1 /* 2 * This implementation is based on code from uClibc-0.9.30.3 but was 3 * modified and extended for use within U-Boot. 4 * 5 * Copyright (C) 2010 Wolfgang Denk <wd@denx.de> 6 * 7 * Original license header: 8 * 9 * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc. 10 * This file is part of the GNU C Library. 11 * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993. 12 * 13 * The GNU C Library is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU Lesser General Public 15 * License as published by the Free Software Foundation; either 16 * version 2.1 of the License, or (at your option) any later version. 17 * 18 * The GNU C Library is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * Lesser General Public License for more details. 22 * 23 * You should have received a copy of the GNU Lesser General Public 24 * License along with the GNU C Library; if not, write to the Free 25 * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 26 * 02111-1307 USA. 27 */ 28 29 #include <errno.h> 30 #include <malloc.h> 31 32 #ifdef USE_HOSTCC /* HOST build */ 33 # include <string.h> 34 # include <assert.h> 35 36 # ifndef debug 37 # ifdef DEBUG 38 # define debug(fmt,args...) printf(fmt ,##args) 39 # else 40 # define debug(fmt,args...) 41 # endif 42 # endif 43 #else /* U-Boot build */ 44 # include <common.h> 45 # include <linux/string.h> 46 #endif 47 48 #ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */ 49 #define CONFIG_ENV_MIN_ENTRIES 64 50 #endif 51 #ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */ 52 #define CONFIG_ENV_MAX_ENTRIES 512 53 #endif 54 55 #include "search.h" 56 57 /* 58 * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986 59 * [Knuth] The Art of Computer Programming, part 3 (6.4) 60 */ 61 62 /* 63 * The reentrant version has no static variables to maintain the state. 64 * Instead the interface of all functions is extended to take an argument 65 * which describes the current status. 66 */ 67 typedef struct _ENTRY { 68 unsigned int used; 69 ENTRY entry; 70 } _ENTRY; 71 72 73 /* 74 * hcreate() 75 */ 76 77 /* 78 * For the used double hash method the table size has to be a prime. To 79 * correct the user given table size we need a prime test. This trivial 80 * algorithm is adequate because 81 * a) the code is (most probably) called a few times per program run and 82 * b) the number is small because the table must fit in the core 83 * */ 84 static int isprime(unsigned int number) 85 { 86 /* no even number will be passed */ 87 unsigned int div = 3; 88 89 while (div * div < number && number % div != 0) 90 div += 2; 91 92 return number % div != 0; 93 } 94 95 /* 96 * Before using the hash table we must allocate memory for it. 97 * Test for an existing table are done. We allocate one element 98 * more as the found prime number says. This is done for more effective 99 * indexing as explained in the comment for the hsearch function. 100 * The contents of the table is zeroed, especially the field used 101 * becomes zero. 102 */ 103 104 int hcreate_r(size_t nel, struct hsearch_data *htab) 105 { 106 /* Test for correct arguments. */ 107 if (htab == NULL) { 108 __set_errno(EINVAL); 109 return 0; 110 } 111 112 /* There is still another table active. Return with error. */ 113 if (htab->table != NULL) 114 return 0; 115 116 /* Change nel to the first prime number not smaller as nel. */ 117 nel |= 1; /* make odd */ 118 while (!isprime(nel)) 119 nel += 2; 120 121 htab->size = nel; 122 htab->filled = 0; 123 124 /* allocate memory and zero out */ 125 htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY)); 126 if (htab->table == NULL) 127 return 0; 128 129 /* everything went alright */ 130 return 1; 131 } 132 133 134 /* 135 * hdestroy() 136 */ 137 138 /* 139 * After using the hash table it has to be destroyed. The used memory can 140 * be freed and the local static variable can be marked as not used. 141 */ 142 143 void hdestroy_r(struct hsearch_data *htab) 144 { 145 int i; 146 147 /* Test for correct arguments. */ 148 if (htab == NULL) { 149 __set_errno(EINVAL); 150 return; 151 } 152 153 /* free used memory */ 154 for (i = 1; i <= htab->size; ++i) { 155 if (htab->table[i].used) { 156 ENTRY *ep = &htab->table[i].entry; 157 158 free(ep->key); 159 free(ep->data); 160 } 161 } 162 free(htab->table); 163 164 /* the sign for an existing table is an value != NULL in htable */ 165 htab->table = NULL; 166 } 167 168 /* 169 * hsearch() 170 */ 171 172 /* 173 * This is the search function. It uses double hashing with open addressing. 