xref: /openbmc/u-boot/lib/hashtable.c (revision e874d5b0)
1 /*
2  * This implementation is based on code from uClibc-0.9.30.3 but was
3  * modified and extended for use within U-Boot.
4  *
5  * Copyright (C) 2010 Wolfgang Denk <wd@denx.de>
6  *
7  * Original license header:
8  *
9  * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
10  * This file is part of the GNU C Library.
11  * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
12  *
13  * The GNU C Library is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU Lesser General Public
15  * License as published by the Free Software Foundation; either
16  * version 2.1 of the License, or (at your option) any later version.
17  *
18  * The GNU C Library is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21  * Lesser General Public License for more details.
22  *
23  * You should have received a copy of the GNU Lesser General Public
24  * License along with the GNU C Library; if not, write to the Free
25  * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
26  * 02111-1307 USA.
27  */
28 
29 #include <errno.h>
30 #include <malloc.h>
31 
32 #ifdef USE_HOSTCC		/* HOST build */
33 # include <string.h>
34 # include <assert.h>
35 # include <ctype.h>
36 
37 # ifndef debug
38 #  ifdef DEBUG
39 #   define debug(fmt,args...)	printf(fmt ,##args)
40 #  else
41 #   define debug(fmt,args...)
42 #  endif
43 # endif
44 #else				/* U-Boot build */
45 # include <common.h>
46 # include <linux/string.h>
47 # include <linux/ctype.h>
48 #endif
49 
50 #ifndef	CONFIG_ENV_MIN_ENTRIES	/* minimum number of entries */
51 #define	CONFIG_ENV_MIN_ENTRIES 64
52 #endif
53 #ifndef	CONFIG_ENV_MAX_ENTRIES	/* maximum number of entries */
54 #define	CONFIG_ENV_MAX_ENTRIES 512
55 #endif
56 
57 #include <env_callback.h>
58 #include <env_flags.h>
59 #include <search.h>
60 
61 /*
62  * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
63  * [Knuth]	      The Art of Computer Programming, part 3 (6.4)
64  */
65 
66 /*
67  * The reentrant version has no static variables to maintain the state.
68  * Instead the interface of all functions is extended to take an argument
69  * which describes the current status.
70  */
71 
72 typedef struct _ENTRY {
73 	int used;
74 	ENTRY entry;
75 } _ENTRY;
76 
77 
78 static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep,
79 	int idx);
80 
81 /*
82  * hcreate()
83  */
84 
85 /*
86  * For the used double hash method the table size has to be a prime. To
87  * correct the user given table size we need a prime test.  This trivial
88  * algorithm is adequate because
89  * a)  the code is (most probably) called a few times per program run and
90  * b)  the number is small because the table must fit in the core
91  * */
92 static int isprime(unsigned int number)
93 {
94 	/* no even number will be passed */
95 	unsigned int div = 3;
96 
97 	while (div * div < number && number % div != 0)
98 		div += 2;
99 
100 	return number % div != 0;
101 }
102 
103 /*
104  * Before using the hash table we must allocate memory for it.
105  * Test for an existing table are done. We allocate one element
106  * more as the found prime number says. This is done for more effective
107  * indexing as explained in the comment for the hsearch function.
108  * The contents of the table is zeroed, especially the field used
109  * becomes zero.
110  */
111 
112 int hcreate_r(size_t nel, struct hsearch_data *htab)
113 {
114 	/* Test for correct arguments.  */
115 	if (htab == NULL) {
116 		__set_errno(EINVAL);
117 		return 0;
118 	}
119 
120 	/* There is still another table active. Return with error. */
121 	if (htab->table != NULL)
122 		return 0;
123 
124 	/* Change nel to the first prime number not smaller as nel. */
125 	nel |= 1;		/* make odd */
126 	while (!isprime(nel))
127 		nel += 2;
128 
129 	htab->size = nel;
130 	htab->filled = 0;
131 
132 	/* allocate memory and zero out */
133 	htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY));
134 	if (htab->table == NULL)
135 		return 0;
136 
137 	/* everything went alright */
138 	return 1;
139 }
140 
141 
142 /*
143  * hdestroy()
144  */
145 
146 /*
147  * After using the hash table it has to be destroyed. The used memory can
148  * be freed and the local static variable can be marked as not used.
