xref: /openbmc/u-boot/lib/rsa/rsa-mod-exp.c (revision 9a5cb22fda01327384e8dabb775cfb2615dbbe10)
1 /*
2  * Copyright (c) 2013, Google Inc.
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  */
6 
7 #ifndef USE_HOSTCC
8 #include <common.h>
9 #include <fdtdec.h>
10 #include <asm/types.h>
11 #include <asm/byteorder.h>
12 #include <linux/errno.h>
13 #include <asm/types.h>
14 #include <asm/unaligned.h>
15 #else
16 #include "fdt_host.h"
17 #include "mkimage.h"
18 #include <fdt_support.h>
19 #endif
20 #include <u-boot/rsa.h>
21 #include <u-boot/rsa-mod-exp.h>
22 
23 #define UINT64_MULT32(v, multby)  (((uint64_t)(v)) * ((uint32_t)(multby)))
24 
25 #define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a)
26 #define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a))
27 
28 /* Default public exponent for backward compatibility */
29 #define RSA_DEFAULT_PUBEXP	65537
30 
31 /**
32  * subtract_modulus() - subtract modulus from the given value
33  *
34  * @key:	Key containing modulus to subtract
35  * @num:	Number to subtract modulus from, as little endian word array
36  */
37 static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[])
38 {
39 	int64_t acc = 0;
40 	uint i;
41 
42 	for (i = 0; i < key->len; i++) {
43 		acc += (uint64_t)num[i] - key->modulus[i];
44 		num[i] = (uint32_t)acc;
45 		acc >>= 32;
46 	}
47 }
48 
49 /**
50  * greater_equal_modulus() - check if a value is >= modulus
51  *
52  * @key:	Key containing modulus to check
53  * @num:	Number to check against modulus, as little endian word array
54  * @return 0 if num < modulus, 1 if num >= modulus
55  */
56 static int greater_equal_modulus(const struct rsa_public_key *key,
57 				 uint32_t num[])
58 {
59 	int i;
60 
61 	for (i = (int)key->len - 1; i >= 0; i--) {
62 		if (num[i] < key->modulus[i])
63 			return 0;
64 		if (num[i] > key->modulus[i])
65 			return 1;
66 	}
67 
68 	return 1;  /* equal */
69 }
70 
71 /**
72  * montgomery_mul_add_step() - Perform montgomery multiply-add step
73  *
74  * Operation: montgomery result[] += a * b[] / n0inv % modulus
75  *
76  * @key:	RSA key
77  * @result:	Place to put result, as little endian word array
78  * @a:		Multiplier
79  * @b:		Multiplicand, as little endian word array
80  */
81 static void montgomery_mul_add_step(const struct rsa_public_key *key,
82 		uint32_t result[], const uint32_t a, const uint32_t b[])
83 {
84 	uint64_t acc_a, acc_b;
85 	uint32_t d0;
86 	uint i;
87 
88 	acc_a = (uint64_t)a * b[0] + result[0];
89 	d0 = (uint32_t)acc_a * key->n0inv;
90 	acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a;
91 	for (i = 1; i < key->len; i++) {
92 		acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i];
93 		acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] +
94 				(uint32_t)acc_a;
95 		result[i - 1] = (uint32_t)acc_b;
96 	}
97 
98 	acc_a = (acc_a >> 32) + (acc_b >> 32);
99 
100 	result[i - 1] = (uint32_t)acc_a;
101 
102 	if (acc_a >> 32)
103 		subtract_modulus(key, result);
104 }
105 
106 /**
107  * montgomery_mul() - Perform montgomery mutitply
108  *
109  * Operation: montgomery result[] = a[] * b[] / n0inv % modulus
110  *
111  * @key:	RSA key
112  * @result:	Place to put result, as little endian word array
113  * @a:		Multiplier, as little endian word array
114  * @b:		Multiplicand, as little endian word array
115  */
116 static void montgomery_mul(const struct rsa_public_key *key,
117 		uint32_t result[], uint32_t a[], const uint32_t b[])
118 {
119 	uint i;
120 
121 	for (i = 0; i < key->len; ++i)
122 		result[i] = 0;
123 	for (i = 0; i < key->len; ++i)
124 		montgomery_mul_add_step(key, result, a[i], b);
125 }
126 
127 /**
128  * num_pub_exponent_bits() - Number of bits in the public exponent
129  *
130  * @key:	RSA key
131  * @num_bits:	Storage for the number of public exponent bits
132  */
133 static int num_public_exponent_bits(const struct rsa_public_key *key,
134 		int *num_bits)
135 {
136 	uint64_t exponent;
137 	int exponent_bits;
138 	const uint max_bits = (sizeof(exponent) * 8);
139 
140 	exponent = key->exponent;
141 	exponent_bits = 0;
142 
143 	if (!exponent) {
144 		*num_bits = exponent_bits;
145 		return 0;
146 	}
147 
148 	for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits)
149 		if (!(exponent >>= 1)) {
150 			*num_bits = exponent_bits;
151 			return 0;
152 		}
153 
154 	return -EINVAL;
155 }
156 
157 /**
158  * is_public_exponent_bit_set() - Check if a bit in the public exponent is set
