xref: /openbmc/u-boot/lib/rbtree.c (revision 8b0044ff5942943eaa49935f49d5006b346a60f8)
1  /*
2    Red Black Trees
3    (C) 1999  Andrea Arcangeli <andrea@suse.de>
4    (C) 2002  David Woodhouse <dwmw2@infradead.org>
5    (C) 2012  Michel Lespinasse <walken@google.com>
6  
7   * SPDX-License-Identifier:	GPL-2.0+
8  
9    linux/lib/rbtree.c
10  */
11  
12  #include <linux/rbtree_augmented.h>
13  #ifndef __UBOOT__
14  #include <linux/export.h>
15  #else
16  #include <ubi_uboot.h>
17  #endif
18  /*
19   * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
20   *
21   *  1) A node is either red or black
22   *  2) The root is black
23   *  3) All leaves (NULL) are black
24   *  4) Both children of every red node are black
25   *  5) Every simple path from root to leaves contains the same number
26   *     of black nodes.
27   *
28   *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
29   *  consecutive red nodes in a path and every red node is therefore followed by
30   *  a black. So if B is the number of black nodes on every simple path (as per
31   *  5), then the longest possible path due to 4 is 2B.
32   *
33   *  We shall indicate color with case, where black nodes are uppercase and red
34   *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
35   *  parentheses and have some accompanying text comment.
36   */
37  
38  static inline void rb_set_black(struct rb_node *rb)
39  {
40  	rb->__rb_parent_color |= RB_BLACK;
41  }
42  
43  static inline struct rb_node *rb_red_parent(struct rb_node *red)
44  {
45  	return (struct rb_node *)red->__rb_parent_color;
46  }
47  
48  /*
49   * Helper function for rotations:
50   * - old's parent and color get assigned to new
51   * - old gets assigned new as a parent and 'color' as a color.
52   */
53  static inline void
54  __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
55  			struct rb_root *root, int color)
56  {
57  	struct rb_node *parent = rb_parent(old);
58  	new->__rb_parent_color = old->__rb_parent_color;
59  	rb_set_parent_color(old, new, color);
60  	__rb_change_child(old, new, parent, root);
61  }
62  
63  static __always_inline void
64  __rb_insert(struct rb_node *node, struct rb_root *root,
65  	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
66  {
67  	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
68  
69  	while (true) {
70  		/*
71  		 * Loop invariant: node is red
72  		 *
73  		 * If there is a black parent, we are done.
74  		 * Otherwise, take some corrective action as we don't
75  		 * want a red root or two consecutive red nodes.
76  		 */
77  		if (!parent) {
78  			rb_set_parent_color(node, NULL, RB_BLACK);
79  			break;
80  		} else if (rb_is_black(parent))
81  			break;
82  
83  		gparent = rb_red_parent(parent);
84  
85  		tmp = gparent->rb_right;
86  		if (parent != tmp) {	/* parent == gparent->rb_left */
87  			if (tmp && rb_is_red(tmp)) {
88  				/*
89  				 * Case 1 - color flips
90  				 *
91  				 *       G            g
92  				 *      / \          / \
93  				 *     p   u  -->   P   U
94  				 *    /            /
95  				 *   n            N
96  				 *
97  				 * However, since g's parent might be red, and
98  				 * 4) does not allow this, we need to recurse
99  				 * at g.
100  				 */
101  				rb_set_parent_color(tmp, gparent, RB_BLACK);
102  				rb_set_parent_color(parent, gparent, RB_BLACK);
103  				node = gparent;
104  				parent = rb_parent(node);
105  				rb_set_parent_color(node, parent, RB_RED);
106  				continue;
107  			}
108  
109  			tmp = parent->rb_right;
110  			if (node == tmp) {
111  				/*
112  				 * Case 2 - left rotate at parent
113  				 *
114  				 *      G             G
115  				 *     / \           / \
116  				 *    p   U  -->    n   U
117  				 *     \           /
118  				 *      n         p
119  				 *
120  				 * This still leaves us in violation of 4), the
121  				 * continuation into Case 3 will fix that.