149  */
150 
151 void hdestroy_r(struct hsearch_data *htab)
152 {
153 	int i;
154 
155 	/* Test for correct arguments.  */
156 	if (htab == NULL) {
157 		__set_errno(EINVAL);
158 		return;
159 	}
160 
161 	/* free used memory */
162 	for (i = 1; i <= htab->size; ++i) {
163 		if (htab->table[i].used > 0) {
164 			ENTRY *ep = &htab->table[i].entry;
165 
166 			free((void *)ep->key);
167 			free(ep->data);
168 		}
169 	}
170 	free(htab->table);
171 
172 	/* the sign for an existing table is an value != NULL in htable */
173 	htab->table = NULL;
174 }
175 
176 /*
177  * hsearch()
178  */
179 
180 /*
181  * This is the search function. It uses double hashing with open addressing.
182  * The argument item.key has to be a pointer to an zero terminated, most
183  * probably strings of chars. The function for generating a number of the
184  * strings is simple but fast. It can be replaced by a more complex function
185  * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
186  *
187  * We use an trick to speed up the lookup. The table is created by hcreate
188  * with one more element available. This enables us to use the index zero
189  * special. This index will never be used because we store the first hash
190  * index in the field used where zero means not used. Every other value
191  * means used. The used field can be used as a first fast comparison for
192  * equality of the stored and the parameter value. This helps to prevent
193  * unnecessary expensive calls of strcmp.
194  *
195  * This implementation differs from the standard library version of
196  * this function in a number of ways:
197  *
198  * - While the standard version does not make any assumptions about
199  *   the type of the stored data objects at all, this implementation
200  *   works with NUL terminated strings only.
201  * - Instead of storing just pointers to the original objects, we
202  *   create local copies so the caller does not need to care about the
203  *   data any more.
204  * - The standard implementation does not provide a way to update an
205  *   existing entry.  This version will create a new entry or update an
206  *   existing one when both "action == ENTER" and "item.data != NULL".
207  * - Instead of returning 1 on success, we return the index into the
208  *   internal hash table, which is also guaranteed to be positive.
209  *   This allows us direct access to the found hash table slot for
210  *   example for functions like hdelete().
211  */
212 
213 /*
214  * hstrstr_r - return index to entry whose key and/or data contains match
215  */
216 int hstrstr_r(const char *match, int last_idx, ENTRY ** retval,
217 	      struct hsearch_data *htab)
218 {
219 	unsigned int idx;
220 
221 	for (idx = last_idx + 1; idx < htab->size; ++idx) {
222 		if (htab->table[idx].used <= 0)
223 			continue;
224 		if (strstr(htab->table[idx].entry.key, match) ||
225 		    strstr(htab->table[idx].entry.data, match)) {
226 			*retval = &htab->table[idx].entry;
227 			return idx;
228 		}
229 	}
230 
231 	__set_errno(ESRCH);
232 	*retval = NULL;
233 	return 0;
234 }
235 
236 int hmatch_r(const char *match, int last_idx, ENTRY ** retval,
237 	     struct hsearch_data *htab)
238 {
239 	unsigned int idx;
240 	size_t key_len = strlen(match);
241 
242 	for (idx = last_idx + 1; idx < htab->size; ++idx) {
243 		if (htab->table[idx].used <= 0)
244 			continue;
245 		if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
246 			*retval = &htab->table[idx].entry;
247 			return idx;
248 		}
249 	}
250 
251 	__set_errno(ESRCH);
252 	*retval = NULL;
253 	return 0;
254 }
255 
256 /*
257  * Compare an existing entry with the desired key, and overwrite if the action
258  * is ENTER.  This is simply a helper function for hsearch_r().
