xref: /openbmc/u-boot/lib/hashtable.c (revision a7da6f8c)
1 /*
2  * This implementation is based on code from uClibc-0.9.30.3 but was
3  * modified and extended for use within U-Boot.
4  *
5  * Copyright (C) 2010-2013 Wolfgang Denk <wd@denx.de>
6  *
7  * Original license header:
8  *
9  * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
10  * This file is part of the GNU C Library.
11  * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
12  *
13  * SPDX-License-Identifier:	LGPL-2.1+
14  */
15 
16 #include <errno.h>
17 #include <malloc.h>
18 
19 #ifdef USE_HOSTCC		/* HOST build */
20 # include <string.h>
21 # include <assert.h>
22 # include <ctype.h>
23 
24 # ifndef debug
25 #  ifdef DEBUG
26 #   define debug(fmt,args...)	printf(fmt ,##args)
27 #  else
28 #   define debug(fmt,args...)
29 #  endif
30 # endif
31 #else				/* U-Boot build */
32 # include <common.h>
33 # include <linux/string.h>
34 # include <linux/ctype.h>
35 #endif
36 
37 #ifndef	CONFIG_ENV_MIN_ENTRIES	/* minimum number of entries */
38 #define	CONFIG_ENV_MIN_ENTRIES 64
39 #endif
40 #ifndef	CONFIG_ENV_MAX_ENTRIES	/* maximum number of entries */
41 #define	CONFIG_ENV_MAX_ENTRIES 512
42 #endif
43 
44 #include <env_callback.h>
45 #include <env_flags.h>
46 #include <search.h>
47 #include <slre.h>
48 
49 /*
50  * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
51  * [Knuth]	      The Art of Computer Programming, part 3 (6.4)
52  */
53 
54 /*
55  * The reentrant version has no static variables to maintain the state.
56  * Instead the interface of all functions is extended to take an argument
57  * which describes the current status.
58  */
59 
60 typedef struct _ENTRY {
61 	int used;
62 	ENTRY entry;
63 } _ENTRY;
64 
65 
66 static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep,
67 	int idx);
68 
69 /*
70  * hcreate()
71  */
72 
73 /*
74  * For the used double hash method the table size has to be a prime. To
75  * correct the user given table size we need a prime test.  This trivial
76  * algorithm is adequate because
77  * a)  the code is (most probably) called a few times per program run and
78  * b)  the number is small because the table must fit in the core
79  * */
80 static int isprime(unsigned int number)
81 {
82 	/* no even number will be passed */
83 	unsigned int div = 3;
84 
85 	while (div * div < number && number % div != 0)
86 		div += 2;
87 
88 	return number % div != 0;
89 }
90 
91 /*
92  * Before using the hash table we must allocate memory for it.
93  * Test for an existing table are done. We allocate one element
94  * more as the found prime number says. This is done for more effective
95  * indexing as explained in the comment for the hsearch function.
96  * The contents of the table is zeroed, especially the field used
97  * becomes zero.
98  */
99 
100 int hcreate_r(size_t nel, struct hsearch_data *htab)
101 {
102 	/* Test for correct arguments.  */
103 	if (htab == NULL) {
104 		__set_errno(EINVAL);
105 		return 0;
106 	}
107 
108 	/* There is still another table active. Return with error. */
109 	if (htab->table != NULL)
110 		return 0;
111 
112 	/* Change nel to the first prime number not smaller as nel. */
113 	nel |= 1;		/* make odd */
114 	while (!isprime(nel))
115 		nel += 2;
116 
117 	htab->size = nel;
118 	htab->filled = 0;
119 
120 	/* allocate memory and zero out */
121 	htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY));
122 	if (htab->table == NULL)
123 		return 0;
124 
125 	/* everything went alright */
126 	return 1;
127 }
128 
129 
130 /*
131  * hdestroy()
132  */
133 
134 /*
135  * After using the hash table it has to be destroyed. The used memory can
136  * be freed and the local static variable can be marked as not used.
