1 /* 2 * This implementation is based on code from uClibc-0.9.30.3 but was 3 * modified and extended for use within U-Boot. 4 * 5 * Copyright (C) 2010-2013 Wolfgang Denk <wd@denx.de> 6 * 7 * Original license header: 8 * 9 * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc. 10 * This file is part of the GNU C Library. 11 * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993. 12 * 13 * The GNU C Library is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU Lesser General Public 15 * License as published by the Free Software Foundation; either 16 * version 2.1 of the License, or (at your option) any later version. 17 * 18 * The GNU C Library is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * Lesser General Public License for more details. 22 * 23 * You should have received a copy of the GNU Lesser General Public 24 * License along with the GNU C Library; if not, write to the Free 25 * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 26 * 02111-1307 USA. 27 */ 28 29 #include <errno.h> 30 #include <malloc.h> 31 32 #ifdef USE_HOSTCC /* HOST build */ 33 # include <string.h> 34 # include <assert.h> 35 # include <ctype.h> 36 37 # ifndef debug 38 # ifdef DEBUG 39 # define debug(fmt,args...) printf(fmt ,##args) 40 # else 41 # define debug(fmt,args...) 42 # endif 43 # endif 44 #else /* U-Boot build */ 45 # include <common.h> 46 # include <linux/string.h> 47 # include <linux/ctype.h> 48 #endif 49 50 #ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */ 51 #define CONFIG_ENV_MIN_ENTRIES 64 52 #endif 53 #ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */ 54 #define CONFIG_ENV_MAX_ENTRIES 512 55 #endif 56 57 #include <env_callback.h> 58 #include <env_flags.h> 59 #include <search.h> 60 #include <slre.h> 61 62 /* 63 * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986 64 * [Knuth] The Art of Computer Programming, part 3 (6.4) 65 */ 66 67 /* 68 * The reentrant version has no static variables to maintain the state. 69 * Instead the interface of all functions is extended to take an argument 70 * which describes the current status. 71 */ 72 73 typedef struct _ENTRY { 74 int used; 75 ENTRY entry; 76 } _ENTRY; 77 78 79 static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep, 80 int idx); 81 82 /* 83 * hcreate() 84 */ 85 86 /* 87 * For the used double hash method the table size has to be a prime. To 88 * correct the user given table size we need a prime test. This trivial 89 * algorithm is adequate because 90 * a) the code is (most probably) called a few times per program run and 91 * b) the number is small because the table must fit in the core 92 * */ 93 static int isprime(unsigned int number) 94 { 95 /* no even number will be passed */ 96 unsigned int div = 3; 97 98 while (div * div < number && number % div != 0) 99 div += 2; 100 101 return number % div != 0; 102 } 103 104 /* 105 * Before using the hash table we must allocate memory for it. 106 * Test for an existing table are done. We allocate one element 107 * more as the found prime number says. This is done for more effective 108 * indexing as explained in the comment for the hsearch function. 109 * The contents of the table is zeroed, especially the field used 110 * becomes zero. 111 */ 112 113 int hcreate_r(size_t nel, struct hsearch_data *htab) 114 { 115 /* Test for correct arguments. */ 116 if (htab == NULL) { 117 __set_errno(EINVAL); 118 return 0; 119 } 120 121 /* There is still another table active. Return with error. */ 122 if (htab->table != NULL) 123 return 0; 124 125 /* Change nel to the first prime number not smaller as nel. */ 126 nel |= 1; /* make odd */ 127 while (!isprime(nel)) 128 nel += 2; 129 130 htab->size = nel; 131 htab->filled = 0; 132 133 /* allocate memory and zero out */ 134 htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY)); 135 if (htab->table == NULL) 136 