xref: /openbmc/u-boot/lib/hashtable.c (revision 9e336903)
1 /*
2  * This implementation is based on code from uClibc-0.9.30.3 but was
3  * modified and extended for use within U-Boot.
4  *
5  * Copyright (C) 2010-2013 Wolfgang Denk <wd@denx.de>
6  *
7  * Original license header:
8  *
9  * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
10  * This file is part of the GNU C Library.
11  * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
12  *
13  * The GNU C Library is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU Lesser General Public
15  * License as published by the Free Software Foundation; either
16  * version 2.1 of the License, or (at your option) any later version.
17  *
18  * The GNU C Library is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21  * Lesser General Public License for more details.
22  *
23  * You should have received a copy of the GNU Lesser General Public
24  * License along with the GNU C Library; if not, write to the Free
25  * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
26  * 02111-1307 USA.
27  */
28 
29 #include <errno.h>
30 #include <malloc.h>
31 
32 #ifdef USE_HOSTCC		/* HOST build */
33 # include <string.h>
34 # include <assert.h>
35 # include <ctype.h>
36 
37 # ifndef debug
38 #  ifdef DEBUG
39 #   define debug(fmt,args...)	printf(fmt ,##args)
40 #  else
41 #   define debug(fmt,args...)
42 #  endif
43 # endif
44 #else				/* U-Boot build */
45 # include <common.h>
46 # include <linux/string.h>
47 # include <linux/ctype.h>
48 #endif
49 
50 #ifndef	CONFIG_ENV_MIN_ENTRIES	/* minimum number of entries */
51 #define	CONFIG_ENV_MIN_ENTRIES 64
52 #endif
53 #ifndef	CONFIG_ENV_MAX_ENTRIES	/* maximum number of entries */
54 #define	CONFIG_ENV_MAX_ENTRIES 512
55 #endif
56 
57 #include <env_callback.h>
58 #include <env_flags.h>
59 #include <search.h>
60 #include <slre.h>
61 
62 /*
63  * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
64  * [Knuth]	      The Art of Computer Programming, part 3 (6.4)
65  */
66 
67 /*
68  * The reentrant version has no static variables to maintain the state.
69  * Instead the interface of all functions is extended to take an argument
70  * which describes the current status.
71  */
72 
73 typedef struct _ENTRY {
74 	int used;
75 	ENTRY entry;
76 } _ENTRY;
77 
78 
79 static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep,
80 	int idx);
81 
82 /*
83  * hcreate()
84  */
85 
86 /*
87  * For the used double hash method the table size has to be a prime. To
88  * correct the user given table size we need a prime test.  This trivial
89  * algorithm is adequate because
90  * a)  the code is (most probably) called a few times per program run and
91  * b)  the number is small because the table must fit in the core
92  * */
93 static int isprime(unsigned int number)
94 {
95 	/* no even number will be passed */
96 	unsigned int div = 3;
97 
98 	while (div * div < number && number % div != 0)
99 		div += 2;
100 
101 	return number % div != 0;
102 }
103 
104 /*
105  * Before using the hash table we must allocate memory for it.
106  * Test for an existing table are done. We allocate one element
107  * more as the found prime number says. This is done for more effective
108  * indexing as explained in the comment for the hsearch function.
109  * The contents of the table is zeroed, especially the field used
110  * becomes zero.
111  */
112 
113 int hcreate_r(size_t nel, struct hsearch_data *htab)
114 {
115 	/* Test for correct arguments.  */
116 	if (htab == NULL) {
117 		__set_errno(EINVAL);
118 		return 0;
119 	}
120 
121 	/* There is still another table active. Return with error. */
122 	if (htab->table != NULL)
123 		return 0;
124 
125 	/* Change nel to the first prime number not smaller as nel. */
126 	nel |= 1;		/* make odd */
127 	while (!isprime(nel))
128 		nel += 2;
129 
130 	htab->size = nel;
131 	htab->filled = 0;
132 
133 	/* allocate memory and zero out */
134 	htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY));
135 	if (htab->table == NULL)
136 		return 0;
137 
138 	/* everything went alright */
139 	return 1;
140 }
141 
142 
143 /*
144  * hdestroy()
145  */
146 
147 /*
148  * After using the hash table it has to be destroyed. The used memory can
149  * be freed and the local static variable can be marked as not used.
