1 /* 2 * This file was transplanted with slight modifications from Linux sources 3 * (fs/cifs/md5.c) into U-Boot by Bartlomiej Sieka <tur@semihalf.com>. 4 */ 5 6 /* 7 * This code implements the MD5 message-digest algorithm. 8 * The algorithm is due to Ron Rivest. This code was 9 * written by Colin Plumb in 1993, no copyright is claimed. 10 * This code is in the public domain; do with it what you wish. 11 * 12 * Equivalent code is available from RSA Data Security, Inc. 13 * This code has been tested against that, and is equivalent, 14 * except that you don't need to include two pages of legalese 15 * with every copy. 16 * 17 * To compute the message digest of a chunk of bytes, declare an 18 * MD5Context structure, pass it to MD5Init, call MD5Update as 19 * needed on buffers full of bytes, and then call MD5Final, which 20 * will fill a supplied 16-byte array with the digest. 21 */ 22 23 /* This code slightly modified to fit into Samba by 24 abartlet@samba.org Jun 2001 25 and to fit the cifs vfs by 26 Steve French sfrench@us.ibm.com */ 27 28 #include "compiler.h" 29 30 #ifndef USE_HOSTCC 31 #include <common.h> 32 #include <watchdog.h> 33 #endif /* USE_HOSTCC */ 34 #include <u-boot/md5.h> 35 36 static void 37 MD5Transform(__u32 buf[4], __u32 const in[16]); 38 39 /* 40 * Note: this code is harmless on little-endian machines. 41 */ 42 static void 43 byteReverse(unsigned char *buf, unsigned longs) 44 { 45 __u32 t; 46 do { 47 t = (__u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 | 48 ((unsigned) buf[1] << 8 | buf[0]); 49 *(__u32 *) buf = t; 50 buf += 4; 51 } while (--longs); 52 } 53 54 /* 55 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious 56 * initialization constants. 57 */ 58 static void 59 MD5Init(struct MD5Context *ctx) 60 { 61 ctx->buf[0] = 0x67452301; 62 ctx->buf[1] = 0xefcdab89; 63 ctx->buf[2] = 0x98badcfe; 64 ctx->buf[3] = 0x10325476; 65 66 ctx->bits[0] = 0; 67 ctx->bits[1] = 0; 68 } 69 70 /* 71 * Update context to reflect the concatenation of another buffer full 72 * of bytes. 73 */ 74 static void 75 MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len) 76 { 77 register __u32 t; 78 79 /* Update bitcount */ 80 81 t = ctx->bits[0]; 82 if ((ctx->bits[0] = t + ((__u32) len << 3)) < t) 83 ctx->bits[1]++; /* Carry from low to high */ 84 ctx->bits[1] += len >> 29; 85 86 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ 87 88 /* Handle any leading odd-sized chunks */ 89 90 if (t) { 91 unsigned char *p = (unsigned char *) ctx->in + t; 92 93 t = 64 - t; 94 if (len < t) { 95 memmove(p, buf, len); 96 return; 97 } 98 memmove(p, buf, t); 99 byteReverse(ctx->in, 16); 100 MD5Transform(ctx->buf, (__u32 *) ctx->in); 101 buf += t; 102 len -= t; 103 } 104 /* Process data in 64-byte chunks */ 105 106 while (len >= 64) { 107 memmove(ctx->in, buf, 64); 108 byteReverse(ctx->in, 16); 109 MD5Transform(ctx->buf, (__u32 *) ctx->in); 110 buf += 64; 111 len -= 64; 112 } 113 114 /* Handle any remaining bytes of data. */ 115 116 memmove(ctx->in, buf, len); 117 } 118 119 /* 120 * Final wrapup - pad to 64-byte boundary with the bit pattern 121 * 1 0* (64-bit count of bits processed, MSB-first) 122 */ 123 static void 124 MD5Final(unsigned char digest[16], struct MD5Context *ctx) 125 { 126 unsigned int count; 127 unsigned char *p; 128 129 /* Compute number of bytes mod 64 */ 130 count = (ctx->bits[0] >> 3) & 0x3F; 131 132 /* Set the first char of padding to 0x80. This is safe since there is 133 always at least one byte free */ 134 p = ctx->in + count; 135 *p++ = 0x80; 136 137 /* Bytes of padding needed to make 64 bytes */ 138 count = 64 - 1 - count; 139 140 /* Pad out to 56 mod 64 */ 141 if (count < 8) { 142 /* Two lots of padding: Pad the first block to 64 bytes */ 143 memset(p, 0, count); 144 byteReverse(ctx->in, 16); 145 MD5Transform(ctx->buf, (__u32 *) ctx->in); 146 147 /* Now fill the next block with 56 bytes */ 148 memset(ctx->in, 0, 56); 149 } else { 150 /* Pad block to 56 bytes */ 151 memset(p, 0, count - 8); 152 } 153 byteReverse(ctx->in, 14); 154 155 /* Append length in bits and transform */ 156 ctx->in32[14] = ctx->bits[0]; 157 ctx->in32[15] = ctx->bits[1]; 158 159 MD5Transform(ctx->buf, (__u32 *) ctx->in); 160 byteReverse((unsigned char *) ctx->buf, 4); 161 memmove(digest, ctx->buf, 16); 162 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ 163 } 164 165 /* The four core functions - F1 is optimized somewhat */ 166 167 /* #define F1(x, y, z) (x & y | ~x & z) */ 168 #define F1(x, y, z) (z ^ (x & (y ^ z))) 169 #define F2(x, y, z) F1(z, x, y) 170 #define F3(x, y, z) (x ^ y ^ z) 171 #define F4(x, y, z) (y ^ (x | ~z)) 172 173 /* This is the central step in the MD5 algorithm. */ 174 #define MD5STEP(f, w, x, y, z, data, s) \ 175 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) 176 177 /* 178 * The core of the MD5 algorithm, this alters an existing MD5 hash to 179 * reflect the addition of 16 longwords of new data. MD5Update blocks 180 * the data and converts bytes into longwords for this routine. 