return 0; 137 138 /* everything went alright */ 139 return 1; 140 } 141 142 143 /* 144 * hdestroy() 145 */ 146 147 /* 148 * After using the hash table it has to be destroyed. The used memory can 149 * be freed and the local static variable can be marked as not used. 150 */ 151 152 void hdestroy_r(struct hsearch_data *htab) 153 { 154 int i; 155 156 /* Test for correct arguments. */ 157 if (htab == NULL) { 158 __set_errno(EINVAL); 159 return; 160 } 161 162 /* free used memory */ 163 for (i = 1; i <= htab->size; ++i) { 164 if (htab->table[i].used > 0) { 165 ENTRY *ep = &htab->table[i].entry; 166 167 free((void *)ep->key); 168 free(ep->data); 169 } 170 } 171 free(htab->table); 172 173 /* the sign for an existing table is an value != NULL in htable */ 174 htab->table = NULL; 175 } 176 177 /* 178 * hsearch() 179 */ 180 181 /* 182 * This is the search function. It uses double hashing with open addressing. 183 * The argument item.key has to be a pointer to an zero terminated, most 184 * probably strings of chars. The function for generating a number of the 185 * strings is simple but fast. It can be replaced by a more complex function 186 * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown. 187 * 188 * We use an trick to speed up the lookup. The table is created by hcreate 189 * with one more element available. This enables us to use the index zero 190 * special. This index will never be used because we store the first hash 191 * index in the field used where zero means not used. Every other value 192 * means used. The used field can be used as a first fast comparison for 193 * equality of the stored and the parameter value. This helps to prevent 194 * unnecessary expensive calls of strcmp. 195 * 196 * This implementation differs from the standard library version of 197 * this function in a number of ways: 198 * 199 * - While the standard version does not make any assumptions about 200 * the type of the stored data objects at all, this implementation 201 * works with NUL terminated strings only. 202 * - Instead of storing just pointers to the original objects, we 203 * create local copies so the caller does not need to care about the 204 * data any more. 205 * - The standard implementation does not provide a way to update an 206 * existing entry. This version will create a new entry or update an 207 * existing one when both "action == ENTER" and "item.data != NULL". 208 * - Instead of returning 1 on success, we return the index into the 209 * internal hash table, which is also guaranteed to be positive. 210 * This allows us direct access to the found hash table slot for 211 * example for functions like hdelete(). 212 */ 213 214 int hmatch_r(const char *match, int last_idx, ENTRY ** retval, 215 struct hsearch_data *htab) 216 { 217 unsigned int idx; 218 size_t key_len = strlen(match); 219 220 for (idx = last_idx + 1; idx < htab->size; ++idx) { 221 if (htab->table[idx].used <= 0) 222 continue; 223 if (!strncmp(match, htab->table[idx].entry.key, key_len)) { 224 *retval = &htab->table[idx].entry; 225 return idx; 226 } 227 } 228 229 __set_errno(ESRCH); 230 *retval = NULL; 231 return 0; 232 } 233 234 /* 235 * Compare an existing entry with the desired key, and overwrite if the action 236 * is ENTER. This is simply a helper function for hsearch_r(). 237 */ 238 static inline int _compare_and_overwrite_entry(ENTRY item, ACTION action, 239 ENTRY **retval, struct hsearch_data *htab, int flag, 240 unsigned int hval, unsigned int idx) 241 { 242 if (htab->table[idx].used == hval 243 && strcmp(item.key, htab->table[idx].entry.key) == 0) { 244 /* Overwrite existing value? */ 245 if ((action == ENTER) && (item.data != NULL)) { 246 /* check for permission */ 247 if (htab->change_ok != NULL && htab->change_ok( 248 &htab->table[idx].entry, item.data, 249 env_op_overwrite, flag)) { 250 debug("change_ok() rejected setting variable " 251 "%s, skipping it!