150  */
151 
152 void hdestroy_r(struct hsearch_data *htab)
153 {
154 	int i;
155 
156 	/* Test for correct arguments.  */
157 	if (htab == NULL) {
158 		__set_errno(EINVAL);
159 		return;
160 	}
161 
162 	/* free used memory */
163 	for (i = 1; i <= htab->size; ++i) {
164 		if (htab->table[i].used > 0) {
165 			ENTRY *ep = &htab->table[i].entry;
166 
167 			free((void *)ep->key);
168 			free(ep->data);
169 		}
170 	}
171 	free(htab->table);
172 
173 	/* the sign for an existing table is an value != NULL in htable */
174 	htab->table = NULL;
175 }
176 
177 /*
178  * hsearch()
179  */
180 
181 /*
182  * This is the search function. It uses double hashing with open addressing.
183  * The argument item.key has to be a pointer to an zero terminated, most
184  * probably strings of chars. The function for generating a number of the
185  * strings is simple but fast. It can be replaced by a more complex function
186  * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
187  *
188  * We use an trick to speed up the lookup. The table is created by hcreate
189  * with one more element available. This enables us to use the index zero
190  * special. This index will never be used because we store the first hash
191  * index in the field used where zero means not used. Every other value
192  * means used. The used field can be used as a first fast comparison for
193  * equality of the stored and the parameter value. This helps to prevent
194  * unnecessary expensive calls of strcmp.
195  *
196  * This implementation differs from the standard library version of
197  * this function in a number of ways:
198  *
199  * - While the standard version does not make any assumptions about
200  *   the type of the stored data objects at all, this implementation
201  *   works with NUL terminated strings only.
202  * - Instead of storing just pointers to the original objects, we
203  *   create local copies so the caller does not need to care about the
204  *   data any more.
205  * - The standard implementation does not provide a way to update an
206  *   existing entry.  This version will create a new entry or update an
207  *   existing one when both "action == ENTER" and "item.data != NULL".
208  * - Instead of returning 1 on success, we return the index into the
209  *   internal hash table, which is also guaranteed to be positive.
210  *   This allows us direct access to the found hash table slot for
211  *   example for functions like hdelete().
212  */
213 
214 int hmatch_r(const char *match, int last_idx, ENTRY ** retval,
215 	     struct hsearch_data *htab)
216 {
217 	unsigned int idx;
218 	size_t key_len = strlen(match);
219 
220 	for (idx = last_idx + 1; idx < htab->size; ++idx) {
221 		if (htab->table[idx].used <= 0)
222 			continue;
223 		if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
224 			*retval = &htab->table[idx].entry;
225 			return idx;
226 		}
227 	}
228 
229 	__set_errno(ESRCH);
230 	*retval = NULL;
231 	return 0;
232 }
233 
234 /*
235  * Compare an existing entry with the desired key, and overwrite if the action
236  * is ENTER.  This is simply a helper function for hsearch_r().
