RSA *rsa;
123 	FILE *f;
124 
125 	*rsap = NULL;
126 	snprintf(path, sizeof(path), "%s/%s.key", keydir, name);
127 	f = fopen(path, "r");
128 	if (!f) {
129 		fprintf(stderr, "Couldn't open RSA private key: '%s': %s\n",
130 			path, strerror(errno));
131 		return -ENOENT;
132 	}
133 
134 	rsa = PEM_read_RSAPrivateKey(f, 0, NULL, path);
135 	if (!rsa) {
136 		rsa_err("Failure reading private key");
137 		fclose(f);
138 		return -EPROTO;
139 	}
140 	fclose(f);
141 	*rsap = rsa;
142 
143 	return 0;
144 }
145 
146 static int rsa_init(void)
147 {
148 	int ret;
149 
150 	ret = SSL_library_init();
151 	if (!ret) {
152 		fprintf(stderr, "Failure to init SSL library\n");
153 		return -1;
154 	}
155 	SSL_load_error_strings();
156 
157 	OpenSSL_add_all_algorithms();
158 	OpenSSL_add_all_digests();
159 	OpenSSL_add_all_ciphers();
160 
161 	return 0;
162 }
163 
164 static void rsa_remove(void)
165 {
166 	CRYPTO_cleanup_all_ex_data();
167 	ERR_free_strings();
168 #ifdef HAVE_ERR_REMOVE_THREAD_STATE
169 	ERR_remove_thread_state(NULL);
170 #else
171 	ERR_remove_state(0);
172 #endif
173 	EVP_cleanup();
174 }
175 
176 static int rsa_sign_with_key(RSA *rsa, const struct image_region region[],
177 		int region_count, uint8_t **sigp, uint *sig_size)
178 {
179 	EVP_PKEY *key;
180 	EVP_MD_CTX *context;
181 	int size, ret = 0;
182 	uint8_t *sig;
183 	int i;
184 
185 	key = EVP_PKEY_new();
186 	if (!key)
187 		return rsa_err("EVP_PKEY object creation failed");
188 
189 	if (!EVP_PKEY_set1_RSA(key, rsa)) {
190 		ret = rsa_err("EVP key setup failed");
191 		goto err_set;
192 	}
193 
194 	size = EVP_PKEY_size(key);
195 	sig = malloc(size);
196 	if (!sig) {
197 		fprintf(stderr, "Out of memory for signature (%d bytes)\n",
198 			size);
199 		ret = -ENOMEM;
200 		goto err_alloc;
201 	}
202 
203 	context = EVP_MD_CTX_create();
204 	if (!context) {
205 		ret = rsa_err("EVP context creation failed");
206 		goto err_create;
207 	}
208 	EVP_MD_CTX_init(context);
209 	if (!EVP_SignInit(context, EVP_sha1())) {
210 		ret = rsa_err("Signer setup failed");
211 		goto err_sign;
212 	}
213 
214 	for (i = 0; i < region_count; i++) {
215 		if (!EVP_SignUpdate(context, region[i].data, region[i].size)) {
216 			ret = rsa_err("Signing data failed");
217 			goto err_sign;
218 		}
219 	}
220 
221 	if (!EVP_SignFinal(context, sig, sig_size, key)) {
222 		ret = rsa_err("Could not obtain signature");
223 		goto err_sign;
224 	}
225 	EVP_MD_CTX_cleanup(context);
226 	EVP_MD_CTX_destroy(context);
227 	EVP_PKEY_free(key);
228 
229 	debug("Got signature: %d bytes, expected %d\n", *sig_size, size);
230 	*sigp = sig;
231 	*sig_size = size;
232 
233 	return 0;
234 
235 err_sign:
236 	EVP_MD_CTX_destroy(context);
237 err_create:
238 	free(sig);
239 err_alloc:
240 err_set:
241 	EVP_PKEY_free(key);
242 	return ret;
243 }
244 
245 int rsa_sign(struct image_sign_info *info,
246 	     const struct image_region region[], int region_count,