\n", item.key); 252 __set_errno(EPERM); 253 *retval = NULL; 254 return 0; 255 } 256 257 /* If there is a callback, call it */ 258 if (htab->table[idx].entry.callback && 259 htab->table[idx].entry.callback(item.key, 260 item.data, env_op_overwrite, flag)) { 261 debug("callback() rejected setting variable " 262 "%s, skipping it!\n", item.key); 263 __set_errno(EINVAL); 264 *retval = NULL; 265 return 0; 266 } 267 268 free(htab->table[idx].entry.data); 269 htab->table[idx].entry.data = strdup(item.data); 270 if (!htab->table[idx].entry.data) { 271 __set_errno(ENOMEM); 272 *retval = NULL; 273 return 0; 274 } 275 } 276 /* return found entry */ 277 *retval = &htab->table[idx].entry; 278 return idx; 279 } 280 /* keep searching */ 281 return -1; 282 } 283 284 int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval, 285 struct hsearch_data *htab, int flag) 286 { 287 unsigned int hval; 288 unsigned int count; 289 unsigned int len = strlen(item.key); 290 unsigned int idx; 291 unsigned int first_deleted = 0; 292 int ret; 293 294 /* Compute an value for the given string. Perhaps use a better method. */ 295 hval = len; 296 count = len; 297 while (count-- > 0) { 298 hval <<= 4; 299 hval += item.key[count]; 300 } 301 302 /* 303 * First hash function: 304 * simply take the modul but prevent zero. 305 */ 306 hval %= htab->size; 307 if (hval == 0) 308 ++hval; 309 310 /* The first index tried. */ 311 idx = hval; 312 313 if (htab->table[idx].used) { 314 /* 315 * Further action might be required according to the 316 * action value. 317 */ 318 unsigned hval2; 319 320 if (htab->table[idx].used == -1 321 && !first_deleted) 322 first_deleted = idx; 323 324 ret = _compare_and_overwrite_entry(item, action, retval, htab, 325 flag, hval, idx); 326 if (ret != -1) 327 return ret; 328 329 /* 330 * Second hash function: 331 * as suggested in [Knuth] 332 */ 333 hval2 = 1 + hval % (htab->size - 2); 334 335 do { 336 /* 337 * Because SIZE is prime this guarantees to 338 * step through all available indices. 339 */ 340 if (idx <= hval2) 341 idx = htab->size + idx - hval2; 342 else 343 idx -= hval2; 344 345 /* 346 * If we visited all entries leave the loop 347 * unsuccessfully. 348 */ 349 if (idx == hval) 350 break; 351 352 /* If entry is found use it. */ 353 ret = _compare_and_overwrite_entry(item, action, retval, 354 htab, flag, hval, idx); 355 if (ret != -1) 356 return ret; 357 } 358 while (htab->table[idx].used); 359 } 360 361 /* An empty bucket has been found. */ 362 if (action == ENTER) { 363 /* 364 * If table is full and another entry should be 365 * entered return with error. 366 */ 367 if (htab->filled == htab->size) { 368 __set_errno(ENOMEM); 369 *retval = NULL; 370 return 0; 371 } 372 373 /* 374 * Create new entry; 375 * create copies of item.key and item.data 376 */ 377 if (first_deleted) 378 idx = first_deleted; 379 380 htab->table[idx].used = hval; 381 htab->table[idx].entry.key = strdup(item.key); 382 htab->table[idx].entry.data = strdup(item.data); 383 if (!htab->table[idx].entry.key || 384 !htab->table[idx].entry.data) { 385 __set_errno(ENOMEM); 386 *retval = NULL; 387 return 0; 388 } 389 390 ++htab->filled; 391 392 /* This is a new entry, so look up a possible callback */ 393 env_callback_init(&htab->table[idx].entry); 394 /* Also look for flags */ 395 env_flags_init(&htab->table[idx].entry); 396 397 /* check for permission */ 398 if (htab->change_ok != NULL && htab->change_ok( 399 &htab->table[idx].entry, item.data, env_op_create, flag)) { 400 debug("change_ok() rejected setting variable " 401 "%s, skipping it!\n", item.key); 402 _hdelete(item.key, htab, &htab->table[idx].entry, idx); 403 __set_errno(EPERM); 404 *retval = NULL; 405 return 0; 406 } 407 408 /* If there is a callback, call it */ 409 if (htab->table[idx].entry.callback && 410 htab->table[idx].entry.callback(item.key, item.data, 411 env_op_create, flag)) { 412 debug("callback() rejected setting variable " 413 "%s, skipping it!