237  */
238 static inline int _compare_and_overwrite_entry(ENTRY item, ACTION action,
239 	ENTRY **retval, struct hsearch_data *htab, int flag,
240 	unsigned int hval, unsigned int idx)
241 {
242 	if (htab->table[idx].used == hval
243 	    && strcmp(item.key, htab->table[idx].entry.key) == 0) {
244 		/* Overwrite existing value? */
245 		if ((action == ENTER) && (item.data != NULL)) {
246 			/* check for permission */
247 			if (htab->change_ok != NULL && htab->change_ok(
248 			    &htab->table[idx].entry, item.data,
249 			    env_op_overwrite, flag)) {
250 				debug("change_ok() rejected setting variable "
251 					"%s, skipping it!\n", item.key);
252 				__set_errno(EPERM);
253 				*retval = NULL;
254 				return 0;
255 			}
256 
257 			/* If there is a callback, call it */
258 			if (htab->table[idx].entry.callback &&
259 			    htab->table[idx].entry.callback(item.key,
260 			    item.data, env_op_overwrite, flag)) {
261 				debug("callback() rejected setting variable "
262 					"%s, skipping it!\n", item.key);
263 				__set_errno(EINVAL);
264 				*retval = NULL;
265 				return 0;
266 			}
267 
268 			free(htab->table[idx].entry.data);
269 			htab->table[idx].entry.data = strdup(item.data);
270 			if (!htab->table[idx].entry.data) {
271 				__set_errno(ENOMEM);
272 				*retval = NULL;
273 				return 0;
274 			}
275 		}
276 		/* return found entry */
277 		*retval = &htab->table[idx].entry;
278 		return idx;
279 	}
280 	/* keep searching */
281 	return -1;
282 }
283 
284 int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval,
285 	      struct hsearch_data *htab, int flag)
286 {
287 	unsigned int hval;
288 	unsigned int count;
289 	unsigned int len = strlen(item.key);
290 	unsigned int idx;
291 	unsigned int first_deleted = 0;
292 	int ret;
293 
294 	/* Compute an value for the given string. Perhaps use a better method. */
295 	hval = len;
296 	count = len;
297 	while (count-- > 0) {
298 		hval <<= 4;
299 		hval += item.key[count];
300 	}
301 
302 	/*
303 	 * First hash function:
304 	 * simply take the modul but prevent zero.
305 	 */
306 	hval %= htab->size;
307 	if (hval == 0)
308 		++hval;
309 
310 	/* The first index tried. */
311 	idx = hval;
312 
313 	if (htab->table[idx].used) {
314 		/*
315 		 * Further action might be required according to the
316 		 * action value.
317 		 */
318 		unsigned hval2;
319 
320 		if (htab->table[idx].used == -1
321 		    && !first_deleted)
322 			first_deleted = idx;
323 
324 		ret = _compare_and_overwrite_entry(item, action, retval, htab,
325 			flag, hval, idx);
326 		if (ret != -1)
327 			return ret;
328 
329 		/*
330 		 * Second hash function:
331 		 * as suggested in [Knuth]
332 		 */
333 		hval2 = 1 + hval % (htab->size - 2);
334 
335 		do {
336 			/*
337 			 * Because SIZE is prime this guarantees to
338 			 * step through all available indices.
339 			 */
340 			if (idx <= hval2)
341 				idx = htab->size + idx - hval2;
342 			else
343 				idx -= hval2;
344 
345 			/*
346 			 * If we visited all entries leave the loop
347 			 * unsuccessfully.
348 			 */
349 			if (idx == hval)
350 				break;
351 
352 			/* If entry is found use it. */
353 			ret = _compare_and_overwrite_entry(item, action, retval,
354 				htab, flag, hval, idx);
355 			if (ret != -1)
356 				return ret;
357 		}
358 		while (htab->table[idx].used);
359 	}
360 
361 	/* An empty bucket has been found. */
362 	if (action == ENTER) {
363 		/*
364 		 * If table is full and another entry should be
365 		 * entered return with error.