159  *
160  * @key:	RSA key
161  * @pos:	The bit position to check
162  */
163 static int is_public_exponent_bit_set(const struct rsa_public_key *key,
164 		int pos)
165 {
166 	return key->exponent & (1ULL << pos);
167 }
168 
169 /**
170  * pow_mod() - in-place public exponentiation
171  *
172  * @key:	RSA key
173  * @inout:	Big-endian word array containing value and result
174  */
175 static int pow_mod(const struct rsa_public_key *key, uint32_t *inout)
176 {
177 	uint32_t *result, *ptr;
178 	uint i;
179 	int j, k;
180 
181 	/* Sanity check for stack size - key->len is in 32-bit words */
182 	if (key->len > RSA_MAX_KEY_BITS / 32) {
183 		debug("RSA key words %u exceeds maximum %d\n", key->len,
184 		      RSA_MAX_KEY_BITS / 32);
185 		return -EINVAL;
186 	}
187 
188 	uint32_t val[key->len], acc[key->len], tmp[key->len];
189 	uint32_t a_scaled[key->len];
190 	result = tmp;  /* Re-use location. */
191 
192 	/* Convert from big endian byte array to little endian word array. */
193 	for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--)
194 		val[i] = get_unaligned_be32(ptr);
195 
196 	if (0 != num_public_exponent_bits(key, &k))
197 		return -EINVAL;
198 
199 	if (k < 2) {
200 		debug("Public exponent is too short (%d bits, minimum 2)\n",
201 		      k);
202 		return -EINVAL;
203 	}
204 
205 	if (!is_public_exponent_bit_set(key, 0)) {
206 		debug("LSB of RSA public exponent must be set.\n");
207 		return -EINVAL;
208 	}
209 
210 	/* the bit at e[k-1] is 1 by definition, so start with: C := M */
211 	montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */
212 	/* retain scaled version for intermediate use */
213 	memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0]));
214 
215 	for (j = k - 2; j > 0; --j) {
216 		montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */
217 
218 		if (is_public_exponent_bit_set(key, j)) {
219 			/* acc = tmp * val / R mod n */
220 			montgomery_mul(key, acc, tmp, a_scaled);
221 		} else {
222 			/* e[j] == 0, copy tmp back to acc for next operation */
223 			memcpy(acc, tmp, key->len * sizeof(acc[0]));
224 		}
225 	}
226 
227 	/* the bit at e[0] is always 1 */
228 	montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */
229 	montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */
230 	memcpy(result, acc, key->len * sizeof(result[0]));
231 
232 	/* Make sure result < mod; result is at most 1x mod too large. */
233 	if (greater_equal_modulus(key, result))
234 		subtract_modulus(key, result);
235 
236 	/* Convert to bigendian byte array */
237 	for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++)
238 		put_unaligned_be32(result[i], ptr);
239 	return 0;
240 }
241 
242 static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len)
243 {
244 	int i;
245 
246 	for (i = 0; i < len; i++)
247 		dst[i] = fdt32_to_cpu(src[len - 1 - i]);
248 }
249 
250 int rsa_mod_exp_sw(const uint8_t *sig, uint32_t sig_len,
251 		struct key_prop *prop, uint8_t *out)
252 {
253 	struct rsa_public_key key;
254 	int ret;
255 
256 	if (!prop) {
257 		debug("%s: Skipping invalid prop", __func__);
258 		return -EBADF;
259 	}
260 	key.n0inv = prop->n0inv;
261 	key.len = prop->num_bits;
262 
263 	if (!prop->public_exponent)
264 		key.exponent = RSA_DEFAULT_PUBEXP;
265 	else
266 		key.exponent =
267 			fdt64_to_cpu(*((uint64_t *)(prop->public_exponent)));
268 
269 	if (!key.len || !prop->modulus || !prop->rr) {
270 		debug("%s: Missing RSA key info", __func__);
271 		return -EFAULT;
272 	}
273 
274 	/* Sanity check for stack size */
275 	if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) {
276 		debug("RSA key bits %u outside allowed range %d..%d\n",
277 		      key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS);
278 		return -EFAULT;
279 	}
280 	key.len /= sizeof(uint32_t) * 8;
281 	uint32_t key1[key.len], key2[key.len];
282 
283 	key.modulus = key1;
284 	key.rr = key2;
285 	rsa_convert_big_endian(key.modulus, (uint32_t *)prop->modulus, key.len);
286 	rsa_convert_big_endian(key.rr, (uint32_t *)prop->rr, key.len);
287 	if (!key.modulus || !key.rr) {
288 		debug("%s: Out of memory", __func__);
289 		return -ENOMEM;
290 	}
291 
292 	uint32_t buf[sig_len / sizeof(uint32_t)];
293 
294 	memcpy(buf, sig, sig_len);
295 
296 	ret = pow_mod(&key, buf);
297 	if (ret)
298 		return ret;
299 
300 	memcpy(out, buf, sig_len);
301 
302 	return 0;
303 }
304