\n", item.key); 414 _hdelete(item.key, htab, &htab->table[idx].entry, idx); 415 __set_errno(EINVAL); 416 *retval = NULL; 417 return 0; 418 } 419 420 /* return new entry */ 421 *retval = &htab->table[idx].entry; 422 return 1; 423 } 424 425 __set_errno(ESRCH); 426 *retval = NULL; 427 return 0; 428 } 429 430 431 /* 432 * hdelete() 433 */ 434 435 /* 436 * The standard implementation of hsearch(3) does not provide any way 437 * to delete any entries from the hash table. We extend the code to 438 * do that. 439 */ 440 441 static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep, 442 int idx) 443 { 444 /* free used ENTRY */ 445 debug("hdelete: DELETING key \"%s\"\n", key); 446 free((void *)ep->key); 447 free(ep->data); 448 ep->callback = NULL; 449 ep->flags = 0; 450 htab->table[idx].used = -1; 451 452 --htab->filled; 453 } 454 455 int hdelete_r(const char *key, struct hsearch_data *htab, int flag) 456 { 457 ENTRY e, *ep; 458 int idx; 459 460 debug("hdelete: DELETE key \"%s\"\n", key); 461 462 e.key = (char *)key; 463 464 idx = hsearch_r(e, FIND, &ep, htab, 0); 465 if (idx == 0) { 466 __set_errno(ESRCH); 467 return 0; /* not found */ 468 } 469 470 /* Check for permission */ 471 if (htab->change_ok != NULL && 472 htab->change_ok(ep, NULL, env_op_delete, flag)) { 473 debug("change_ok() rejected deleting variable " 474 "%s, skipping it!\n", key); 475 __set_errno(EPERM); 476 return 0; 477 } 478 479 /* If there is a callback, call it */ 480 if (htab->table[idx].entry.callback && 481 htab->table[idx].entry.callback(key, NULL, env_op_delete, flag)) { 482 debug("callback() rejected deleting variable " 483 "%s, skipping it!\n", key); 484 __set_errno(EINVAL); 485 return 0; 486 } 487 488 _hdelete(key, htab, ep, idx); 489 490 return 1; 491 } 492 493 /* 494 * hexport() 495 */ 496 497 #ifndef CONFIG_SPL_BUILD 498 /* 499 * Export the data stored in the hash table in linearized form. 500 * 501 * Entries are exported as "name=value" strings, separated by an 502 * arbitrary (non-NUL, of course) separator character. This allows to 503 * use this function both when formatting the U-Boot environment for 504 * external storage (using '\0' as separator), but also when using it 505 * for the "printenv" command to print all variables, simply by using 506 * as '\n" as separator. This can also be used for new features like 507 * exporting the environment data as text file, including the option 508 * for later re-import. 509 * 510 * The entries in the result list will be sorted by ascending key 511 * values. 512 * 513 * If the separator character is different from NUL, then any 514 * separator characters and backslash characters in the values will 515 * be escaped by a preceeding backslash in output. This is needed for 516 * example to enable multi-line values, especially when the output 517 * shall later be parsed (for example, for re-import). 518 * 519 * There are several options how the result buffer is handled: 520 * 521 * *resp size 522 * ----------- 523 * NULL 0 A string of sufficient length will be allocated. 524 * NULL >0 A string of the size given will be 525 * allocated. An error will be returned if the size is 526 * not sufficient. Any unused bytes in the string will 527 * be '\0'-padded. 528 * !NULL 0 The user-supplied buffer will be used. No length 529 * checking will be performed, i. e. it is assumed that 530 * the buffer size will always be big enough. DANGEROUS. 531 * !NULL >0 The user-supplied buffer will be used. An error will 532 * be returned if the size is not sufficient. Any unused 533 * bytes in the string will be '\0'-padded. 