259  */
260 static inline int _compare_and_overwrite_entry(ENTRY item, ACTION action,
261 	ENTRY **retval, struct hsearch_data *htab, int flag,
262 	unsigned int hval, unsigned int idx)
263 {
264 	if (htab->table[idx].used == hval
265 	    && strcmp(item.key, htab->table[idx].entry.key) == 0) {
266 		/* Overwrite existing value? */
267 		if ((action == ENTER) && (item.data != NULL)) {
268 			/* check for permission */
269 			if (htab->change_ok != NULL && htab->change_ok(
270 			    &htab->table[idx].entry, item.data,
271 			    env_op_overwrite, flag)) {
272 				debug("change_ok() rejected setting variable "
273 					"%s, skipping it!\n", item.key);
274 				__set_errno(EPERM);
275 				*retval = NULL;
276 				return 0;
277 			}
278 
279 			/* If there is a callback, call it */
280 			if (htab->table[idx].entry.callback &&
281 			    htab->table[idx].entry.callback(item.key,
282 			    item.data, env_op_overwrite, flag)) {
283 				debug("callback() rejected setting variable "
284 					"%s, skipping it!\n", item.key);
285 				__set_errno(EINVAL);
286 				*retval = NULL;
287 				return 0;
288 			}
289 
290 			free(htab->table[idx].entry.data);
291 			htab->table[idx].entry.data = strdup(item.data);
292 			if (!htab->table[idx].entry.data) {
293 				__set_errno(ENOMEM);
294 				*retval = NULL;
295 				return 0;
296 			}
297 		}
298 		/* return found entry */
299 		*retval = &htab->table[idx].entry;
300 		return idx;
301 	}
302 	/* keep searching */
303 	return -1;
304 }
305 
306 int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval,
307 	      struct hsearch_data *htab, int flag)
308 {
309 	unsigned int hval;
310 	unsigned int count;
311 	unsigned int len = strlen(item.key);
312 	unsigned int idx;
313 	unsigned int first_deleted = 0;
314 	int ret;
315 
316 	/* Compute an value for the given string. Perhaps use a better method. */
317 	hval = len;
318 	count = len;
319 	while (count-- > 0) {
320 		hval <<= 4;
321 		hval += item.key[count];
322 	}
323 
324 	/*
325 	 * First hash function:
326 	 * simply take the modul but prevent zero.
327 	 */
328 	hval %= htab->size;
329 	if (hval == 0)
330 		++hval;
331 
332 	/* The first index tried. */
333 	idx = hval;
334 
335 	if (htab->table[idx].used) {
336 		/*
337 		 * Further action might be required according to the
338 		 * action value.
339 		 */
340 		unsigned hval2;
341 
342 		if (htab->table[idx].used == -1
343 		    && !first_deleted)
344 			first_deleted = idx;
345 
346 		ret = _compare_and_overwrite_entry(item, action, retval, htab,
347 			flag, hval, idx);
348 		if (ret != -1)
349 			return ret;
350 
351 		/*
352 		 * Second hash function:
353 		 * as suggested in [Knuth]
354 		 */
355 		hval2 = 1 + hval % (htab->size - 2);
356 
357 		do {
358 			/*
359 			 * Because SIZE is prime this guarantees to
360 			 * step through all available indices.
361 			 */
362 			if (idx <= hval2)
363 				idx = htab->size + idx - hval2;
364 			else
365 				idx -= hval2;
366 
367 			/*
368 			 * If we visited all entries leave the loop
369 			 * unsuccessfully.
370 			 */
371 			if (idx == hval)
372 				break;
373 
374 			/* If entry is found use it. */
375 			ret = _compare_and_overwrite_entry(item, action, retval,
376 				htab, flag, hval, idx);
377 			if (ret != -1)
378 				return ret;
379 		}
380 		while (htab->table[idx].used);
381 	}
382 
383 	/* An empty bucket has been found. */
384 	if (action == ENTER) {
385 		/*
386 		 * If table is full and another entry should be
387 		 * entered return with error.