122  				 */
123  				parent->rb_right = tmp = node->rb_left;
124  				node->rb_left = parent;
125  				if (tmp)
126  					rb_set_parent_color(tmp, parent,
127  							    RB_BLACK);
128  				rb_set_parent_color(parent, node, RB_RED);
129  				augment_rotate(parent, node);
130  				parent = node;
131  				tmp = node->rb_right;
132  			}
133  
134  			/*
135  			 * Case 3 - right rotate at gparent
136  			 *
137  			 *        G           P
138  			 *       / \         / \
139  			 *      p   U  -->  n   g
140  			 *     /                 \
141  			 *    n                   U
142  			 */
143  			gparent->rb_left = tmp;  /* == parent->rb_right */
144  			parent->rb_right = gparent;
145  			if (tmp)
146  				rb_set_parent_color(tmp, gparent, RB_BLACK);
147  			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
148  			augment_rotate(gparent, parent);
149  			break;
150  		} else {
151  			tmp = gparent->rb_left;
152  			if (tmp && rb_is_red(tmp)) {
153  				/* Case 1 - color flips */
154  				rb_set_parent_color(tmp, gparent, RB_BLACK);
155  				rb_set_parent_color(parent, gparent, RB_BLACK);
156  				node = gparent;
157  				parent = rb_parent(node);
158  				rb_set_parent_color(node, parent, RB_RED);
159  				continue;
160  			}
161  
162  			tmp = parent->rb_left;
163  			if (node == tmp) {
164  				/* Case 2 - right rotate at parent */
165  				parent->rb_left = tmp = node->rb_right;
166  				node->rb_right = parent;
167  				if (tmp)
168  					rb_set_parent_color(tmp, parent,
169  							    RB_BLACK);
170  				rb_set_parent_color(parent, node, RB_RED);
171  				augment_rotate(parent, node);
172  				parent = node;
173  				tmp = node->rb_left;
174  			}
175  
176  			/* Case 3 - left rotate at gparent */
177  			gparent->rb_right = tmp;  /* == parent->rb_left */
178  			parent->rb_left = gparent;
179  			if (tmp)
180  				rb_set_parent_color(tmp, gparent, RB_BLACK);
181  			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
182  			augment_rotate(gparent, parent);
183  			break;
184  		}
185  	}
186  }
187  
188  /*
189   * Inline version for rb_erase() use - we want to be able to inline
190   * and eliminate the dummy_rotate callback there
191   */
192  static __always_inline void
193  ____rb_erase_color(struct rb_node *parent, struct rb_root *root,
194  	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
195  {
196  	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
197  
198  	while (true) {
199  		/*
200  		 * Loop invariants:
201  		 * - node is black (or NULL on first iteration)
202  		 * - node is not the root (parent is not NULL)
203  		 * - All leaf paths going through parent and node have a
204  		 *   black node count that is 1 lower than other leaf paths.
205  		 */
206  		sibling = parent->rb_right;
207  		if (node != sibling) {	/* node == parent->rb_left */
208  			if (rb_is_red(sibling)) {
209  				/*
210  				 * Case 1 - left rotate at parent
211  				 *
212  				 *     P               S
213  				 *    / \             / \
214  				 *   N   s    -->    p   Sr
215  				 *      / \         / \
216  				 *     Sl  Sr      N   Sl
217  				 */
218  				parent->rb_right = tmp1 = sibling->rb_left;
219  				sibling->rb_left = parent;
220  				rb_set_parent_color(tmp1, parent, RB_BLACK);
221  				__rb_rotate_set_parents(parent, sibling, root,
222  							RB_RED);
223  				augment_rotate(parent, sibling);
224  				sibling = tmp1;
225  			}
226  			tmp1 = sibling->rb_right;
227  			if (!tmp1 || rb_is_black(tmp1)) {
228  				tmp2 = sibling->rb_left;
229  				if (!tmp2 || rb_is_black(tmp2)) {
230  					/*
231  					 * Case 2 - sibling color flip
232  					 * (p could be either color here)
233  					 *
234  					 *    (p)           (p)
235  					 *    / \           / \
236  					 *   N   S    -->  N   s
237  					 *      / \           / \
238  					 *     Sl  Sr        Sl  Sr
239  					 *
240  					 * This leaves us violating 5) which
241  					 * can be fixed by flipping p to black
242  					 * if it was red, or by recursing at p.
243  					 * p is red when coming from Case 1.
244  					 */
245  					rb_set_parent_color(sibling, parent,
246  							    RB_RED);
247  					if (rb_is_red(parent))
248  						rb_set_black(parent);
249  					else {
250  						node = parent;
251  						parent = rb_parent(node);
252  						if (parent)
253  							continue;
254  					}
255  					break;
256  				}
257  				/*
258  				 * Case 3 - right rotate at sibling
259  				 * (p could be either color here)
260  				 *
261  				 *   (p)           (p)
262  				 *   / \           / \
263  				 *  N   S    -->  N   Sl
264  				 *     / \             \
265  				 *    sl  Sr            s
266  				 *                       \
267  				 *                        Sr
268  				 */
269  				sibling->rb_left = tmp1 = tmp2->rb_right;
270  				tmp2->rb_right = sibling;
271  				parent->rb_right = tmp2;
272  				if (tmp1)
273  					rb_set_parent_color(tmp1, sibling,
274  							    RB_BLACK);
275  				augment_rotate(sibling, tmp2);
276  				tmp1 = sibling;
277  				sibling = tmp2;
278  			}
279  			/*
280  			 * Case 4 - left rotate at parent + color flips
281  			 * (p and sl could be either color here.