534 */ 535 536 static int cmpkey(const void *p1, const void *p2) 537 { 538 ENTRY *e1 = *(ENTRY **) p1; 539 ENTRY *e2 = *(ENTRY **) p2; 540 541 return (strcmp(e1->key, e2->key)); 542 } 543 544 static int match_string(int flag, const char *str, const char *pat, void *priv) 545 { 546 switch (flag & H_MATCH_METHOD) { 547 case H_MATCH_IDENT: 548 if (strcmp(str, pat) == 0) 549 return 1; 550 break; 551 case H_MATCH_SUBSTR: 552 if (strstr(str, pat)) 553 return 1; 554 break; 555 #ifdef CONFIG_REGEX 556 case H_MATCH_REGEX: 557 { 558 struct slre *slrep = (struct slre *)priv; 559 struct cap caps[slrep->num_caps + 2]; 560 561 if (slre_match(slrep, str, strlen(str), caps)) 562 return 1; 563 } 564 break; 565 #endif 566 default: 567 printf("## ERROR: unsupported match method: 0x%02x\n", 568 flag & H_MATCH_METHOD); 569 break; 570 } 571 return 0; 572 } 573 574 static int match_entry(ENTRY *ep, int flag, 575 int argc, char * const argv[]) 576 { 577 int arg; 578 void *priv = NULL; 579 580 for (arg = 1; arg < argc; ++arg) { 581 #ifdef CONFIG_REGEX 582 struct slre slre; 583 584 if (slre_compile(&slre, argv[arg]) == 0) { 585 printf("Error compiling regex: %s\n", slre.err_str); 586 return 0; 587 } 588 589 priv = (void *)&slre; 590 #endif 591 if (flag & H_MATCH_KEY) { 592 if (match_string(flag, ep->key, argv[arg], priv)) 593 return 1; 594 } 595 if (flag & H_MATCH_DATA) { 596 if (match_string(flag, ep->data, argv[arg], priv)) 597 return 1; 598 } 599 } 600 return 0; 601 } 602 603 ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag, 604 char **resp, size_t size, 605 int argc, char * const argv[]) 606 { 607 ENTRY *list[htab->size]; 608 char *res, *p; 609 size_t totlen; 610 int i, n; 611 612 /* Test for correct arguments. */ 613 if ((resp == NULL) || (htab == NULL)) { 614 __set_errno(EINVAL); 615 return (-1); 616 } 617 618 debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, " 619 "size = %zu\n", htab, htab->size, htab->filled, size); 620 /* 621 * Pass 1: 622 * search used entries, 623 * save addresses and compute total length 624 */ 625 for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) { 626 627 if (htab->table[i].used > 0) { 628 ENTRY *ep = &htab->table[i].entry; 629 int found = match_entry(ep, flag, argc, argv); 630 631 if ((argc > 0) && (found == 0)) 632 continue; 633 634 if ((flag & H_HIDE_DOT) && ep->key[0] == '.') 635 continue; 636 637 list[n++] = ep; 638 639 totlen += strlen(ep->key) + 2; 640 641 if (sep == '\0') { 642 totlen += strlen(ep->data); 643 } else { /* check if escapes are needed */ 644 char *s = ep->data; 645 646 while (*s) { 647 ++totlen; 648 /* add room for needed escape chars */ 649 if ((*s == sep) || (*s == '\\')) 650 ++totlen; 651 ++s; 652 } 653 } 654 totlen += 2; /* for '=' and 'sep' char */ 655 } 656 } 657 658 #ifdef DEBUG 659 /* Pass 1a: print unsorted list */ 660 printf("Unsorted: n=%d\n", n); 661 for (i = 0; i < n; ++i) { 662 printf("\t%3d: %p ==> %-10s => %s\n", 663 i, list[i], list[i]->key, list[i]->data); 664 } 665 #endif 666 667 /* Sort list by keys */ 668 qsort(list, n, sizeof(ENTRY *), cmpkey); 669 670 /* Check if the user supplied buffer size is sufficient */ 671 if (size) { 672 if (size < totlen + 1) { /* provided buffer too small */ 673 printf("Env export buffer too small: %zu, " 674 "but need %zu\n", size, totlen + 1); 675 __set_errno(ENOMEM); 676 return (-1); 677 } 678 } else { 679 size = totlen + 1; 680 } 681 682 /* Check if the user provided a buffer */ 683 if (*resp) { 684 /* yes; clear it */ 685 res = *resp; 686 memset(res, '\0', size); 687 } else { 688 /* no, allocate and clear one */ 689 *resp = res = calloc(1, size); 690 if (res == NULL) { 691 __set_errno(ENOMEM); 692 return (-1); 693 } 694 } 695 /* 696 * Pass 2: 697 * export sorted list of result data 698 */ 699 for (i = 0, p = res; i < n; ++i) { 700 const char *s; 701 702 s = list[i]->key; 703 while (*s) 704 *p++ = *s++; 705 *p++ = '='; 706 707 s = list[i]->data; 