137  */
138 
139 void hdestroy_r(struct hsearch_data *htab)
140 {
141 	int i;
142 
143 	/* Test for correct arguments.  */
144 	if (htab == NULL) {
145 		__set_errno(EINVAL);
146 		return;
147 	}
148 
149 	/* free used memory */
150 	for (i = 1; i <= htab->size; ++i) {
151 		if (htab->table[i].used > 0) {
152 			ENTRY *ep = &htab->table[i].entry;
153 
154 			free((void *)ep->key);
155 			free(ep->data);
156 		}
157 	}
158 	free(htab->table);
159 
160 	/* the sign for an existing table is an value != NULL in htable */
161 	htab->table = NULL;
162 }
163 
164 /*
165  * hsearch()
166  */
167 
168 /*
169  * This is the search function. It uses double hashing with open addressing.
170  * The argument item.key has to be a pointer to an zero terminated, most
171  * probably strings of chars. The function for generating a number of the
172  * strings is simple but fast. It can be replaced by a more complex function
173  * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
174  *
175  * We use an trick to speed up the lookup. The table is created by hcreate
176  * with one more element available. This enables us to use the index zero
177  * special. This index will never be used because we store the first hash
178  * index in the field used where zero means not used. Every other value
179  * means used. The used field can be used as a first fast comparison for
180  * equality of the stored and the parameter value. This helps to prevent
181  * unnecessary expensive calls of strcmp.
182  *
183  * This implementation differs from the standard library version of
184  * this function in a number of ways:
185  *
186  * - While the standard version does not make any assumptions about
187  *   the type of the stored data objects at all, this implementation
188  *   works with NUL terminated strings only.
189  * - Instead of storing just pointers to the original objects, we
190  *   create local copies so the caller does not need to care about the
191  *   data any more.
192  * - The standard implementation does not provide a way to update an
193  *   existing entry.  This version will create a new entry or update an
194  *   existing one when both "action == ENTER" and "item.data != NULL".
195  * - Instead of returning 1 on success, we return the index into the
196  *   internal hash table, which is also guaranteed to be positive.
197  *   This allows us direct access to the found hash table slot for
198  *   example for functions like hdelete().
199  */
200 
201 int hmatch_r(const char *match, int last_idx, ENTRY ** retval,
202 	     struct hsearch_data *htab)
203 {
204 	unsigned int idx;
205 	size_t key_len = strlen(match);
206 
207 	for (idx = last_idx + 1; idx < htab->size; ++idx) {
208 		if (htab->table[idx].used <= 0)
209 			continue;
210 		if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
211 			*retval = &htab->table[idx].entry;
212 			return idx;
213 		}
214 	}
215 
216 	__set_errno(ESRCH);
217 	*retval = NULL;
218 	return 0;
219 }
220 
221 /*
222  * Compare an existing entry with the desired key, and overwrite if the action
223  * is ENTER.  This is simply a helper function for hsearch_r().