282  			 *  After rotation, p becomes black, s acquires
283  			 *  p's color, and sl keeps its color)
284  			 *
285  			 *      (p)             (s)
286  			 *      / \             / \
287  			 *     N   S     -->   P   Sr
288  			 *        / \         / \
289  			 *      (sl) sr      N  (sl)
290  			 */
291  			parent->rb_right = tmp2 = sibling->rb_left;
292  			sibling->rb_left = parent;
293  			rb_set_parent_color(tmp1, sibling, RB_BLACK);
294  			if (tmp2)
295  				rb_set_parent(tmp2, parent);
296  			__rb_rotate_set_parents(parent, sibling, root,
297  						RB_BLACK);
298  			augment_rotate(parent, sibling);
299  			break;
300  		} else {
301  			sibling = parent->rb_left;
302  			if (rb_is_red(sibling)) {
303  				/* Case 1 - right rotate at parent */
304  				parent->rb_left = tmp1 = sibling->rb_right;
305  				sibling->rb_right = parent;
306  				rb_set_parent_color(tmp1, parent, RB_BLACK);
307  				__rb_rotate_set_parents(parent, sibling, root,
308  							RB_RED);
309  				augment_rotate(parent, sibling);
310  				sibling = tmp1;
311  			}
312  			tmp1 = sibling->rb_left;
313  			if (!tmp1 || rb_is_black(tmp1)) {
314  				tmp2 = sibling->rb_right;
315  				if (!tmp2 || rb_is_black(tmp2)) {
316  					/* Case 2 - sibling color flip */
317  					rb_set_parent_color(sibling, parent,
318  							    RB_RED);
319  					if (rb_is_red(parent))
320  						rb_set_black(parent);
321  					else {
322  						node = parent;
323  						parent = rb_parent(node);
324  						if (parent)
325  							continue;
326  					}
327  					break;
328  				}
329  				/* Case 3 - right rotate at sibling */
330  				sibling->rb_right = tmp1 = tmp2->rb_left;
331  				tmp2->rb_left = sibling;
332  				parent->rb_left = tmp2;
333  				if (tmp1)
334  					rb_set_parent_color(tmp1, sibling,
335  							    RB_BLACK);
336  				augment_rotate(sibling, tmp2);
337  				tmp1 = sibling;
338  				sibling = tmp2;
339  			}
340  			/* Case 4 - left rotate at parent + color flips */
341  			parent->rb_left = tmp2 = sibling->rb_right;
342  			sibling->rb_right = parent;
343  			rb_set_parent_color(tmp1, sibling, RB_BLACK);
344  			if (tmp2)
345  				rb_set_parent(tmp2, parent);
346  			__rb_rotate_set_parents(parent, sibling, root,
347  						RB_BLACK);
348  			augment_rotate(parent, sibling);
349  			break;
350  		}
351  	}
352  }
353  
354  /* Non-inline version for rb_erase_augmented() use */
355  void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
356  	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
357  {
358  	____rb_erase_color(parent, root, augment_rotate);
359  }
360  EXPORT_SYMBOL(__rb_erase_color);
361  
362  /*
363   * Non-augmented rbtree manipulation functions.
364   *
365   * We use dummy augmented callbacks here, and have the compiler optimize them
366   * out of the rb_insert_color() and rb_erase() function definitions.
367   */
368  
369  static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
370  static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
371  static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
372  
373  static const struct rb_augment_callbacks dummy_callbacks = {
374  	dummy_propagate, dummy_copy, dummy_rotate
375  };
376  
377  void rb_insert_color(struct rb_node *node, struct rb_root *root)
378  {
379  	__rb_insert(node, root, dummy_rotate);
380  }
381  EXPORT_SYMBOL(rb_insert_color);
382  
383  void rb_erase(struct rb_node *node, struct rb_root *root)
384  {
385  	struct rb_node *rebalance;
386  	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
387  	if (rebalance)
388  		____rb_erase_color(rebalance, root, dummy_rotate);
389  }
390  EXPORT_SYMBOL(rb_erase);
391  
392  /*
393   * Augmented rbtree manipulation functions.
394   *
395   * This instantiates the same __always_inline functions as in the non-augmented
396   * case, but this time with user-defined callbacks.
