xref: /openbmc/u-boot/lib/hashtable.c (revision e0306cab092c3f9f3526f4c72832561201d97e11)
1 /*
2  * This implementation is based on code from uClibc-0.9.30.3 but was
3  * modified and extended for use within U-Boot.
4  *
5  * Copyright (C) 2010 Wolfgang Denk <wd@denx.de>
6  *
7  * Original license header:
8  *
9  * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
10  * This file is part of the GNU C Library.
11  * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
12  *
13  * The GNU C Library is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU Lesser General Public
15  * License as published by the Free Software Foundation; either
16  * version 2.1 of the License, or (at your option) any later version.
17  *
18  * The GNU C Library is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21  * Lesser General Public License for more details.
22  *
23  * You should have received a copy of the GNU Lesser General Public
24  * License along with the GNU C Library; if not, write to the Free
25  * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
26  * 02111-1307 USA.
27  */
28 
29 #include <errno.h>
30 #include <malloc.h>
31 
32 #ifdef USE_HOSTCC		/* HOST build */
33 # include <string.h>
34 # include <assert.h>
35 
36 # ifndef debug
37 #  ifdef DEBUG
38 #   define debug(fmt,args...)	printf(fmt ,##args)
39 #  else
40 #   define debug(fmt,args...)
41 #  endif
42 # endif
43 #else				/* U-Boot build */
44 # include <common.h>
45 # include <linux/string.h>
46 #endif
47 
48 #ifndef	CONFIG_ENV_MIN_ENTRIES	/* minimum number of entries */
49 #define	CONFIG_ENV_MIN_ENTRIES 64
50 #endif
51 #ifndef	CONFIG_ENV_MAX_ENTRIES	/* maximum number of entries */
52 #define	CONFIG_ENV_MAX_ENTRIES 512
53 #endif
54 
55 #include "search.h"
56 
57 /*
58  * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
59  * [Knuth]	      The Art of Computer Programming, part 3 (6.4)
60  */
61 
62 /*
63  * The reentrant version has no static variables to maintain the state.
64  * Instead the interface of all functions is extended to take an argument
65  * which describes the current status.
66  */
67 typedef struct _ENTRY {
68 	unsigned int used;
69 	ENTRY entry;
70 } _ENTRY;
71 
72 
73 /*
74  * hcreate()
75  */
76 
77 /*
78  * For the used double hash method the table size has to be a prime. To
79  * correct the user given table size we need a prime test.  This trivial
80  * algorithm is adequate because
81  * a)  the code is (most probably) called a few times per program run and
82  * b)  the number is small because the table must fit in the core
83  * */
84 static int isprime(unsigned int number)
85 {
86 	/* no even number will be passed */
87 	unsigned int div = 3;
88 
89 	while (div * div < number && number % div != 0)
90 		div += 2;
91 
92 	return number % div != 0;
93 }
94 
95 /*
96  * Before using the hash table we must allocate memory for it.
97  * Test for an existing table are done. We allocate one element
98  * more as the found prime number says. This is done for more effective
99  * indexing as explained in the comment for the hsearch function.
100  * The contents of the table is zeroed, especially the field used
101  * becomes zero.
102  */
103 
104 int hcreate_r(size_t nel, struct hsearch_data *htab)
105 {
106 	/* Test for correct arguments.  */
107 	if (htab == NULL) {
108 		__set_errno(EINVAL);
109 		return 0;
110 	}
111 
112 	/* There is still another table active. Return with error. */
113 	if (htab->table != NULL)
114 		return 0;
115 
116 	/* Change nel to the first prime number not smaller as nel. */
117 	nel |= 1;		/* make odd */
118 	while (!isprime(nel))
119 		nel += 2;
120 
121 	htab->size = nel;
122 	htab->filled = 0;
123 
124 	/* allocate memory and zero out */
125 	htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY));
126 	if (htab->table == NULL)
127 		return 0;
128 
129 	/* everything went alright */
130 	return 1;
131 }
132 
133 
134 /*
135  * hdestroy()
136  */
137 
138 /*
139  * After using the hash table it has to be destroyed. The used memory can
140  * be freed and the local static variable can be marked as not used.