224  */
225 static inline int _compare_and_overwrite_entry(ENTRY item, ACTION action,
226 	ENTRY **retval, struct hsearch_data *htab, int flag,
227 	unsigned int hval, unsigned int idx)
228 {
229 	if (htab->table[idx].used == hval
230 	    && strcmp(item.key, htab->table[idx].entry.key) == 0) {
231 		/* Overwrite existing value? */
232 		if ((action == ENTER) && (item.data != NULL)) {
233 			/* check for permission */
234 			if (htab->change_ok != NULL && htab->change_ok(
235 			    &htab->table[idx].entry, item.data,
236 			    env_op_overwrite, flag)) {
237 				debug("change_ok() rejected setting variable "
238 					"%s, skipping it!\n", item.key);
239 				__set_errno(EPERM);
240 				*retval = NULL;
241 				return 0;
242 			}
243 
244 			/* If there is a callback, call it */
245 			if (htab->table[idx].entry.callback &&
246 			    htab->table[idx].entry.callback(item.key,
247 			    item.data, env_op_overwrite, flag)) {
248 				debug("callback() rejected setting variable "
249 					"%s, skipping it!\n", item.key);
250 				__set_errno(EINVAL);
251 				*retval = NULL;
252 				return 0;
253 			}
254 
255 			free(htab->table[idx].entry.data);
256 			htab->table[idx].entry.data = strdup(item.data);
257 			if (!htab->table[idx].entry.data) {
258 				__set_errno(ENOMEM);
259 				*retval = NULL;
260 				return 0;
261 			}
262 		}
263 		/* return found entry */
264 		*retval = &htab->table[idx].entry;
265 		return idx;
266 	}
267 	/* keep searching */
268 	return -1;
269 }
270 
271 int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval,
272 	      struct hsearch_data *htab, int flag)
273 {
274 	unsigned int hval;
275 	unsigned int count;
276 	unsigned int len = strlen(item.key);
277 	unsigned int idx;
278 	unsigned int first_deleted = 0;
279 	int ret;
280 
281 	/* Compute an value for the given string. Perhaps use a better method. */
282 	hval = len;
283 	count = len;
284 	while (count-- > 0) {
285 		hval <<= 4;
286 		hval += item.key[count];
287 	}
288 
289 	/*
290 	 * First hash function:
291 	 * simply take the modul but prevent zero.
292 	 */
293 	hval %= htab->size;
294 	if (hval == 0)
295 		++hval;
296 
297 	/* The first index tried. */
298 	idx = hval;
299 
300 	if (htab->table[idx].used) {
301 		/*
302 		 * Further action might be required according to the
303 		 * action value.
304 		 */
305 		unsigned hval2;
306 
307 		if (htab->table[idx].used == -1
308 		    && !first_deleted)
309 			first_deleted = idx;
310 
311 		ret = _compare_and_overwrite_entry(item, action, retval, htab,
312 			flag, hval, idx);
313 		if (ret != -1)
314 			return ret;
315 
316 		/*
317 		 * Second hash function:
318 		 * as suggested in [Knuth]
319 		 */
320 		hval2 = 1 + hval % (htab->size - 2);
321 
322 		do {
323 			/*
324 			 * Because SIZE is prime this guarantees to
325 			 * step through all available indices.
326 			 */
327 			if (idx <= hval2)
328 				idx = htab->size + idx - hval2;
329 			else
330 				idx -= hval2;
331 
332 			/*
333 			 * If we visited all entries leave the loop
334 			 * unsuccessfully.
335 			 */
336 			if (idx == hval)
337 				break;
338 
339 			/* If entry is found use it. */
340 			ret = _compare_and_overwrite_entry(item, action, retval,
341 				htab, flag, hval, idx);
342 			if (ret != -1)
343 				return ret;
344 		}
345 		while (htab->table[idx].used);
346 	}
347 
348 	/* An empty bucket has been found. */
349 	if (action == ENTER) {
350 		/*
351 		 * If table is full and another entry should be
352 		 * entered return with error.