366 		 */
367 		if (htab->filled == htab->size) {
368 			__set_errno(ENOMEM);
369 			*retval = NULL;
370 			return 0;
371 		}
372 
373 		/*
374 		 * Create new entry;
375 		 * create copies of item.key and item.data
376 		 */
377 		if (first_deleted)
378 			idx = first_deleted;
379 
380 		htab->table[idx].used = hval;
381 		htab->table[idx].entry.key = strdup(item.key);
382 		htab->table[idx].entry.data = strdup(item.data);
383 		if (!htab->table[idx].entry.key ||
384 		    !htab->table[idx].entry.data) {
385 			__set_errno(ENOMEM);
386 			*retval = NULL;
387 			return 0;
388 		}
389 
390 		++htab->filled;
391 
392 		/* This is a new entry, so look up a possible callback */
393 		env_callback_init(&htab->table[idx].entry);
394 		/* Also look for flags */
395 		env_flags_init(&htab->table[idx].entry);
396 
397 		/* check for permission */
398 		if (htab->change_ok != NULL && htab->change_ok(
399 		    &htab->table[idx].entry, item.data, env_op_create, flag)) {
400 			debug("change_ok() rejected setting variable "
401 				"%s, skipping it!\n", item.key);
402 			_hdelete(item.key, htab, &htab->table[idx].entry, idx);
403 			__set_errno(EPERM);
404 			*retval = NULL;
405 			return 0;
406 		}
407 
408 		/* If there is a callback, call it */
409 		if (htab->table[idx].entry.callback &&
410 		    htab->table[idx].entry.callback(item.key, item.data,
411 		    env_op_create, flag)) {
412 			debug("callback() rejected setting variable "
413 				"%s, skipping it!\n", item.key);
414 			_hdelete(item.key, htab, &htab->table[idx].entry, idx);
415 			__set_errno(EINVAL);
416 			*retval = NULL;
417 			return 0;
418 		}
419 
420 		/* return new entry */
421 		*retval = &htab->table[idx].entry;
422 		return 1;
423 	}
424 
425 	__set_errno(ESRCH);
426 	*retval = NULL;
427 	return 0;
428 }
429 
430 
431 /*
432  * hdelete()
433  */
434 
435 /*
436  * The standard implementation of hsearch(3) does not provide any way
437  * to delete any entries from the hash table.  We extend the code to
438  * do that.
439  */
440 
441 static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep,
442 	int idx)
443 {
444 	/* free used ENTRY */
445 	debug("hdelete: DELETING key \"%s\"\n", key);
446 	free((void *)ep->key);
447 	free(ep->data);
448 	ep->callback = NULL;
449 	ep->flags = 0;
450 	htab->table[idx].used = -1;
451 
452 	--htab->filled;
453 }
454 
455 int hdelete_r(const char *key, struct hsearch_data *htab, int flag)
456 {
457 	ENTRY e, *ep;
458 	int idx;
459 
460 	debug("hdelete: DELETE key \"%s\"\n", key);
461 
462 	e.key = (char *)key;
463 
464 	idx = hsearch_r(e, FIND, &ep, htab, 0);
465 	if (idx == 0) {
466 		__set_errno(ESRCH);
467 		return 0;	/* not found */
468 	}
469 
470 	/* Check for permission */
471 	if (htab->change_ok != NULL &&
472 	    htab->change_ok(ep, NULL, env_op_delete, flag)) {
473 		debug("change_ok() rejected deleting variable "
474 			"%s, skipping it!\n", key);
475 		__set_errno(EPERM);
476 		return 0;
477 	}
478 
479 	/* If there is a callback, call it */
480 	if (htab->table[idx].entry.callback &&
481 	    htab->table[idx].entry.callback(key, NULL, env_op_delete, flag)) {
482 		debug("callback() rejected deleting variable "
483 			"%s, skipping it!\n", key);
484 		__set_errno(EINVAL);
485 		return 0;
486 	}
487 
488 	_hdelete(key, htab, ep, idx);
489 
490 	return 1;
491 }
492 
493 /*
494  * hexport()
495  */
496 
497 #ifndef CONFIG_SPL_BUILD
498 /*
499  * Export the data stored in the hash table in linearized form.
500  *
501  * Entries are exported as "name=value" strings, separated by an
502  * arbitrary (non-NUL, of course) separator character. This allows to
503  * use this function both when formatting the U-Boot environment for
504  * external storage (using '\0' as separator), but also when using it
505  * for the "printenv" command to print all variables, simply by using
506  * as '\n" as separator. This can also be used for new features like
507  * exporting the environment data as text file, including the option
508  * for later re-import.
509  *
510  * The entries in the result list will be sorted by ascending key
511  * values.
512  *
513  * If the separator character is different from NUL, then any
514  * separator characters and backslash characters in the values will
515  * be escaped by a preceeding backslash in output. This is needed for
516  * example to enable multi-line values, especially when the output
517  * shall later be parsed (for example, for re-import).