388 		 */
389 		if (htab->filled == htab->size) {
390 			__set_errno(ENOMEM);
391 			*retval = NULL;
392 			return 0;
393 		}
394 
395 		/*
396 		 * Create new entry;
397 		 * create copies of item.key and item.data
398 		 */
399 		if (first_deleted)
400 			idx = first_deleted;
401 
402 		htab->table[idx].used = hval;
403 		htab->table[idx].entry.key = strdup(item.key);
404 		htab->table[idx].entry.data = strdup(item.data);
405 		if (!htab->table[idx].entry.key ||
406 		    !htab->table[idx].entry.data) {
407 			__set_errno(ENOMEM);
408 			*retval = NULL;
409 			return 0;
410 		}
411 
412 		++htab->filled;
413 
414 		/* This is a new entry, so look up a possible callback */
415 		env_callback_init(&htab->table[idx].entry);
416 		/* Also look for flags */
417 		env_flags_init(&htab->table[idx].entry);
418 
419 		/* check for permission */
420 		if (htab->change_ok != NULL && htab->change_ok(
421 		    &htab->table[idx].entry, item.data, env_op_create, flag)) {
422 			debug("change_ok() rejected setting variable "
423 				"%s, skipping it!\n", item.key);
424 			_hdelete(item.key, htab, &htab->table[idx].entry, idx);
425 			__set_errno(EPERM);
426 			*retval = NULL;
427 			return 0;
428 		}
429 
430 		/* If there is a callback, call it */
431 		if (htab->table[idx].entry.callback &&
432 		    htab->table[idx].entry.callback(item.key, item.data,
433 		    env_op_create, flag)) {
434 			debug("callback() rejected setting variable "
435 				"%s, skipping it!\n", item.key);
436 			_hdelete(item.key, htab, &htab->table[idx].entry, idx);
437 			__set_errno(EINVAL);
438 			*retval = NULL;
439 			return 0;
440 		}
441 
442 		/* return new entry */
443 		*retval = &htab->table[idx].entry;
444 		return 1;
445 	}
446 
447 	__set_errno(ESRCH);
448 	*retval = NULL;
449 	return 0;
450 }
451 
452 
453 /*
454  * hdelete()
455  */
456 
457 /*
458  * The standard implementation of hsearch(3) does not provide any way
459  * to delete any entries from the hash table.  We extend the code to
460  * do that.
461  */
462 
463 static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep,
464 	int idx)
465 {
466 	/* free used ENTRY */
467 	debug("hdelete: DELETING key \"%s\"\n", key);
468 	free((void *)ep->key);
469 	free(ep->data);
470 	ep->callback = NULL;
471 	ep->flags = 0;
472 	htab->table[idx].used = -1;
473 
474 	--htab->filled;
475 }
476 
477 int hdelete_r(const char *key, struct hsearch_data *htab, int flag)
478 {
479 	ENTRY e, *ep;
480 	int idx;
481 
482 	debug("hdelete: DELETE key \"%s\"\n", key);
483 
484 	e.key = (char *)key;
485 
486 	idx = hsearch_r(e, FIND, &ep, htab, 0);
487 	if (idx == 0) {
488 		__set_errno(ESRCH);
489 		return 0;	/* not found */
490 	}
491 
492 	/* Check for permission */
493 	if (htab->change_ok != NULL &&
494 	    htab->change_ok(ep, NULL, env_op_delete, flag)) {
495 		debug("change_ok() rejected deleting variable "
496 			"%s, skipping it!\n", key);
497 		__set_errno(EPERM);
498 		return 0;
499 	}
500 
501 	/* If there is a callback, call it */
502 	if (htab->table[idx].entry.callback &&
503 	    htab->table[idx].entry.callback(key, NULL, env_op_delete, flag)) {
504 		debug("callback() rejected deleting variable "
505 			"%s, skipping it!\n", key);
506 		__set_errno(EINVAL);
507 		return 0;
508 	}
509 
510 	_hdelete(key, htab, ep, idx);
511 
512 	return 1;
513 }
514 
515 /*
516  * hexport()
517  */
518 
519 #ifndef CONFIG_SPL_BUILD
520 /*
521  * Export the data stored in the hash table in linearized form.
522  *
523  * Entries are exported as "name=value" strings, separated by an
524  * arbitrary (non-NUL, of course) separator character. This allows to
525  * use this function both when formatting the U-Boot environment for
526  * external storage (using '\0' as separator), but also when using it
527  * for the "printenv" command to print all variables, simply by using
528  * as '\n" as separator. This can also be used for new features like
529  * exporting the environment data as text file, including the option
530  * for later re-import.
531  *
532  * The entries in the result list will be sorted by ascending key
533  * values.
534  *
535  * If the separator character is different from NUL, then any
536  * separator characters and backslash characters in the values will
537  * be escaped by a preceeding backslash in output. This is needed for
538  * example to enable multi-line values, especially when the output
539  * shall later be parsed (for example, for re-import).
540  *
541  * There are several options how the result buffer is handled:
542  *
543  * *resp  size
544  * -----------
545  *  NULL    0	A string of sufficient length will be allocated.