397   */
398  
399  void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
400  	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
401  {
402  	__rb_insert(node, root, augment_rotate);
403  }
404  EXPORT_SYMBOL(__rb_insert_augmented);
405  
406  /*
407   * This function returns the first node (in sort order) of the tree.
408   */
409  struct rb_node *rb_first(const struct rb_root *root)
410  {
411  	struct rb_node	*n;
412  
413  	n = root->rb_node;
414  	if (!n)
415  		return NULL;
416  	while (n->rb_left)
417  		n = n->rb_left;
418  	return n;
419  }
420  EXPORT_SYMBOL(rb_first);
421  
422  struct rb_node *rb_last(const struct rb_root *root)
423  {
424  	struct rb_node	*n;
425  
426  	n = root->rb_node;
427  	if (!n)
428  		return NULL;
429  	while (n->rb_right)
430  		n = n->rb_right;
431  	return n;
432  }
433  EXPORT_SYMBOL(rb_last);
434  
435  struct rb_node *rb_next(const struct rb_node *node)
436  {
437  	struct rb_node *parent;
438  
439  	if (RB_EMPTY_NODE(node))
440  		return NULL;
441  
442  	/*
443  	 * If we have a right-hand child, go down and then left as far
444  	 * as we can.
445  	 */
446  	if (node->rb_right) {
447  		node = node->rb_right;
448  		while (node->rb_left)
449  			node=node->rb_left;
450  		return (struct rb_node *)node;
451  	}
452  
453  	/*
454  	 * No right-hand children. Everything down and left is smaller than us,
455  	 * so any 'next' node must be in the general direction of our parent.
456  	 * Go up the tree; any time the ancestor is a right-hand child of its
457  	 * parent, keep going up. First time it's a left-hand child of its
458  	 * parent, said parent is our 'next' node.
459  	 */
460  	while ((parent = rb_parent(node)) && node == parent->rb_right)
461  		node = parent;
462  
463  	return parent;
464  }
465  EXPORT_SYMBOL(rb_next);
466  
467  struct rb_node *rb_prev(const struct rb_node *node)
468  {
469  	struct rb_node *parent;
470  
471  	if (RB_EMPTY_NODE(node))
472  		return NULL;
473  
474  	/*
475  	 * If we have a left-hand child, go down and then right as far
476  	 * as we can.
477  	 */
478  	if (node->rb_left) {
479  		node = node->rb_left;
480  		while (node->rb_right)
481  			node=node->rb_right;
482  		return (struct rb_node *)node;
483  	}
484  
485  	/*
486  	 * No left-hand children. Go up till we find an ancestor which
487  	 * is a right-hand child of its parent.
488  	 */
489  	while ((parent = rb_parent(node)) && node == parent->rb_left)
490  		node = parent;
491  
492  	return parent;
493  }
494  EXPORT_SYMBOL(rb_prev);
495  
496  void rb_replace_node(struct rb_node *victim, struct rb_node *new,
497  		     struct rb_root *root)
498  {
499  	struct rb_node *parent = rb_parent(victim);
500  
501  	/* Set the surrounding nodes to point to the replacement */
502  	__rb_change_child(victim, new, parent, root);
503  	if (victim->rb_left)
504  		rb_set_parent(victim->rb_left, new);
505  	if (victim->rb_right)
506  		rb_set_parent(victim->rb_right, new);
507  
508  	/* Copy the pointers/colour from the victim to the replacement */
509  	*new = *victim;
510  }
511  EXPORT_SYMBOL(rb_replace_node);
512  
513  static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
514  {
515  	for (;;) {
516  		if (node->rb_left)
517  			node = node->rb_left;
518  		else if (node->rb_right)
519  			node = node->rb_right;
520  		else
521  			return (struct rb_node *)node;
522  	}
523  }
524  
525  struct rb_node *rb_next_postorder(const struct rb_node *node)
526  {
527  	const struct rb_node *parent;
528  	if (!node)
529  		return NULL;
530  	parent = rb_parent(node);
531  
532  	/* If we're sitting on node, we've already seen our children */
533  	if (parent && node == parent->rb_left && parent->rb_right) {
534  		/* If we are the parent's left node, go to the parent's right
535  		 * node then all the way down to the left */
536  		return rb_left_deepest_node(parent->rb_right);
537  	} else
538  		/* Otherwise we are the parent's right node, and the parent
539  		 * should be next */
540  		return (struct rb_node *)parent;
541  }
542  EXPORT_SYMBOL(rb_next_postorder);
543  
544  struct rb_node *rb_first_postorder(const struct rb_root *root)
545  {
546  	if (!root->rb_node)
547  		return NULL;
548  
549  	return rb_left_deepest_node(root->rb_node);
550  }
551  EXPORT_SYMBOL(rb_first_postorder);
552