247 	     uint8_t **sigp, uint *sig_len)
248 {
249 	RSA *rsa;
250 	int ret;
251 
252 	ret = rsa_init();
253 	if (ret)
254 		return ret;
255 
256 	ret = rsa_get_priv_key(info->keydir, info->keyname, &rsa);
257 	if (ret)
258 		goto err_priv;
259 	ret = rsa_sign_with_key(rsa, region, region_count, sigp, sig_len);
260 	if (ret)
261 		goto err_sign;
262 
263 	RSA_free(rsa);
264 	rsa_remove();
265 
266 	return ret;
267 
268 err_sign:
269 	RSA_free(rsa);
270 err_priv:
271 	rsa_remove();
272 	return ret;
273 }
274 
275 /*
276  * rsa_get_params(): - Get the important parameters of an RSA public key
277  */
278 int rsa_get_params(RSA *key, uint32_t *n0_invp, BIGNUM **modulusp,
279 		   BIGNUM **r_squaredp)
280 {
281 	BIGNUM *big1, *big2, *big32, *big2_32;
282 	BIGNUM *n, *r, *r_squared, *tmp;
283 	BN_CTX *bn_ctx = BN_CTX_new();
284 	int ret = 0;
285 
286 	/* Initialize BIGNUMs */
287 	big1 = BN_new();
288 	big2 = BN_new();
289 	big32 = BN_new();
290 	r = BN_new();
291 	r_squared = BN_new();
292 	tmp = BN_new();
293 	big2_32 = BN_new();
294 	n = BN_new();
295 	if (!big1 || !big2 || !big32 || !r || !r_squared || !tmp || !big2_32 ||
296 	    !n) {
297 		fprintf(stderr, "Out of memory (bignum)\n");
298 		return -ENOMEM;
299 	}
300 
301 	if (!BN_copy(n, key->n) || !BN_set_word(big1, 1L) ||
302 	    !BN_set_word(big2, 2L) || !BN_set_word(big32, 32L))
303 		ret = -1;
304 
305 	/* big2_32 = 2^32 */
306 	if (!BN_exp(big2_32, big2, big32, bn_ctx))
307 		ret = -1;
308 
309 	/* Calculate n0_inv = -1 / n[0] mod 2^32 */
310 	if (!BN_mod_inverse(tmp, n, big2_32, bn_ctx) ||
311 	    !BN_sub(tmp, big2_32, tmp))
312 		ret = -1;
313 	*n0_invp = BN_get_word(tmp);
314 
315 	/* Calculate R = 2^(# of key bits) */
316 	if (!BN_set_word(tmp, BN_num_bits(n)) ||
317 	    !BN_exp(r, big2, tmp, bn_ctx))
318 		ret = -1;
319 
320 	/* Calculate r_squared = R^2 mod n */
321 	if (!BN_copy(r_squared, r) ||
322 	    !BN_mul(tmp, r_squared, r, bn_ctx) ||
323 	    !BN_mod(r_squared, tmp, n, bn_ctx))
324 		ret = -1;
325 
326 	*modulusp = n;
327 	*r_squaredp = r_squared;
328 
329 	BN_free(big1);
330 	BN_free(big2);
331 	BN_free(big32);
332 	BN_free(r);
333 	BN_free(tmp);
334 	BN_free(big2_32);
335 	if (ret) {
336 		fprintf(stderr, "Bignum operations failed\n");
337 		return -ENOMEM;
338 	}
339 
340 	return ret;
341 }
342 
343 static int fdt_add_bignum(void *blob, int noffset, const char *prop_name,
344 			  BIGNUM *num, int num_bits)
345 {
346 	int nwords = num_bits / 32;
347 	int size;
348 	uint32_t *buf, *ptr;
349 	BIGNUM *tmp, *big2, *big32, *big2_32;
350 	BN_CTX *ctx;
351 	int ret;
352 
353 	tmp = BN_new();
354 	big2 = BN_new();
355 	big32 = BN_new();
356 	big2_32 = BN_new();
357 	if (!tmp || !big2 || !big32 || !big2_32) {
358 		fprintf(stderr, "Out of memory (bignum)\n");
359 		return -ENOMEM;
360 	}
361 	ctx = BN_CTX_new();
362 	if (!tmp) {
363 		fprintf(stderr, "Out of memory (bignum context)\n");
364 		return -ENOMEM;
365 	}