353 		 */
354 		if (htab->filled == htab->size) {
355 			__set_errno(ENOMEM);
356 			*retval = NULL;
357 			return 0;
358 		}
359 
360 		/*
361 		 * Create new entry;
362 		 * create copies of item.key and item.data
363 		 */
364 		if (first_deleted)
365 			idx = first_deleted;
366 
367 		htab->table[idx].used = hval;
368 		htab->table[idx].entry.key = strdup(item.key);
369 		htab->table[idx].entry.data = strdup(item.data);
370 		if (!htab->table[idx].entry.key ||
371 		    !htab->table[idx].entry.data) {
372 			__set_errno(ENOMEM);
373 			*retval = NULL;
374 			return 0;
375 		}
376 
377 		++htab->filled;
378 
379 		/* This is a new entry, so look up a possible callback */
380 		env_callback_init(&htab->table[idx].entry);
381 		/* Also look for flags */
382 		env_flags_init(&htab->table[idx].entry);
383 
384 		/* check for permission */
385 		if (htab->change_ok != NULL && htab->change_ok(
386 		    &htab->table[idx].entry, item.data, env_op_create, flag)) {
387 			debug("change_ok() rejected setting variable "
388 				"%s, skipping it!\n", item.key);
389 			_hdelete(item.key, htab, &htab->table[idx].entry, idx);
390 			__set_errno(EPERM);
391 			*retval = NULL;
392 			return 0;
393 		}
394 
395 		/* If there is a callback, call it */
396 		if (htab->table[idx].entry.callback &&
397 		    htab->table[idx].entry.callback(item.key, item.data,
398 		    env_op_create, flag)) {
399 			debug("callback() rejected setting variable "
400 				"%s, skipping it!\n", item.key);
401 			_hdelete(item.key, htab, &htab->table[idx].entry, idx);
402 			__set_errno(EINVAL);
403 			*retval = NULL;
404 			return 0;
405 		}
406 
407 		/* return new entry */
408 		*retval = &htab->table[idx].entry;
409 		return 1;
410 	}
411 
412 	__set_errno(ESRCH);
413 	*retval = NULL;
414 	return 0;
415 }
416 
417 
418 /*
419  * hdelete()
420  */
421 
422 /*
423  * The standard implementation of hsearch(3) does not provide any way
424  * to delete any entries from the hash table.  We extend the code to
425  * do that.
426  */
427 
428 static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep,
429 	int idx)
430 {
431 	/* free used ENTRY */
432 	debug("hdelete: DELETING key \"%s\"\n", key);
433 	free((void *)ep->key);
434 	free(ep->data);
435 	ep->callback = NULL;
436 	ep->flags = 0;
437 	htab->table[idx].used = -1;
438 
439 	--htab->filled;
440 }
441 
442 int hdelete_r(const char *key, struct hsearch_data *htab, int flag)
443 {
444 	ENTRY e, *ep;
445 	int idx;
446 
447 	debug("hdelete: DELETE key \"%s\"\n", key);
448 
449 	e.key = (char *)key;
450 
451 	idx = hsearch_r(e, FIND, &ep, htab, 0);
452 	if (idx == 0) {
453 		__set_errno(ESRCH);
454 		return 0;	/* not found */
455 	}
456 
457 	/* Check for permission */
458 	if (htab->change_ok != NULL &&
459 	    htab->change_ok(ep, NULL, env_op_delete, flag)) {
460 		debug("change_ok() rejected deleting variable "
461 			"%s, skipping it!\n", key);
462 		__set_errno(EPERM);
463 		return 0;
464 	}
465 
466 	/* If there is a callback, call it */
467 	if (htab->table[idx].entry.callback &&
468 	    htab->table[idx].entry.callback(key, NULL, env_op_delete, flag)) {
469 		debug("callback() rejected deleting variable "
470 			"%s, skipping it!\n", key);
471 		__set_errno(EINVAL);
472 		return 0;
473 	}
474 
475 	_hdelete(key, htab, ep, idx);
476 
477 	return 1;
478 }
479 
480 /*
481  * hexport()
482  */
483 
484 #ifndef CONFIG_SPL_BUILD
485 /*
486  * Export the data stored in the hash table in linearized form.
487  *
488  * Entries are exported as "name=value" strings, separated by an
489  * arbitrary (non-NUL, of course) separator character. This allows to
490  * use this function both when formatting the U-Boot environment for
491  * external storage (using '\0' as separator), but also when using it
492  * for the "printenv" command to print all variables, simply by using
493  * as '\n" as separator. This can also be used for new features like
494  * exporting the environment data as text file, including the option
495  * for later re-import.
496  *
497  * The entries in the result list will be sorted by ascending key
498  * values.
499  *
500  * If the separator character is different from NUL, then any
501  * separator characters and backslash characters in the values will
502  * be escaped by a preceeding backslash in output. This is needed for
503  * example to enable multi-line values, especially when the output
504  * shall later be parsed (for example, for re-import).