174 * The argument item.key has to be a pointer to an zero terminated, most 175 * probably strings of chars. The function for generating a number of the 176 * strings is simple but fast. It can be replaced by a more complex function 177 * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown. 178 * 179 * We use an trick to speed up the lookup. The table is created by hcreate 180 * with one more element available. This enables us to use the index zero 181 * special. This index will never be used because we store the first hash 182 * index in the field used where zero means not used. Every other value 183 * means used. The used field can be used as a first fast comparison for 184 * equality of the stored and the parameter value. This helps to prevent 185 * unnecessary expensive calls of strcmp. 186 * 187 * This implementation differs from the standard library version of 188 * this function in a number of ways: 189 * 190 * - While the standard version does not make any assumptions about 191 * the type of the stored data objects at all, this implementation 192 * works with NUL terminated strings only. 193 * - Instead of storing just pointers to the original objects, we 194 * create local copies so the caller does not need to care about the 195 * data any more. 196 * - The standard implementation does not provide a way to update an 197 * existing entry. This version will create a new entry or update an 198 * existing one when both "action == ENTER" and "item.data != NULL". 199 * - Instead of returning 1 on success, we return the index into the 200 * internal hash table, which is also guaranteed to be positive. 201 * This allows us direct access to the found hash table slot for 202 * example for functions like hdelete(). 203 */ 204 205 int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval, 206 struct hsearch_data *htab) 207 { 208 unsigned int hval; 209 unsigned int count; 210 unsigned int len = strlen(item.key); 211 unsigned int idx; 212 213 /* Compute an value for the given string. Perhaps use a better method. */ 214 hval = len; 215 count = len; 216 while (count-- > 0) { 217 hval <<= 4; 218 hval += item.key[count]; 219 } 220 221 /* 222 * First hash function: 223 * simply take the modul but prevent zero. 224 */ 225 hval %= htab->size; 226 if (hval == 0) 227 ++hval; 228 229 /* The first index tried. */ 230 idx = hval; 231 232 if (htab->table[idx].used) { 233 /* 234 * Further action might be required according to the 235 * action value. 236 */ 237 unsigned hval2; 238 239 if (htab->table[idx].used == hval 240 && strcmp(item.key, htab->table[idx].entry.key) == 0) { 241 /* Overwrite existing value? */ 242 if ((action == ENTER) && (item.data != NULL)) { 243 free(htab->table[idx].entry.data); 244 htab->table[idx].entry.data = 245 strdup(item.data); 246 if (!htab->table[idx].entry.data) { 247 __set_errno(ENOMEM); 248 *retval = NULL; 249 return 0; 250 } 251 } 252 /* return found entry */ 253 *retval = &htab->table[idx].entry; 254 return idx; 255 } 256 257 /* 258 * Second hash function: 259 * as suggested in [Knuth] 260 */ 261 hval2 = 1 + hval % (htab->size - 2); 262 263 do { 264 /* 265 * Because SIZE is prime this guarantees to 266 * step through all available indices. 267 */ 268 if (idx <= hval2) 269 idx = htab->size + idx - hval2; 270 else 271 idx -= hval2; 272 273 /* 274 * If we visited all entries leave the loop 275 * unsuccessfully. 