518  *
519  * There are several options how the result buffer is handled:
520  *
521  * *resp  size
522  * -----------
523  *  NULL    0	A string of sufficient length will be allocated.
524  *  NULL   >0	A string of the size given will be
525  *		allocated. An error will be returned if the size is
526  *		not sufficient.  Any unused bytes in the string will
527  *		be '\0'-padded.
528  * !NULL    0	The user-supplied buffer will be used. No length
529  *		checking will be performed, i. e. it is assumed that
530  *		the buffer size will always be big enough. DANGEROUS.
531  * !NULL   >0	The user-supplied buffer will be used. An error will
532  *		be returned if the size is not sufficient.  Any unused
533  *		bytes in the string will be '\0'-padded.
534  */
535 
536 static int cmpkey(const void *p1, const void *p2)
537 {
538 	ENTRY *e1 = *(ENTRY **) p1;
539 	ENTRY *e2 = *(ENTRY **) p2;
540 
541 	return (strcmp(e1->key, e2->key));
542 }
543 
544 static int match_string(int flag, const char *str, const char *pat, void *priv)
545 {
546 	switch (flag & H_MATCH_METHOD) {
547 	case H_MATCH_IDENT:
548 		if (strcmp(str, pat) == 0)
549 			return 1;
550 		break;
551 	case H_MATCH_SUBSTR:
552 		if (strstr(str, pat))
553 			return 1;
554 		break;
555 #ifdef CONFIG_REGEX
556 	case H_MATCH_REGEX:
557 		{
558 			struct slre *slrep = (struct slre *)priv;
559 			struct cap caps[slrep->num_caps + 2];
560 
561 			if (slre_match(slrep, str, strlen(str), caps))
562 				return 1;
563 		}
564 		break;
565 #endif
566 	default:
567 		printf("## ERROR: unsupported match method: 0x%02x\n",
568 			flag & H_MATCH_METHOD);
569 		break;
570 	}
571 	return 0;
572 }
573 
574 static int match_entry(ENTRY *ep, int flag,
575 		 int argc, char * const argv[])
576 {
577 	int arg;
578 	void *priv = NULL;
579 
580 	for (arg = 1; arg < argc; ++arg) {
581 #ifdef CONFIG_REGEX
582 		struct slre slre;
583 
584 		if (slre_compile(&slre, argv[arg]) == 0) {
585 			printf("Error compiling regex: %s\n", slre.err_str);
586 			return 0;
587 		}
588 
589 		priv = (void *)&slre;
590 #endif
591 		if (flag & H_MATCH_KEY) {
592 			if (match_string(flag, ep->key, argv[arg], priv))
593 				return 1;
594 		}
595 		if (flag & H_MATCH_DATA) {
596 			if (match_string(flag, ep->data, argv[arg], priv))
597 				return 1;
598 		}
599 	}
600 	return 0;
601 }
602 
603 ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag,
604 		 char **resp, size_t size,
605 		 int argc, char * const argv[])
606 {
607 	ENTRY *list[htab->size];
608 	char *res, *p;
609 	size_t totlen;
610 	int i, n;
611 
612 	/* Test for correct arguments.  */
613 	if ((resp == NULL) || (htab == NULL)) {
614 		__set_errno(EINVAL);
615 		return (-1);
616 	}
617 
618 	debug("EXPORT  table = %p, htab.size = %d, htab.filled = %d, "
619 		"size = %zu\n", htab, htab->size, htab->filled, size);
620 	/*
621 	 * Pass 1:
622 	 * search used entries,
623 	 * save addresses and compute total length
624 	 */
625 	for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
626 
627 		if (htab->table[i].used > 0) {
628 			ENTRY *ep = &htab->table[i].entry;
629 			int found = match_entry(ep, flag, argc, argv);
630 
631 			if ((argc > 0) && (found == 0))
632 				continue;
633 
634 			if ((flag & H_HIDE_DOT) && ep->key[0] == '.')