505  *
506  * There are several options how the result buffer is handled:
507  *
508  * *resp  size
509  * -----------
510  *  NULL    0	A string of sufficient length will be allocated.
511  *  NULL   >0	A string of the size given will be
512  *		allocated. An error will be returned if the size is
513  *		not sufficient.  Any unused bytes in the string will
514  *		be '\0'-padded.
515  * !NULL    0	The user-supplied buffer will be used. No length
516  *		checking will be performed, i. e. it is assumed that
517  *		the buffer size will always be big enough. DANGEROUS.
518  * !NULL   >0	The user-supplied buffer will be used. An error will
519  *		be returned if the size is not sufficient.  Any unused
520  *		bytes in the string will be '\0'-padded.
521  */
522 
523 static int cmpkey(const void *p1, const void *p2)
524 {
525 	ENTRY *e1 = *(ENTRY **) p1;
526 	ENTRY *e2 = *(ENTRY **) p2;
527 
528 	return (strcmp(e1->key, e2->key));
529 }
530 
531 static int match_string(int flag, const char *str, const char *pat, void *priv)
532 {
533 	switch (flag & H_MATCH_METHOD) {
534 	case H_MATCH_IDENT:
535 		if (strcmp(str, pat) == 0)
536 			return 1;
537 		break;
538 	case H_MATCH_SUBSTR:
539 		if (strstr(str, pat))
540 			return 1;
541 		break;
542 #ifdef CONFIG_REGEX
543 	case H_MATCH_REGEX:
544 		{
545 			struct slre *slrep = (struct slre *)priv;
546 			struct cap caps[slrep->num_caps + 2];
547 
548 			if (slre_match(slrep, str, strlen(str), caps))
549 				return 1;
550 		}
551 		break;
552 #endif
553 	default:
554 		printf("## ERROR: unsupported match method: 0x%02x\n",
555 			flag & H_MATCH_METHOD);
556 		break;
557 	}
558 	return 0;
559 }
560 
561 static int match_entry(ENTRY *ep, int flag,
562 		 int argc, char * const argv[])
563 {
564 	int arg;
565 	void *priv = NULL;
566 
567 	for (arg = 0; arg < argc; ++arg) {
568 #ifdef CONFIG_REGEX
569 		struct slre slre;
570 
571 		if (slre_compile(&slre, argv[arg]) == 0) {
572 			printf("Error compiling regex: %s\n", slre.err_str);
573 			return 0;
574 		}
575 
576 		priv = (void *)&slre;
577 #endif
578 		if (flag & H_MATCH_KEY) {
579 			if (match_string(flag, ep->key, argv[arg], priv))
580 				return 1;
581 		}
582 		if (flag & H_MATCH_DATA) {
583 			if (match_string(flag, ep->data, argv[arg], priv))
584 				return 1;
585 		}
586 	}
587 	return 0;
588 }
589 
590 ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag,
591 		 char **resp, size_t size,
592 		 int argc, char * const argv[])
593 {
594 	ENTRY *list[htab->size];
595 	char *res, *p;
596 	size_t totlen;
597 	int i, n;
598 
599 	/* Test for correct arguments.  */
600 	if ((resp == NULL) || (htab == NULL)) {
601 		__set_errno(EINVAL);
602 		return (-1);
603 	}
604 
605 	debug("EXPORT  table = %p, htab.size = %d, htab.filled = %d, "
606 		"size = %zu\n", htab, htab->size, htab->filled, size);
607 	/*
608 	 * Pass 1:
609 	 * search used entries,
610 	 * save addresses and compute total length
611 	 */
612 	for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
613 
614 		if (htab->table[i].used > 0) {
615 			ENTRY *ep = &htab->table[i].entry;
616 			int found = match_entry(ep, flag, argc, argv);
617 
618 			if ((argc > 0) && (found == 0))
619 				continue;
620 
621 			if ((flag & H_HIDE_DOT) && ep->key[0] == '.')