366 	BN_set_word(big2, 2L);
367 	BN_set_word(big32, 32L);
368 	BN_exp(big2_32, big2, big32, ctx); /* B = 2^32 */
369 
370 	size = nwords * sizeof(uint32_t);
371 	buf = malloc(size);
372 	if (!buf) {
373 		fprintf(stderr, "Out of memory (%d bytes)\n", size);
374 		return -ENOMEM;
375 	}
376 
377 	/* Write out modulus as big endian array of integers */
378 	for (ptr = buf + nwords - 1; ptr >= buf; ptr--) {
379 		BN_mod(tmp, num, big2_32, ctx); /* n = N mod B */
380 		*ptr = cpu_to_fdt32(BN_get_word(tmp));
381 		BN_rshift(num, num, 32); /*  N = N/B */
382 	}
383 
384 	ret = fdt_setprop(blob, noffset, prop_name, buf, size);
385 	if (ret) {
386 		fprintf(stderr, "Failed to write public key to FIT\n");
387 		return -ENOSPC;
388 	}
389 	free(buf);
390 	BN_free(tmp);
391 	BN_free(big2);
392 	BN_free(big32);
393 	BN_free(big2_32);
394 
395 	return ret;
396 }
397 
398 int rsa_add_verify_data(struct image_sign_info *info, void *keydest)
399 {
400 	BIGNUM *modulus, *r_squared;
401 	uint32_t n0_inv;
402 	int parent, node;
403 	char name[100];
404 	int ret;
405 	int bits;
406 	RSA *rsa;
407 
408 	debug("%s: Getting verification data\n", __func__);
409 	ret = rsa_get_pub_key(info->keydir, info->keyname, &rsa);
410 	if (ret)
411 		return ret;
412 	ret = rsa_get_params(rsa, &n0_inv, &modulus, &r_squared);
413 	if (ret)
414 		return ret;
415 	bits = BN_num_bits(modulus);
416 	parent = fdt_subnode_offset(keydest, 0, FIT_SIG_NODENAME);
417 	if (parent == -FDT_ERR_NOTFOUND) {
418 		parent = fdt_add_subnode(keydest, 0, FIT_SIG_NODENAME);
419 		if (parent < 0) {
420 			fprintf(stderr, "Couldn't create signature node: %s\n",
421 				fdt_strerror(parent));
422 			return -EINVAL;
423 		}
424 	}
425 
426 	/* Either create or overwrite the named key node */
427 	snprintf(name, sizeof(name), "key-%s", info->keyname);
428 	node = fdt_subnode_offset(keydest, parent, name);
429 	if (node == -FDT_ERR_NOTFOUND) {
430 		node = fdt_add_subnode(keydest, parent, name);
431 		if (node < 0) {
432 			fprintf(stderr, "Could not create key subnode: %s\n",
433 				fdt_strerror(node));
434 			return -EINVAL;
435 		}
436 	} else if (node < 0) {
437 		fprintf(stderr, "Cannot select keys parent: %s\n",
438 			fdt_strerror(node));
439 		return -ENOSPC;
440 	}
441 
442 	ret = fdt_setprop_string(keydest, node, "key-name-hint",
443 				 info->keyname);
444 	ret |= fdt_setprop_u32(keydest, node, "rsa,num-bits", bits);
445 	ret |= fdt_setprop_u32(keydest, node, "rsa,n0-inverse", n0_inv);
446 	ret |= fdt_add_bignum(keydest, node, "rsa,modulus", modulus, bits);
447 	ret |= fdt_add_bignum(keydest, node, "rsa,r-squared", r_squared, bits);
448 	ret |= fdt_setprop_string(keydest, node, FIT_ALGO_PROP,
449 				  info->algo->name);
450 	if (info->require_keys) {
451 		fdt_setprop_string(keydest, node, "required",
452 				   info->require_keys);
453 	}
454 	BN_free(modulus);
455 	BN_free(r_squared);
456 	if (ret)
457 		return -EIO;
458 
459 	return 0;
460 }
461