546  *  NULL   >0	A string of the size given will be
547  *		allocated. An error will be returned if the size is
548  *		not sufficient.  Any unused bytes in the string will
549  *		be '\0'-padded.
550  * !NULL    0	The user-supplied buffer will be used. No length
551  *		checking will be performed, i. e. it is assumed that
552  *		the buffer size will always be big enough. DANGEROUS.
553  * !NULL   >0	The user-supplied buffer will be used. An error will
554  *		be returned if the size is not sufficient.  Any unused
555  *		bytes in the string will be '\0'-padded.
556  */
557 
558 static int cmpkey(const void *p1, const void *p2)
559 {
560 	ENTRY *e1 = *(ENTRY **) p1;
561 	ENTRY *e2 = *(ENTRY **) p2;
562 
563 	return (strcmp(e1->key, e2->key));
564 }
565 
566 ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag,
567 		 char **resp, size_t size,
568 		 int argc, char * const argv[])
569 {
570 	ENTRY *list[htab->size];
571 	char *res, *p;
572 	size_t totlen;
573 	int i, n;
574 
575 	/* Test for correct arguments.  */
576 	if ((resp == NULL) || (htab == NULL)) {
577 		__set_errno(EINVAL);
578 		return (-1);
579 	}
580 
581 	debug("EXPORT  table = %p, htab.size = %d, htab.filled = %d, "
582 		"size = %zu\n", htab, htab->size, htab->filled, size);
583 	/*
584 	 * Pass 1:
585 	 * search used entries,
586 	 * save addresses and compute total length
587 	 */
588 	for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
589 
590 		if (htab->table[i].used > 0) {
591 			ENTRY *ep = &htab->table[i].entry;
592 			int arg, found = 0;
593 
594 			for (arg = 0; arg < argc; ++arg) {
595 				if (strcmp(argv[arg], ep->key) == 0) {
596 					found = 1;
597 					break;
598 				}
599 			}
600 			if ((argc > 0) && (found == 0))
601 				continue;
602 
603 			if ((flag & H_HIDE_DOT) && ep->key[0] == '.')
604 				continue;
605 
606 			list[n++] = ep;
607 
608 			totlen += strlen(ep->key) + 2;
609 
610 			if (sep == '\0') {
611 				totlen += strlen(ep->data);
612 			} else {	/* check if escapes are needed */
613 				char *s = ep->data;
614 
615 				while (*s) {
616 					++totlen;
617 					/* add room for needed escape chars */
618 					if ((*s == sep) || (*s == '\\'))
619 						++totlen;
620 					++s;
621 				}
622 			}
623 			totlen += 2;	/* for '=' and 'sep' char */
624 		}
625 	}
626 
627 #ifdef DEBUG
628 	/* Pass 1a: print unsorted list */
629 	printf("Unsorted: n=%d\n", n);
630 	for (i = 0; i < n; ++i) {
631 		printf("\t%3d: %p ==> %-10s => %s\n",
632 		       i, list[i], list[i]->key, list[i]->data);
633 	}
634 #endif
635 
636 	/* Sort list by keys */
637 	qsort(list, n, sizeof(ENTRY *), cmpkey);
638 
639 	/* Check if the user supplied buffer size is sufficient */
640 	if (size) {
641 		if (size < totlen + 1) {	/* provided buffer too small */
642 			printf("Env export buffer too small: %zu, "
643 				"but need %zu\n", size, totlen + 1);
644 			__set_errno(ENOMEM);
645 			return (-1);
646 		}
647 	} else {
648 		size = totlen + 1;
649 	}
650 
651 	/* Check if the user provided a buffer */
652 	if (*resp) {
653 		/* yes; clear it */
654 		res = *resp;
655 		memset(res, '\0', size);
656 	} else {
657 		/* no, allocate and clear one */
658 		*resp = res = calloc(1, size);
659 		if (res == NULL) {
660 			__set_errno(ENOMEM);
661 			return (-1);
662 		}
663 	}
664 	/*
665 	 * Pass 2:
666 	 * export sorted list of result data
667 	 */
668 	for (i = 0, p = res; i < n; ++i) {
669 		const char *s;
670 
671 		s = list[i]->key;
672 		while (*s)
673 			*p++ = *s++;
674 		*p++ = '=';
675 
676 		s = list[i]->data;
677 
678 		while (*s) {
679 			if ((*s == sep) || (*s == '\\'))
680 				*p++ = '\\';	/* escape */
681 			*p++ = *s++;
682 		}
683 		*p++ = sep;
684 	}
685 	*p = '\0';		/* terminate result */
686 
687 	return size;
688 }
689 #endif
690 
691 
692 /*
693  * himport()
694  */
695 
696 /*
697  * Check whether variable 'name' is amongst vars[],
698  * and remove all instances by setting the pointer to NULL
699  */
700 static int drop_var_from_set(const char *name, int nvars, char * vars[])
701 {
702 	int i = 0;
703 	int res = 0;
704 
705 	/* No variables specified means process all of them */
706 	if (nvars == 0)
707 		return 1;
708 
709 	for (i = 0; i < nvars; i++) {
710 		if (vars[i] == NULL)
711 			continue;
712 		/* If we found it, delete all of them */
713 		if (!strcmp(name, vars[i])) {
714 			vars[i] = NULL;
715 			res = 1;
716 		}
717 	}
718 	if (!res)
719 		debug("Skipping non-listed variable %s\n", name);
720 
721 	return res;
722 }
723 
724 /*
725  * Import linearized data into hash table.