622 				continue;
623 
624 			list[n++] = ep;
625 
626 			totlen += strlen(ep->key) + 2;
627 
628 			if (sep == '\0') {
629 				totlen += strlen(ep->data);
630 			} else {	/* check if escapes are needed */
631 				char *s = ep->data;
632 
633 				while (*s) {
634 					++totlen;
635 					/* add room for needed escape chars */
636 					if ((*s == sep) || (*s == '\\'))
637 						++totlen;
638 					++s;
639 				}
640 			}
641 			totlen += 2;	/* for '=' and 'sep' char */
642 		}
643 	}
644 
645 #ifdef DEBUG
646 	/* Pass 1a: print unsorted list */
647 	printf("Unsorted: n=%d\n", n);
648 	for (i = 0; i < n; ++i) {
649 		printf("\t%3d: %p ==> %-10s => %s\n",
650 		       i, list[i], list[i]->key, list[i]->data);
651 	}
652 #endif
653 
654 	/* Sort list by keys */
655 	qsort(list, n, sizeof(ENTRY *), cmpkey);
656 
657 	/* Check if the user supplied buffer size is sufficient */
658 	if (size) {
659 		if (size < totlen + 1) {	/* provided buffer too small */
660 			printf("Env export buffer too small: %zu, "
661 				"but need %zu\n", size, totlen + 1);
662 			__set_errno(ENOMEM);
663 			return (-1);
664 		}
665 	} else {
666 		size = totlen + 1;
667 	}
668 
669 	/* Check if the user provided a buffer */
670 	if (*resp) {
671 		/* yes; clear it */
672 		res = *resp;
673 		memset(res, '\0', size);
674 	} else {
675 		/* no, allocate and clear one */
676 		*resp = res = calloc(1, size);
677 		if (res == NULL) {
678 			__set_errno(ENOMEM);
679 			return (-1);
680 		}
681 	}
682 	/*
683 	 * Pass 2:
684 	 * export sorted list of result data
685 	 */
686 	for (i = 0, p = res; i < n; ++i) {
687 		const char *s;
688 
689 		s = list[i]->key;
690 		while (*s)
691 			*p++ = *s++;
692 		*p++ = '=';
693 
694 		s = list[i]->data;
695 
696 		while (*s) {
697 			if ((*s == sep) || (*s == '\\'))
698 				*p++ = '\\';	/* escape */
699 			*p++ = *s++;
700 		}
701 		*p++ = sep;
702 	}
703 	*p = '\0';		/* terminate result */
704 
705 	return size;
706 }
707 #endif
708 
709 
710 /*
711  * himport()
712  */
713 
714 /*
715  * Check whether variable 'name' is amongst vars[],
716  * and remove all instances by setting the pointer to NULL
717  */
718 static int drop_var_from_set(const char *name, int nvars, char * vars[])
719 {
720 	int i = 0;
721 	int res = 0;
722 
723 	/* No variables specified means process all of them */
724 	if (nvars == 0)
725 		return 1;
726 
727 	for (i = 0; i < nvars; i++) {
728 		if (vars[i] == NULL)
729 			continue;
730 		/* If we found it, delete all of them */
731 		if (!strcmp(name, vars[i])) {
732 			vars[i] = NULL;
733 			res = 1;
734 		}
735 	}
736 	if (!res)
737 		debug("Skipping non-listed variable %s\n", name);
738 
739 	return res;
740 }
741 
742 /*
743  * Import linearized data into hash table.
744  *
745  * This is the inverse function to hexport(): it takes a linear list
746  * of "name=value" pairs and creates hash table entries from it.
747  *
748  * Entries without "value", i. e. consisting of only "name" or
749  * "name=", will cause this entry to be deleted from the hash table.
750  *
751  * The "flag" argument can be used to control the behaviour: when the
752  * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
753  * new data will be added to an existing hash table; otherwise, old
754  * data will be discarded and a new hash table will be created.