708 709 while (*s) { 710 if ((*s == sep) || (*s == '\\')) 711 *p++ = '\\'; /* escape */ 712 *p++ = *s++; 713 } 714 *p++ = sep; 715 } 716 *p = '\0'; /* terminate result */ 717 718 return size; 719 } 720 #endif 721 722 723 /* 724 * himport() 725 */ 726 727 /* 728 * Check whether variable 'name' is amongst vars[], 729 * and remove all instances by setting the pointer to NULL 730 */ 731 static int drop_var_from_set(const char *name, int nvars, char * vars[]) 732 { 733 int i = 0; 734 int res = 0; 735 736 /* No variables specified means process all of them */ 737 if (nvars == 0) 738 return 1; 739 740 for (i = 0; i < nvars; i++) { 741 if (vars[i] == NULL) 742 continue; 743 /* If we found it, delete all of them */ 744 if (!strcmp(name, vars[i])) { 745 vars[i] = NULL; 746 res = 1; 747 } 748 } 749 if (!res) 750 debug("Skipping non-listed variable %s\n", name); 751 752 return res; 753 } 754 755 /* 756 * Import linearized data into hash table. 757 * 758 * This is the inverse function to hexport(): it takes a linear list 759 * of "name=value" pairs and creates hash table entries from it. 760 * 761 * Entries without "value", i. e. consisting of only "name" or 762 * "name=", will cause this entry to be deleted from the hash table. 763 * 764 * The "flag" argument can be used to control the behaviour: when the 765 * H_NOCLEAR bit is set, then an existing hash table will kept, i. e. 766 * new data will be added to an existing hash table; otherwise, old 767 * data will be discarded and a new hash table will be created. 768 * 769 * The separator character for the "name=value" pairs can be selected, 770 * so we both support importing from externally stored environment 771 * data (separated by NUL characters) and from plain text files 772 * (entries separated by newline characters). 773 * 774 * To allow for nicely formatted text input, leading white space 775 * (sequences of SPACE and TAB chars) is ignored, and entries starting 776 * (after removal of any leading white space) with a '#' character are 777 * considered comments and ignored. 778 * 779 * [NOTE: this means that a variable name cannot start with a '#' 780 * character.] 781 * 782 * When using a non-NUL separator character, backslash is used as 783 * escape character in the value part, allowing for example for 784 * multi-line values. 785 * 786 * In theory, arbitrary separator characters can be used, but only 787 * '\0' and '\n' have really been tested. 788 */ 789 790 int himport_r(struct hsearch_data *htab, 791 const char *env, size_t size, const char sep, int flag, 792 int nvars, char * const vars[]) 793 { 794 char *data, *sp, *dp, *name, *value; 795 char *localvars[nvars]; 796 int i; 797 798 /* Test for correct arguments. */ 799 if (htab == NULL) { 800 __set_errno(EINVAL); 801 return 0; 802 } 803 804 /* we allocate new space to make sure we can write to the array */ 805 if ((data = malloc(size)) == NULL) { 806 debug("himport_r: can't malloc %zu bytes\n", size); 807 __set_errno(ENOMEM); 808 return 0; 809 } 810 memcpy(data, env, size); 811 dp = data; 812 813 /* make a local copy of the list of variables */ 814 if (nvars) 815 memcpy(localvars, vars, sizeof(vars[0]) * nvars); 816 817 if ((flag & H_NOCLEAR) == 0) { 818 /* Destroy old hash table if one exists */ 819 debug("Destroy Hash Table: %p table = %p\n", htab, 820 htab->table); 821 if (htab->table) 822 hdestroy_r(htab); 823 } 824 825 /* 826 * Create new hash table (if needed). The computation of the hash 827 * table size is based on heuristics: in a sample of some 70+ 828 * existing systems we found an average size of 39+ bytes per entry 829 * in the environment (for the whole key=value pair). Assuming a 830 * size of 8 per entry (= safety factor of ~5) should provide enough 831 * safety margin for any existing environment definitions and still 832 * allow for more than enough dynamic additions. Note that the 833 * "size" argument is supposed to give the maximum enviroment size 834 * (CONFIG_ENV_SIZE). This heuristics will result in 835 * unreasonably large numbers (and thus memory footprint) for 836 * big flash environments (>8,000 entries for 64 KB 837 * envrionment size), so we clip it to a reasonable value. 