141  */
142 
143 void hdestroy_r(struct hsearch_data *htab)
144 {
145 	int i;
146 
147 	/* Test for correct arguments.  */
148 	if (htab == NULL) {
149 		__set_errno(EINVAL);
150 		return;
151 	}
152 
153 	/* free used memory */
154 	for (i = 1; i <= htab->size; ++i) {
155 		if (htab->table[i].used) {
156 			ENTRY *ep = &htab->table[i].entry;
157 
158 			free(ep->key);
159 			free(ep->data);
160 		}
161 	}
162 	free(htab->table);
163 
164 	/* the sign for an existing table is an value != NULL in htable */
165 	htab->table = NULL;
166 }
167 
168 /*
169  * hsearch()
170  */
171 
172 /*
173  * This is the search function. It uses double hashing with open addressing.
174  * The argument item.key has to be a pointer to an zero terminated, most
175  * probably strings of chars. The function for generating a number of the
176  * strings is simple but fast. It can be replaced by a more complex function
177  * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
178  *
179  * We use an trick to speed up the lookup. The table is created by hcreate
180  * with one more element available. This enables us to use the index zero
181  * special. This index will never be used because we store the first hash
182  * index in the field used where zero means not used. Every other value
183  * means used. The used field can be used as a first fast comparison for
184  * equality of the stored and the parameter value. This helps to prevent
185  * unnecessary expensive calls of strcmp.
186  *
187  * This implementation differs from the standard library version of
188  * this function in a number of ways:
189  *
190  * - While the standard version does not make any assumptions about
191  *   the type of the stored data objects at all, this implementation
192  *   works with NUL terminated strings only.
193  * - Instead of storing just pointers to the original objects, we
194  *   create local copies so the caller does not need to care about the
195  *   data any more.
196  * - The standard implementation does not provide a way to update an
197  *   existing entry.  This version will create a new entry or update an
198  *   existing one when both "action == ENTER" and "item.data != NULL".
199  * - Instead of returning 1 on success, we return the index into the
200  *   internal hash table, which is also guaranteed to be positive.
201  *   This allows us direct access to the found hash table slot for
202  *   example for functions like hdelete().
203  */
204 
205 int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval,
206 	      struct hsearch_data *htab)
207 {
208 	unsigned int hval;
209 	unsigned int count;
210 	unsigned int len = strlen(item.key);
211 	unsigned int idx;
212 
213 	/* Compute an value for the given string. Perhaps use a better method. */
214 	hval = len;
215 	count = len;
216 	while (count-- > 0) {
217 		hval <<= 4;
218 		hval += item.key[count];
219 	}
220 
221 	/*
222 	 * First hash function:
223 	 * simply take the modul but prevent zero.
224 	 */
225 	hval %= htab->size;
226 	if (hval == 0)
227 		++hval;
228 
229 	/* The first index tried. */
230 	idx = hval;
231 
232 	if (htab->table[idx].used) {
233 		/*
234 		 * Further action might be required according to the
235 		 * action value.
236 		 */
237 		unsigned hval2;
238 
239 		if (htab->table[idx].used == hval
240 		    && strcmp(item.key, htab->table[idx].entry.key) == 0) {
241 			/* Overwrite existing value? */
242 			if ((action == ENTER) && (item.data != NULL)) {
243 				free(htab->table[idx].entry.data);
244 				htab->table[idx].entry.data =
245 					strdup(item.data);
246 				if (!htab->table[idx].entry.data) {
247 					__set_errno(ENOMEM);
248 					*retval = NULL;
249 					return 0;
250 				}
251 			}
252 			/* return found entry */
253 			*retval = &htab->table[idx].entry;
254 			return idx;
255 		}
256 
257 		/*
258 		 * Second hash function:
259 		 * as suggested in [Knuth]
260 		 */
261 		hval2 = 1 + hval % (htab->size - 2);
262 
263 		do {
264 			/*
265 			 * Because SIZE is prime this guarantees to
266 			 * step through all available indices.
267 			 */
268 			if (idx <= hval2)
269 				idx = htab->size + idx - hval2;
270 			else
271 				idx -= hval2;
272 
273 			/*
274 			 * If we visited all entries leave the loop
275 			 * unsuccessfully.
276 			 */
277 			if (idx == hval)
278 				break;
279 
280 			/* If entry is found use it. */
281 			if ((htab->table[idx].used == hval)
282 			    && strcmp(item.key, htab->table[idx].entry.key) == 0) {
283 				/* Overwrite existing value? */
284 				if ((action == ENTER) && (item.data != NULL)) {
285 					free(htab->table[idx].entry.data);
286 					htab->table[idx].entry.data =
287 						strdup(item.data);
288 					if (!htab->table[idx].entry.data) {
289 						__set_errno(ENOMEM);
290 						*retval = NULL;
291 						return 0;
292 					}
293 				}
294 				/* return found entry */
295 				*retval = &htab->table[idx].entry;
296 				return idx;
297 			}
298 		}
299 		while (htab->table[idx].used);
300 	}
301 
302 	/* An empty bucket has been found. */
303 	if (action == ENTER) {
304 		/*
305 		 * If table is full and another entry should be
306 		 * entered return with error.