276 */ 277 if (idx == hval) 278 break; 279 280 /* If entry is found use it. */ 281 if ((htab->table[idx].used == hval) 282 && strcmp(item.key, htab->table[idx].entry.key) == 0) { 283 /* Overwrite existing value? */ 284 if ((action == ENTER) && (item.data != NULL)) { 285 free(htab->table[idx].entry.data); 286 htab->table[idx].entry.data = 287 strdup(item.data); 288 if (!htab->table[idx].entry.data) { 289 __set_errno(ENOMEM); 290 *retval = NULL; 291 return 0; 292 } 293 } 294 /* return found entry */ 295 *retval = &htab->table[idx].entry; 296 return idx; 297 } 298 } 299 while (htab->table[idx].used); 300 } 301 302 /* An empty bucket has been found. */ 303 if (action == ENTER) { 304 /* 305 * If table is full and another entry should be 306 * entered return with error. 307 */ 308 if (htab->filled == htab->size) { 309 __set_errno(ENOMEM); 310 *retval = NULL; 311 return 0; 312 } 313 314 /* 315 * Create new entry; 316 * create copies of item.key and item.data 317 */ 318 htab->table[idx].used = hval; 319 htab->table[idx].entry.key = strdup(item.key); 320 htab->table[idx].entry.data = strdup(item.data); 321 if (!htab->table[idx].entry.key || 322 !htab->table[idx].entry.data) { 323 __set_errno(ENOMEM); 324 *retval = NULL; 325 return 0; 326 } 327 328 ++htab->filled; 329 330 /* return new entry */ 331 *retval = &htab->table[idx].entry; 332 return 1; 333 } 334 335 __set_errno(ESRCH); 336 *retval = NULL; 337 return 0; 338 } 339 340 341 /* 342 * hdelete() 343 */ 344 345 /* 346 * The standard implementation of hsearch(3) does not provide any way 347 * to delete any entries from the hash table. We extend the code to 348 * do that. 349 */ 350 351 int hdelete_r(const char *key, struct hsearch_data *htab) 352 { 353 ENTRY e, *ep; 354 int idx; 355 356 debug("hdelete: DELETE key \"%s\"\n", key); 357 358 e.key = (char *)key; 359 360 if ((idx = hsearch_r(e, FIND, &ep, htab)) == 0) { 361 __set_errno(ESRCH); 362 return 0; /* not found */ 363 } 364 365 /* free used ENTRY */ 366 debug("hdelete: DELETING key \"%s\"\n", key); 367 368 free(ep->key); 369 free(ep->data); 370 htab->table[idx].used = 0; 371 372 --htab->filled; 373 374 return 1; 375 } 376 377 /* 378 * hexport() 379 */ 380 381 /* 382 * Export the data stored in the hash table in linearized form. 383 * 384 * Entries are exported as "name=value" strings, separated by an 385 * arbitrary (non-NUL, of course) separator character. This allows to 386 * use this function both when formatting the U-Boot environment for 387 * external storage (using '\0' as separator), but also when using it 388 * for the "printenv" command to print all variables, simply by using 389 * as '\n" as separator. This can also be used for new features like 390 * exporting the environment data as text file, including the option 391 * for later re-import. 392 * 393 * The entries in the result list will be sorted by ascending key 394 * values. 395 * 396 * If the separator character is different from NUL, then any 397 * separator characters and backslash characters in the values will 398 * be escaped by a preceeding backslash in output. This is needed for 399 * example to enable multi-line values, especially when the output 400 * shall later be parsed (for example, for re-import). 401 * 402 * There are several options how the result buffer is handled: 403 * 404 * *resp size 405 * ----------- 406 * NULL 0 A string of sufficient length will be allocated. 407 * NULL >0 A string of the size given will be 408 * allocated. An error will be returned if the size is 409 * not sufficient. Any unused bytes in the string will 410 * be '\0'-padded. 411 * !NULL 0 The user-supplied buffer will be used. No length 412 * checking will be performed, i. e. it is assumed that 413 * the buffer size will always be big enough. DANGEROUS. 414 * !NULL >0 The user-supplied buffer will be used. An error will 415 * be returned if the size is not sufficient. Any unused 416 * bytes in the string will be '\0'-padded. 