838 * On the other hand we need to add some more entries for free 839 * space when importing very small buffers. Both boundaries can 840 * be overwritten in the board config file if needed. 841 */ 842 843 if (!htab->table) { 844 int nent = CONFIG_ENV_MIN_ENTRIES + size / 8; 845 846 if (nent > CONFIG_ENV_MAX_ENTRIES) 847 nent = CONFIG_ENV_MAX_ENTRIES; 848 849 debug("Create Hash Table: N=%d\n", nent); 850 851 if (hcreate_r(nent, htab) == 0) { 852 free(data); 853 return 0; 854 } 855 } 856 857 /* Parse environment; allow for '\0' and 'sep' as separators */ 858 do { 859 ENTRY e, *rv; 860 861 /* skip leading white space */ 862 while (isblank(*dp)) 863 ++dp; 864 865 /* skip comment lines */ 866 if (*dp == '#') { 867 while (*dp && (*dp != sep)) 868 ++dp; 869 ++dp; 870 continue; 871 } 872 873 /* parse name */ 874 for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp) 875 ; 876 877 /* deal with "name" and "name=" entries (delete var) */ 878 if (*dp == '\0' || *(dp + 1) == '\0' || 879 *dp == sep || *(dp + 1) == sep) { 880 if (*dp == '=') 881 *dp++ = '\0'; 882 *dp++ = '\0'; /* terminate name */ 883 884 debug("DELETE CANDIDATE: \"%s\"\n", name); 885 if (!drop_var_from_set(name, nvars, localvars)) 886 continue; 887 888 if (hdelete_r(name, htab, flag) == 0) 889 debug("DELETE ERROR ##############################\n"); 890 891 continue; 892 } 893 *dp++ = '\0'; /* terminate name */ 894 895 /* parse value; deal with escapes */ 896 for (value = sp = dp; *dp && (*dp != sep); ++dp) { 897 if ((*dp == '\\') && *(dp + 1)) 898 ++dp; 899 *sp++ = *dp; 900 } 901 *sp++ = '\0'; /* terminate value */ 902 ++dp; 903 904 /* Skip variables which are not supposed to be processed */ 905 if (!drop_var_from_set(name, nvars, localvars)) 906 continue; 907 908 /* enter into hash table */ 909 e.key = name; 910 e.data = value; 911 912 hsearch_r(e, ENTER, &rv, htab, flag); 913 if (rv == NULL) 914 printf("himport_r: can't insert \"%s=%s\" into hash table\n", 915 name, value); 916 917 debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n", 918 htab, htab->filled, htab->size, 919 rv, name, value); 920 } while ((dp < data + size) && *dp); /* size check needed for text */ 921 /* without '\0' termination */ 922 debug("INSERT: free(data = %p)\n", data); 923 free(data); 924 925 /* process variables which were not considered */ 926 for (i = 0; i < nvars; i++) { 927 if (localvars[i] == NULL) 928 continue; 929 /* 930 * All variables which were not deleted from the variable list 931 * were not present in the imported env 932 * This could mean two things: 933 * a) if the variable was present in current env, we delete it 934 * b) if the variable was not present in current env, we notify 935 * it might be a typo 936 */ 937 if (hdelete_r(localvars[i], htab, flag) == 0) 938 printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]); 939 else 940 printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]); 941 } 942 943 debug("INSERT: done\n"); 944 return 1; /* everything OK */ 945 } 946 947 /* 948 * hwalk_r() 949 */ 950 951 /* 952 * Walk all of the entries in the hash, calling the callback for each one. 953 * this allows some generic operation to be performed on each element. 954 */ 955 int hwalk_r(struct hsearch_data *htab, int (*callback)(ENTRY *)) 956 { 957 int i; 958 int retval; 959 960 for (i = 1; i <= htab->size; ++i) { 961 if (htab->table[i].used > 0) { 962 retval = callback(&htab->table[i].entry); 963 if (retval) 964 return retval; 965 } 966 } 967 968 return 0; 969 } 970