755  *
756  * The separator character for the "name=value" pairs can be selected,
757  * so we both support importing from externally stored environment
758  * data (separated by NUL characters) and from plain text files
759  * (entries separated by newline characters).
760  *
761  * To allow for nicely formatted text input, leading white space
762  * (sequences of SPACE and TAB chars) is ignored, and entries starting
763  * (after removal of any leading white space) with a '#' character are
764  * considered comments and ignored.
765  *
766  * [NOTE: this means that a variable name cannot start with a '#'
767  * character.]
768  *
769  * When using a non-NUL separator character, backslash is used as
770  * escape character in the value part, allowing for example for
771  * multi-line values.
772  *
773  * In theory, arbitrary separator characters can be used, but only
774  * '\0' and '\n' have really been tested.
775  */
776 
777 int himport_r(struct hsearch_data *htab,
778 		const char *env, size_t size, const char sep, int flag,
779 		int crlf_is_lf, int nvars, char * const vars[])
780 {
781 	char *data, *sp, *dp, *name, *value;
782 	char *localvars[nvars];
783 	int i;
784 
785 	/* Test for correct arguments.  */
786 	if (htab == NULL) {
787 		__set_errno(EINVAL);
788 		return 0;
789 	}
790 
791 	/* we allocate new space to make sure we can write to the array */
792 	if ((data = malloc(size + 1)) == NULL) {
793 		debug("himport_r: can't malloc %zu bytes\n", size + 1);
794 		__set_errno(ENOMEM);
795 		return 0;
796 	}
797 	memcpy(data, env, size);
798 	data[size] = '\0';
799 	dp = data;
800 
801 	/* make a local copy of the list of variables */
802 	if (nvars)
803 		memcpy(localvars, vars, sizeof(vars[0]) * nvars);
804 
805 	if ((flag & H_NOCLEAR) == 0) {
806 		/* Destroy old hash table if one exists */
807 		debug("Destroy Hash Table: %p table = %p\n", htab,
808 		       htab->table);
809 		if (htab->table)
810 			hdestroy_r(htab);
811 	}
812 
813 	/*
814 	 * Create new hash table (if needed).  The computation of the hash
815 	 * table size is based on heuristics: in a sample of some 70+
816 	 * existing systems we found an average size of 39+ bytes per entry
817 	 * in the environment (for the whole key=value pair). Assuming a
818 	 * size of 8 per entry (= safety factor of ~5) should provide enough
819 	 * safety margin for any existing environment definitions and still
820 	 * allow for more than enough dynamic additions. Note that the
821 	 * "size" argument is supposed to give the maximum environment size
822 	 * (CONFIG_ENV_SIZE).  This heuristics will result in
823 	 * unreasonably large numbers (and thus memory footprint) for
824 	 * big flash environments (>8,000 entries for 64 KB
825 	 * envrionment size), so we clip it to a reasonable value.
826 	 * On the other hand we need to add some more entries for free
827 	 * space when importing very small buffers. Both boundaries can
828 	 * be overwritten in the board config file if needed.