307 		 */
308 		if (htab->filled == htab->size) {
309 			__set_errno(ENOMEM);
310 			*retval = NULL;
311 			return 0;
312 		}
313 
314 		/*
315 		 * Create new entry;
316 		 * create copies of item.key and item.data
317 		 */
318 		htab->table[idx].used = hval;
319 		htab->table[idx].entry.key = strdup(item.key);
320 		htab->table[idx].entry.data = strdup(item.data);
321 		if (!htab->table[idx].entry.key ||
322 		    !htab->table[idx].entry.data) {
323 			__set_errno(ENOMEM);
324 			*retval = NULL;
325 			return 0;
326 		}
327 
328 		++htab->filled;
329 
330 		/* return new entry */
331 		*retval = &htab->table[idx].entry;
332 		return 1;
333 	}
334 
335 	__set_errno(ESRCH);
336 	*retval = NULL;
337 	return 0;
338 }
339 
340 
341 /*
342  * hdelete()
343  */
344 
345 /*
346  * The standard implementation of hsearch(3) does not provide any way
347  * to delete any entries from the hash table.  We extend the code to
348  * do that.
349  */
350 
351 int hdelete_r(const char *key, struct hsearch_data *htab)
352 {
353 	ENTRY e, *ep;
354 	int idx;
355 
356 	debug("hdelete: DELETE key \"%s\"\n", key);
357 
358 	e.key = (char *)key;
359 
360 	if ((idx = hsearch_r(e, FIND, &ep, htab)) == 0) {
361 		__set_errno(ESRCH);
362 		return 0;	/* not found */
363 	}
364 
365 	/* free used ENTRY */
366 	debug("hdelete: DELETING key \"%s\"\n", key);
367 
368 	free(ep->key);
369 	free(ep->data);
370 	htab->table[idx].used = 0;
371 
372 	--htab->filled;
373 
374 	return 1;
375 }
376 
377 /*
378  * hexport()
379  */
380 
381 /*
382  * Export the data stored in the hash table in linearized form.
383  *
384  * Entries are exported as "name=value" strings, separated by an
385  * arbitrary (non-NUL, of course) separator character. This allows to
386  * use this function both when formatting the U-Boot environment for
387  * external storage (using '\0' as separator), but also when using it
388  * for the "printenv" command to print all variables, simply by using
389  * as '\n" as separator. This can also be used for new features like
390  * exporting the environment data as text file, including the option
391  * for later re-import.
392  *
393  * The entries in the result list will be sorted by ascending key
394  * values.
395  *
396  * If the separator character is different from NUL, then any
397  * separator characters and backslash characters in the values will
398  * be escaped by a preceeding backslash in output. This is needed for
399  * example to enable multi-line values, especially when the output
400  * shall later be parsed (for example, for re-import).
401  *
402  * There are several options how the result buffer is handled:
403  *
404  * *resp  size
405  * -----------
406  *  NULL    0	A string of sufficient length will be allocated.
407  *  NULL   >0	A string of the size given will be
408  *		allocated. An error will be returned if the size is
409  *		not sufficient.  Any unused bytes in the string will
410  *		be '\0'-padded.
411  * !NULL    0	The user-supplied buffer will be used. No length
412  *		checking will be performed, i. e. it is assumed that
413  *		the buffer size will always be big enough. DANGEROUS.
414  * !NULL   >0	The user-supplied buffer will be used. An error will
415  *		be returned if the size is not sufficient.  Any unused
416  *		bytes in the string will be '\0'-padded.