726  *
727  * This is the inverse function to hexport(): it takes a linear list
728  * of "name=value" pairs and creates hash table entries from it.
729  *
730  * Entries without "value", i. e. consisting of only "name" or
731  * "name=", will cause this entry to be deleted from the hash table.
732  *
733  * The "flag" argument can be used to control the behaviour: when the
734  * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
735  * new data will be added to an existing hash table; otherwise, old
736  * data will be discarded and a new hash table will be created.
737  *
738  * The separator character for the "name=value" pairs can be selected,
739  * so we both support importing from externally stored environment
740  * data (separated by NUL characters) and from plain text files
741  * (entries separated by newline characters).
742  *
743  * To allow for nicely formatted text input, leading white space
744  * (sequences of SPACE and TAB chars) is ignored, and entries starting
745  * (after removal of any leading white space) with a '#' character are
746  * considered comments and ignored.
747  *
748  * [NOTE: this means that a variable name cannot start with a '#'
749  * character.]
750  *
751  * When using a non-NUL separator character, backslash is used as
752  * escape character in the value part, allowing for example for
753  * multi-line values.
754  *
755  * In theory, arbitrary separator characters can be used, but only
756  * '\0' and '\n' have really been tested.
757  */
758 
759 int himport_r(struct hsearch_data *htab,
760 		const char *env, size_t size, const char sep, int flag,
761 		int nvars, char * const vars[])
762 {
763 	char *data, *sp, *dp, *name, *value;
764 	char *localvars[nvars];
765 	int i;
766 
767 	/* Test for correct arguments.  */
768 	if (htab == NULL) {
769 		__set_errno(EINVAL);
770 		return 0;
771 	}
772 
773 	/* we allocate new space to make sure we can write to the array */
774 	if ((data = malloc(size)) == NULL) {
775 		debug("himport_r: can't malloc %zu bytes\n", size);
776 		__set_errno(ENOMEM);
777 		return 0;
778 	}
779 	memcpy(data, env, size);
780 	dp = data;
781 
782 	/* make a local copy of the list of variables */
783 	if (nvars)
784 		memcpy(localvars, vars, sizeof(vars[0]) * nvars);
785 
786 	if ((flag & H_NOCLEAR) == 0) {
787 		/* Destroy old hash table if one exists */
788 		debug("Destroy Hash Table: %p table = %p\n", htab,
789 		       htab->table);
790 		if (htab->table)
791 			hdestroy_r(htab);
792 	}
793 
794 	/*
795 	 * Create new hash table (if needed).  The computation of the hash
796 	 * table size is based on heuristics: in a sample of some 70+
797 	 * existing systems we found an average size of 39+ bytes per entry
798 	 * in the environment (for the whole key=value pair). Assuming a
799 	 * size of 8 per entry (= safety factor of ~5) should provide enough
800 	 * safety margin for any existing environment definitions and still
801 	 * allow for more than enough dynamic additions. Note that the
802 	 * "size" argument is supposed to give the maximum enviroment size
803 	 * (CONFIG_ENV_SIZE).  This heuristics will result in
804 	 * unreasonably large numbers (and thus memory footprint) for
805 	 * big flash environments (>8,000 entries for 64 KB
806 	 * envrionment size), so we clip it to a reasonable value.