181 */ 182 static void 183 MD5Transform(__u32 buf[4], __u32 const in[16]) 184 { 185 register __u32 a, b, c, d; 186 187 a = buf[0]; 188 b = buf[1]; 189 c = buf[2]; 190 d = buf[3]; 191 192 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); 193 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); 194 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); 195 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); 196 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); 197 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); 198 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); 199 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); 200 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); 201 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); 202 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); 203 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); 204 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); 205 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); 206 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); 207 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); 208 209 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); 210 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); 211 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); 212 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); 213 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); 214 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); 215 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); 216 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); 217 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); 218 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); 219 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); 220 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); 221 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); 222 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); 223 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); 224 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); 225 226 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); 227 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); 228 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); 229 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); 230 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); 231 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); 232 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); 233 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); 234 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); 235 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); 236 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); 237 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); 238 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); 239 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); 240 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); 241 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); 242 243 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); 244 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); 245 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); 246 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); 247 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); 248 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); 249 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); 250 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); 251 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); 252 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); 253 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); 254 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); 255 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); 256 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); 257 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); 258 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); 259 260 buf[0] += a; 261 buf[1] += b; 262 buf[2] += c; 263 buf[3] += d; 264 } 265 266 /* 267 * Calculate and store in 'output' the MD5 digest of 'len' bytes at 268 * 'input'. 'output' must have enough space to hold 16 bytes. 269 */ 270 void 271 md5 (unsigned char *input, int len, unsigned char output[16]) 272 { 273 struct MD5Context context; 274 275 MD5Init(&context); 276 MD5Update(&context, input, len); 277 MD5Final(output, &context); 278 } 279 280 281 /* 282 * Calculate and store in 'output' the MD5 digest of 'len' bytes at 'input'. 283 * 'output' must have enough space to hold 16 bytes. If 'chunk' Trigger the 284 * watchdog every 'chunk_sz' bytes of input processed. 285 */ 286 void 287 md5_wd (unsigned char *input, int len, unsigned char output[16], 288 unsigned int chunk_sz) 289 { 290 struct MD5Context context; 291 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) 292 unsigned char *end, *curr; 293 int chunk; 294 #endif 295 296 MD5Init(&context); 297 298 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) 299 curr = input; 300 end = input + len; 301 while (curr < end) { 302 chunk = end - curr; 303 if (chunk > chunk_sz) 304 chunk = chunk_sz; 305 MD5Update(&context, curr, chunk); 306 curr += chunk; 307 WATCHDOG_RESET (); 308 } 309 #else 310 MD5Update(&context, input, len); 311 #endif 312 313 MD5Final(output, &context); 314 } 315