417  */
418 
419 static int cmpkey(const void *p1, const void *p2)
420 {
421 	ENTRY *e1 = *(ENTRY **) p1;
422 	ENTRY *e2 = *(ENTRY **) p2;
423 
424 	return (strcmp(e1->key, e2->key));
425 }
426 
427 ssize_t hexport_r(struct hsearch_data *htab, const char sep,
428 		 char **resp, size_t size)
429 {
430 	ENTRY *list[htab->size];
431 	char *res, *p;
432 	size_t totlen;
433 	int i, n;
434 
435 	/* Test for correct arguments.  */
436 	if ((resp == NULL) || (htab == NULL)) {
437 		__set_errno(EINVAL);
438 		return (-1);
439 	}
440 
441 	debug("EXPORT  table = %p, htab.size = %d, htab.filled = %d, size = %d\n",
442 		htab, htab->size, htab->filled, size);
443 	/*
444 	 * Pass 1:
445 	 * search used entries,
446 	 * save addresses and compute total length
447 	 */
448 	for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
449 
450 		if (htab->table[i].used) {
451 			ENTRY *ep = &htab->table[i].entry;
452 
453 			list[n++] = ep;
454 
455 			totlen += strlen(ep->key) + 2;
456 
457 			if (sep == '\0') {
458 				totlen += strlen(ep->data);
459 			} else {	/* check if escapes are needed */
460 				char *s = ep->data;
461 
462 				while (*s) {
463 					++totlen;
464 					/* add room for needed escape chars */
465 					if ((*s == sep) || (*s == '\\'))
466 						++totlen;
467 					++s;
468 				}
469 			}
470 			totlen += 2;	/* for '=' and 'sep' char */
471 		}
472 	}
473 
474 #ifdef DEBUG
475 	/* Pass 1a: print unsorted list */
476 	printf("Unsorted: n=%d\n", n);
477 	for (i = 0; i < n; ++i) {
478 		printf("\t%3d: %p ==> %-10s => %s\n",
479 		       i, list[i], list[i]->key, list[i]->data);
480 	}
481 #endif
482 
483 	/* Sort list by keys */
484 	qsort(list, n, sizeof(ENTRY *), cmpkey);
485 
486 	/* Check if the user supplied buffer size is sufficient */
487 	if (size) {
488 		if (size < totlen + 1) {	/* provided buffer too small */
489 			debug("### buffer too small: %d, but need %d\n",
490 				size, totlen + 1);
491 			__set_errno(ENOMEM);
492 			return (-1);
493 		}
494 	} else {
495 		size = totlen + 1;
496 	}
497 
498 	/* Check if the user provided a buffer */
499 	if (*resp) {
500 		/* yes; clear it */
501 		res = *resp;
502 		memset(res, '\0', size);
503 	} else {
504 		/* no, allocate and clear one */
505 		*resp = res = calloc(1, size);
506 		if (res == NULL) {
507 			__set_errno(ENOMEM);
508 			return (-1);
509 		}
510 	}
511 	/*
512 	 * Pass 2:
513 	 * export sorted list of result data
514 	 */
515 	for (i = 0, p = res; i < n; ++i) {
516 		char *s;
517 
518 		s = list[i]->key;
519 		while (*s)
520 			*p++ = *s++;
521 		*p++ = '=';
522 
523 		s = list[i]->data;
524 
525 		while (*s) {
526 			if ((*s == sep) || (*s == '\\'))
527 				*p++ = '\\';	/* escape */
528 			*p++ = *s++;
529 		}
530 		*p++ = sep;
531 	}
532 	*p = '\0';		/* terminate result */
533 
534 	return size;
535 }
536 
537 
538 /*
539  * himport()
540  */
541 
542 /*
543  * Import linearized data into hash table.
544  *
545  * This is the inverse function to hexport(): it takes a linear list
546  * of "name=value" pairs and creates hash table entries from it.
547  *
548  * Entries without "value", i. e. consisting of only "name" or
549  * "name=", will cause this entry to be deleted from the hash table.
550  *
551  * The "flag" argument can be used to control the behaviour: when the
552  * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
553  * new data will be added to an existing hash table; otherwise, old
554  * data will be discarded and a new hash table will be created.
555  *
556  * The separator character for the "name=value" pairs can be selected,
557  * so we both support importing from externally stored environment
558  * data (separated by NUL characters) and from plain text files
559  * (entries separated by newline characters).
560  *
561  * To allow for nicely formatted text input, leading white space
562  * (sequences of SPACE and TAB chars) is ignored, and entries starting
563  * (after removal of any leading white space) with a '#' character are
564  * considered comments and ignored.
565  *
566  * [NOTE: this means that a variable name cannot start with a '#'
567  * character.]
568  *
569  * When using a non-NUL separator character, backslash is used as
570  * escape character in the value part, allowing for example for
571  * multi-line values.
572  *
573  * In theory, arbitrary separator characters can be used, but only
574  * '\0' and '\n' have really been tested.