807 	 * On the other hand we need to add some more entries for free
808 	 * space when importing very small buffers. Both boundaries can
809 	 * be overwritten in the board config file if needed.
810 	 */
811 
812 	if (!htab->table) {
813 		int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
814 
815 		if (nent > CONFIG_ENV_MAX_ENTRIES)
816 			nent = CONFIG_ENV_MAX_ENTRIES;
817 
818 		debug("Create Hash Table: N=%d\n", nent);
819 
820 		if (hcreate_r(nent, htab) == 0) {
821 			free(data);
822 			return 0;
823 		}
824 	}
825 
826 	/* Parse environment; allow for '\0' and 'sep' as separators */
827 	do {
828 		ENTRY e, *rv;
829 
830 		/* skip leading white space */
831 		while (isblank(*dp))
832 			++dp;
833 
834 		/* skip comment lines */
835 		if (*dp == '#') {
836 			while (*dp && (*dp != sep))
837 				++dp;
838 			++dp;
839 			continue;
840 		}
841 
842 		/* parse name */
843 		for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
844 			;
845 
846 		/* deal with "name" and "name=" entries (delete var) */
847 		if (*dp == '\0' || *(dp + 1) == '\0' ||
848 		    *dp == sep || *(dp + 1) == sep) {
849 			if (*dp == '=')
850 				*dp++ = '\0';
851 			*dp++ = '\0';	/* terminate name */
852 
853 			debug("DELETE CANDIDATE: \"%s\"\n", name);
854 			if (!drop_var_from_set(name, nvars, localvars))
855 				continue;
856 
857 			if (hdelete_r(name, htab, flag) == 0)
858 				debug("DELETE ERROR ##############################\n");
859 
860 			continue;
861 		}
862 		*dp++ = '\0';	/* terminate name */
863 
864 		/* parse value; deal with escapes */
865 		for (value = sp = dp; *dp && (*dp != sep); ++dp) {
866 			if ((*dp == '\\') && *(dp + 1))
867 				++dp;
868 			*sp++ = *dp;
869 		}
870 		*sp++ = '\0';	/* terminate value */
871 		++dp;
872 
873 		/* Skip variables which are not supposed to be processed */
874 		if (!drop_var_from_set(name, nvars, localvars))
875 			continue;
876 
877 		/* enter into hash table */
878 		e.key = name;
879 		e.data = value;
880 
881 		hsearch_r(e, ENTER, &rv, htab, flag);
882 		if (rv == NULL)
883 			printf("himport_r: can't insert \"%s=%s\" into hash table\n",
884 				name, value);
885 
886 		debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
887 			htab, htab->filled, htab->size,
888 			rv, name, value);
889 	} while ((dp < data + size) && *dp);	/* size check needed for text */
890 						/* without '\0' termination */
891 	debug("INSERT: free(data = %p)\n", data);
892 	free(data);
893 
894 	/* process variables which were not considered */
895 	for (i = 0; i < nvars; i++) {
896 		if (localvars[i] == NULL)
897 			continue;
898 		/*
899 		 * All variables which were not deleted from the variable list
900 		 * were not present in the imported env
901 		 * This could mean two things:
902 		 * a) if the variable was present in current env, we delete it
903 		 * b) if the variable was not present in current env, we notify
904 		 *    it might be a typo
905 		 */
906 		if (hdelete_r(localvars[i], htab, flag) == 0)
907 			printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]);
908 		else
909 			printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]);
910 	}
911 
912 	debug("INSERT: done\n");
913 	return 1;		/* everything OK */
914 }
915 
916 /*
917  * hwalk_r()
918  */
919 
920 /*
921  * Walk all of the entries in the hash, calling the callback for each one.
922  * this allows some generic operation to be performed on each element.
923  */
924 int hwalk_r(struct hsearch_data *htab, int (*callback)(ENTRY *))
925 {
926 	int i;
927 	int retval;
928 
929 	for (i = 1; i <= htab->size; ++i) {
930 		if (htab->table[i].used > 0) {
931 			retval = callback(&htab->table[i].entry);
932 			if (retval)
933 				return retval;
934 		}
935 	}
936 
937 	return 0;
938 }
939