829 	 */
830 
831 	if (!htab->table) {
832 		int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
833 
834 		if (nent > CONFIG_ENV_MAX_ENTRIES)
835 			nent = CONFIG_ENV_MAX_ENTRIES;
836 
837 		debug("Create Hash Table: N=%d\n", nent);
838 
839 		if (hcreate_r(nent, htab) == 0) {
840 			free(data);
841 			return 0;
842 		}
843 	}
844 
845 	if (!size) {
846 		free(data);
847 		return 1;		/* everything OK */
848 	}
849 	if(crlf_is_lf) {
850 		/* Remove Carriage Returns in front of Line Feeds */
851 		unsigned ignored_crs = 0;
852 		for(;dp < data + size && *dp; ++dp) {
853 			if(*dp == '\r' &&
854 			   dp < data + size - 1 && *(dp+1) == '\n')
855 				++ignored_crs;
856 			else
857 				*(dp-ignored_crs) = *dp;
858 		}
859 		size -= ignored_crs;
860 		dp = data;
861 	}
862 	/* Parse environment; allow for '\0' and 'sep' as separators */
863 	do {
864 		ENTRY e, *rv;
865 
866 		/* skip leading white space */
867 		while (isblank(*dp))
868 			++dp;
869 
870 		/* skip comment lines */
871 		if (*dp == '#') {
872 			while (*dp && (*dp != sep))
873 				++dp;
874 			++dp;
875 			continue;
876 		}
877 
878 		/* parse name */
879 		for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
880 			;
881 
882 		/* deal with "name" and "name=" entries (delete var) */
883 		if (*dp == '\0' || *(dp + 1) == '\0' ||
884 		    *dp == sep || *(dp + 1) == sep) {
885 			if (*dp == '=')
886 				*dp++ = '\0';
887 			*dp++ = '\0';	/* terminate name */
888 
889 			debug("DELETE CANDIDATE: \"%s\"\n", name);
890 			if (!drop_var_from_set(name, nvars, localvars))
891 				continue;
892 
893 			if (hdelete_r(name, htab, flag) == 0)
894 				debug("DELETE ERROR ##############################\n");
895 
896 			continue;
897 		}
898 		*dp++ = '\0';	/* terminate name */
899 
900 		/* parse value; deal with escapes */
901 		for (value = sp = dp; *dp && (*dp != sep); ++dp) {
902 			if ((*dp == '\\') && *(dp + 1))
903 				++dp;
904 			*sp++ = *dp;
905 		}
906 		*sp++ = '\0';	/* terminate value */
907 		++dp;
908 
909 		if (*name == 0) {
910 			debug("INSERT: unable to use an empty key\n");
911 			__set_errno(EINVAL);
912 			free(data);
913 			return 0;
914 		}
915 
916 		/* Skip variables which are not supposed to be processed */
917 		if (!drop_var_from_set(name, nvars, localvars))
918 			continue;
919 
920 		/* enter into hash table */
921 		e.key = name;
922 		e.data = value;
923 
924 		hsearch_r(e, ENTER, &rv, htab, flag);
925 		if (rv == NULL)
926 			printf("himport_r: can't insert \"%s=%s\" into hash table\n",
927 				name, value);
928 
929 		debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
930 			htab, htab->filled, htab->size,
931 			rv, name, value);
932 	} while ((dp < data + size) && *dp);	/* size check needed for text */
933 						/* without '\0' termination */
934 	debug("INSERT: free(data = %p)\n", data);
935 	free(data);
936 
937 	/* process variables which were not considered */
938 	for (i = 0; i < nvars; i++) {
939 		if (localvars[i] == NULL)
940 			continue;
941 		/*
942 		 * All variables which were not deleted from the variable list
943 		 * were not present in the imported env
944 		 * This could mean two things:
945 		 * a) if the variable was present in current env, we delete it
946 		 * b) if the variable was not present in current env, we notify
947 		 *    it might be a typo
948 		 */
949 		if (hdelete_r(localvars[i], htab, flag) == 0)
950 			printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]);
951 		else
952 			printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]);
953 	}
954 
955 	debug("INSERT: done\n");
956 	return 1;		/* everything OK */
957 }
958 
959 /*
960  * hwalk_r()
961  */
962 
963 /*
964  * Walk all of the entries in the hash, calling the callback for each one.
965  * this allows some generic operation to be performed on each element.
966  */
967 int hwalk_r(struct hsearch_data *htab, int (*callback)(ENTRY *))
968 {
969 	int i;
970 	int retval;
971 
972 	for (i = 1; i <= htab->size; ++i) {
973 		if (htab->table[i].used > 0) {
974 			retval = callback(&htab->table[i].entry);
975 			if (retval)
976 				return retval;
977 		}
978 	}
979 
980 	return 0;
981 }
982