417 */ 418 419 static int cmpkey(const void *p1, const void *p2) 420 { 421 ENTRY *e1 = *(ENTRY **) p1; 422 ENTRY *e2 = *(ENTRY **) p2; 423 424 return (strcmp(e1->key, e2->key)); 425 } 426 427 ssize_t hexport_r(struct hsearch_data *htab, const char sep, 428 char **resp, size_t size) 429 { 430 ENTRY *list[htab->size]; 431 char *res, *p; 432 size_t totlen; 433 int i, n; 434 435 /* Test for correct arguments. */ 436 if ((resp == NULL) || (htab == NULL)) { 437 __set_errno(EINVAL); 438 return (-1); 439 } 440 441 debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, size = %d\n", 442 htab, htab->size, htab->filled, size); 443 /* 444 * Pass 1: 445 * search used entries, 446 * save addresses and compute total length 447 */ 448 for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) { 449 450 if (htab->table[i].used) { 451 ENTRY *ep = &htab->table[i].entry; 452 453 list[n++] = ep; 454 455 totlen += strlen(ep->key) + 2; 456 457 if (sep == '\0') { 458 totlen += strlen(ep->data); 459 } else { /* check if escapes are needed */ 460 char *s = ep->data; 461 462 while (*s) { 463 ++totlen; 464 /* add room for needed escape chars */ 465 if ((*s == sep) || (*s == '\\')) 466 ++totlen; 467 ++s; 468 } 469 } 470 totlen += 2; /* for '=' and 'sep' char */ 471 } 472 } 473 474 #ifdef DEBUG 475 /* Pass 1a: print unsorted list */ 476 printf("Unsorted: n=%d\n", n); 477 for (i = 0; i < n; ++i) { 478 printf("\t%3d: %p ==> %-10s => %s\n", 479 i, list[i], list[i]->key, list[i]->data); 480 } 481 #endif 482 483 /* Sort list by keys */ 484 qsort(list, n, sizeof(ENTRY *), cmpkey); 485 486 /* Check if the user supplied buffer size is sufficient */ 487 if (size) { 488 if (size < totlen + 1) { /* provided buffer too small */ 489 debug("### buffer too small: %d, but need %d\n", 490 size, totlen + 1); 491 __set_errno(ENOMEM); 492 return (-1); 493 } 494 } else { 495 size = totlen + 1; 496 } 497 498 /* Check if the user provided a buffer */ 499 if (*resp) { 500 /* yes; clear it */ 501 res = *resp; 502 memset(res, '\0', size); 503 } else { 504 /* no, allocate and clear one */ 505 *resp = res = calloc(1, size); 506 if (res == NULL) { 507 __set_errno(ENOMEM); 508 return (-1); 509 } 510 } 511 /* 512 * Pass 2: 513 * export sorted list of result data 514 */ 515 for (i = 0, p = res; i < n; ++i) { 516 char *s; 517 518 s = list[i]->key; 519 while (*s) 520 *p++ = *s++; 521 *p++ = '='; 522 523 s = list[i]->data; 524 525 while (*s) { 526 if ((*s == sep) || (*s == '\\')) 527 *p++ = '\\'; /* escape */ 528 *p++ = *s++; 529 } 530 *p++ = sep; 531 } 532 *p = '\0'; /* terminate result */ 533 534 return size; 535 } 536 537 538 /* 539 * himport() 540 */ 541 542 /* 543 * Import linearized data into hash table. 544 * 545 * This is the inverse function to hexport(): it takes a linear list 546 * of "name=value" pairs and creates hash table entries from it. 547 * 548 * Entries without "value", i. e. consisting of only "name" or 549 * "name=", will cause this entry to be deleted from the hash table. 550 * 551 * The "flag" argument can be used to control the behaviour: when the 552 * H_NOCLEAR bit is set, then an existing hash table will kept, i. e. 553 * new data will be added to an existing hash table; otherwise, old 554 * data will be discarded and a new hash table will be created. 555 * 556 * The separator character for the "name=value" pairs can be selected, 557 * so we both support importing from externally stored environment 558 * data (separated by NUL characters) and from plain text files 559 * (entries separated by newline characters). 560 * 561 * To allow for nicely formatted text input, leading white space 562 * (sequences of SPACE and TAB chars) is ignored, and entries starting 563 * (after removal of any leading white space) with a '#' character are 564 * considered comments and ignored. 565 * 566 * [NOTE: this means that a variable name cannot start with a '#' 567 * character.] 