575  */
576 
577 int himport_r(struct hsearch_data *htab,
578 	      const char *env, size_t size, const char sep, int flag)
579 {
580 	char *data, *sp, *dp, *name, *value;
581 
582 	/* Test for correct arguments.  */
583 	if (htab == NULL) {
584 		__set_errno(EINVAL);
585 		return 0;
586 	}
587 
588 	/* we allocate new space to make sure we can write to the array */
589 	if ((data = malloc(size)) == NULL) {
590 		debug("himport_r: can't malloc %d bytes\n", size);
591 		__set_errno(ENOMEM);
592 		return 0;
593 	}
594 	memcpy(data, env, size);
595 	dp = data;
596 
597 	if ((flag & H_NOCLEAR) == 0) {
598 		/* Destroy old hash table if one exists */
599 		debug("Destroy Hash Table: %p table = %p\n", htab,
600 		       htab->table);
601 		if (htab->table)
602 			hdestroy_r(htab);
603 	}
604 
605 	/*
606 	 * Create new hash table (if needed).  The computation of the hash
607 	 * table size is based on heuristics: in a sample of some 70+
608 	 * existing systems we found an average size of 39+ bytes per entry
609 	 * in the environment (for the whole key=value pair). Assuming a
610 	 * size of 8 per entry (= safety factor of ~5) should provide enough
611 	 * safety margin for any existing environment definitions and still
612 	 * allow for more than enough dynamic additions. Note that the
613 	 * "size" argument is supposed to give the maximum enviroment size
614 	 * (CONFIG_ENV_SIZE).  This heuristics will result in
615 	 * unreasonably large numbers (and thus memory footprint) for
616 	 * big flash environments (>8,000 entries for 64 KB
617 	 * envrionment size), so we clip it to a reasonable value.
618 	 * On the other hand we need to add some more entries for free
619 	 * space when importing very small buffers. Both boundaries can
620 	 * be overwritten in the board config file if needed.
621 	 */
622 
623 	if (!htab->table) {
624 		int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
625 
626 		if (nent > CONFIG_ENV_MAX_ENTRIES)
627 			nent = CONFIG_ENV_MAX_ENTRIES;
628 
629 		debug("Create Hash Table: N=%d\n", nent);
630 
631 		if (hcreate_r(nent, htab) == 0) {
632 			free(data);
633 			return 0;
634 		}
635 	}
636 
637 	/* Parse environment; allow for '\0' and 'sep' as separators */
638 	do {
639 		ENTRY e, *rv;
640 
641 		/* skip leading white space */
642 		while ((*dp == ' ') || (*dp == '\t'))
643 			++dp;
644 
645 		/* skip comment lines */
646 		if (*dp == '#') {
647 			while (*dp && (*dp != sep))
648 				++dp;
649 			++dp;
650 			continue;
651 		}
652 
653 		/* parse name */
654 		for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
655 			;
656 
657 		/* deal with "name" and "name=" entries (delete var) */
658 		if (*dp == '\0' || *(dp + 1) == '\0' ||
659 		    *dp == sep || *(dp + 1) == sep) {
660 			if (*dp == '=')
661 				*dp++ = '\0';
662 			*dp++ = '\0';	/* terminate name */
663 
664 			debug("DELETE CANDIDATE: \"%s\"\n", name);
665 
666 			if (hdelete_r(name, htab) == 0)
667 				debug("DELETE ERROR ##############################\n");
668 
669 			continue;
670 		}
671 		*dp++ = '\0';	/* terminate name */
672 
673 		/* parse value; deal with escapes */
674 		for (value = sp = dp; *dp && (*dp != sep); ++dp) {
675 			if ((*dp == '\\') && *(dp + 1))
676 				++dp;
677 			*sp++ = *dp;
678 		}
679 		*sp++ = '\0';	/* terminate value */
680 		++dp;
681 
682 		/* enter into hash table */
683 		e.key = name;
684 		e.data = value;
685 
686 		hsearch_r(e, ENTER, &rv, htab);
687 		if (rv == NULL) {
688 			printf("himport_r: can't insert \"%s=%s\" into hash table\n",
689 				name, value);
690 			return 0;
691 		}
692 
693 		debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
694 			htab, htab->filled, htab->size,
695 			rv, name, value);
696 	} while ((dp < data + size) && *dp);	/* size check needed for text */
697 						/* without '\0' termination */
698 	debug("INSERT: free(data = %p)\n", data);
699 	free(data);
700 
701 	debug("INSERT: done\n");
702 	return 1;		/* everything OK */
703 }
704