568 * 569 * When using a non-NUL separator character, backslash is used as 570 * escape character in the value part, allowing for example for 571 * multi-line values. 572 * 573 * In theory, arbitrary separator characters can be used, but only 574 * '\0' and '\n' have really been tested. 575 */ 576 577 int himport_r(struct hsearch_data *htab, 578 const char *env, size_t size, const char sep, int flag) 579 { 580 char *data, *sp, *dp, *name, *value; 581 582 /* Test for correct arguments. */ 583 if (htab == NULL) { 584 __set_errno(EINVAL); 585 return 0; 586 } 587 588 /* we allocate new space to make sure we can write to the array */ 589 if ((data = malloc(size)) == NULL) { 590 debug("himport_r: can't malloc %d bytes\n", size); 591 __set_errno(ENOMEM); 592 return 0; 593 } 594 memcpy(data, env, size); 595 dp = data; 596 597 if ((flag & H_NOCLEAR) == 0) { 598 /* Destroy old hash table if one exists */ 599 debug("Destroy Hash Table: %p table = %p\n", htab, 600 htab->table); 601 if (htab->table) 602 hdestroy_r(htab); 603 } 604 605 /* 606 * Create new hash table (if needed). The computation of the hash 607 * table size is based on heuristics: in a sample of some 70+ 608 * existing systems we found an average size of 39+ bytes per entry 609 * in the environment (for the whole key=value pair). Assuming a 610 * size of 8 per entry (= safety factor of ~5) should provide enough 611 * safety margin for any existing environment definitions and still 612 * allow for more than enough dynamic additions. Note that the 613 * "size" argument is supposed to give the maximum enviroment size 614 * (CONFIG_ENV_SIZE). This heuristics will result in 615 * unreasonably large numbers (and thus memory footprint) for 616 * big flash environments (>8,000 entries for 64 KB 617 * envrionment size), so we clip it to a reasonable value. 618 * On the other hand we need to add some more entries for free 619 * space when importing very small buffers. Both boundaries can 620 * be overwritten in the board config file if needed. 621 */ 622 623 if (!htab->table) { 624 int nent = CONFIG_ENV_MIN_ENTRIES + size / 8; 625 626 if (nent > CONFIG_ENV_MAX_ENTRIES) 627 nent = CONFIG_ENV_MAX_ENTRIES; 628 629 debug("Create Hash Table: N=%d\n", nent); 630 631 if (hcreate_r(nent, htab) == 0) { 632 free(data); 633 return 0; 634 } 635 } 636 637 /* Parse environment; allow for '\0' and 'sep' as separators */ 638 do { 639 ENTRY e, *rv; 640 641 /* skip leading white space */ 642 while ((*dp == ' ') || (*dp == '\t')) 643 ++dp; 644 645 /* skip comment lines */ 646 if (*dp == '#') { 647 while (*dp && (*dp != sep)) 648 ++dp; 649 ++dp; 650 continue; 651 } 652 653 /* parse name */ 654 for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp) 655 ; 656 657 /* deal with "name" and "name=" entries (delete var) */ 658 if (*dp == '\0' || *(dp + 1) == '\0' || 659 *dp == sep || *(dp + 1) == sep) { 660 if (*dp == '=') 661 *dp++ = '\0'; 662 *dp++ = '\0'; /* terminate name */ 663 664 debug("DELETE CANDIDATE: \"%s\"\n", name); 665 666 if (hdelete_r(name, htab) == 0) 667 debug("DELETE ERROR ##############################\n"); 668 669 continue; 670 } 671 *dp++ = '\0'; /* terminate name */ 672 673 /* parse value; deal with escapes */ 674 for (value = sp = dp; *dp && (*dp != sep); ++dp) { 675 if ((*dp == '\\') && *(dp + 1)) 676 ++dp; 677 *sp++ = *dp; 678 } 679 *sp++ = '\0'; /* terminate value */ 680 ++dp; 681 682 /* enter into hash table */ 683 e.key = name; 684 e.data = value; 685 686 hsearch_r(e, ENTER, &rv, htab); 687 if (rv == NULL) { 688 printf("himport_r: can't insert \"%s=%s\" into hash table\n", 689 name, value); 690 return 0; 691 } 692 693 debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n", 694 htab, htab->filled, htab->size, 695 rv, name, value); 696 } while ((dp < data + size) && *dp); /* size check needed for text */ 697 /* without '\0' termination */ 698 debug("INSERT: free(data = %p)\n", data); 699 free(data); 700 701 debug("INSERT: done\n"); 702 return 1; /* everything OK */ 703 } 704