635 				continue;
636 
637 			list[n++] = ep;
638 
639 			totlen += strlen(ep->key) + 2;
640 
641 			if (sep == '\0') {
642 				totlen += strlen(ep->data);
643 			} else {	/* check if escapes are needed */
644 				char *s = ep->data;
645 
646 				while (*s) {
647 					++totlen;
648 					/* add room for needed escape chars */
649 					if ((*s == sep) || (*s == '\\'))
650 						++totlen;
651 					++s;
652 				}
653 			}
654 			totlen += 2;	/* for '=' and 'sep' char */
655 		}
656 	}
657 
658 #ifdef DEBUG
659 	/* Pass 1a: print unsorted list */
660 	printf("Unsorted: n=%d\n", n);
661 	for (i = 0; i < n; ++i) {
662 		printf("\t%3d: %p ==> %-10s => %s\n",
663 		       i, list[i], list[i]->key, list[i]->data);
664 	}
665 #endif
666 
667 	/* Sort list by keys */
668 	qsort(list, n, sizeof(ENTRY *), cmpkey);
669 
670 	/* Check if the user supplied buffer size is sufficient */
671 	if (size) {
672 		if (size < totlen + 1) {	/* provided buffer too small */
673 			printf("Env export buffer too small: %zu, "
674 				"but need %zu\n", size, totlen + 1);
675 			__set_errno(ENOMEM);
676 			return (-1);
677 		}
678 	} else {
679 		size = totlen + 1;
680 	}
681 
682 	/* Check if the user provided a buffer */
683 	if (*resp) {
684 		/* yes; clear it */
685 		res = *resp;
686 		memset(res, '\0', size);
687 	} else {
688 		/* no, allocate and clear one */
689 		*resp = res = calloc(1, size);
690 		if (res == NULL) {
691 			__set_errno(ENOMEM);
692 			return (-1);
693 		}
694 	}
695 	/*
696 	 * Pass 2:
697 	 * export sorted list of result data
698 	 */
699 	for (i = 0, p = res; i < n; ++i) {
700 		const char *s;
701 
702 		s = list[i]->key;
703 		while (*s)
704 			*p++ = *s++;
705 		*p++ = '=';
706 
707 		s = list[i]->data;
708 
709 		while (*s) {
710 			if ((*s == sep) || (*s == '\\'))
711 				*p++ = '\\';	/* escape */
712 			*p++ = *s++;
713 		}
714 		*p++ = sep;
715 	}
716 	*p = '\0';		/* terminate result */
717 
718 	return size;
719 }
720 #endif
721 
722 
723 /*
724  * himport()
725  */
726 
727 /*
728  * Check whether variable 'name' is amongst vars[],
729  * and remove all instances by setting the pointer to NULL
730  */
731 static int drop_var_from_set(const char *name, int nvars, char * vars[])
732 {
733 	int i = 0;
734 	int res = 0;
735 
736 	/* No variables specified means process all of them */
737 	if (nvars == 0)
738 		return 1;
739 
740 	for (i = 0; i < nvars; i++) {
741 		if (vars[i] == NULL)
742 			continue;
743 		/* If we found it, delete all of them */
744 		if (!strcmp(name, vars[i])) {
745 			vars[i] = NULL;
746 			res = 1;
747 		}
748 	}
749 	if (!res)
750 		debug("Skipping non-listed variable %s\n", name);
751 
752 	return res;
753 }
754 
755 /*
756  * Import linearized data into hash table.
757  *
758  * This is the inverse function to hexport(): it takes a linear list
759  * of "name=value" pairs and creates hash table entries from it.
760  *
761  * Entries without "value", i. e. consisting of only "name" or
762  * "name=", will cause this entry to be deleted from the hash table.
763  *
764  * The "flag" argument can be used to control the behaviour: when the
765  * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
766  * new data will be added to an existing hash table; otherwise, old
767  * data will be discarded and a new hash table will be created.
768  *
769  * The separator character for the "name=value" pairs can be selected,
770  * so we both support importing from externally stored environment
771  * data (separated by NUL characters) and from plain text files
772  * (entries separated by newline characters).
773  *
774  * To allow for nicely formatted text input, leading white space
775  * (sequences of SPACE and TAB chars) is ignored, and entries starting
776  * (after removal of any leading white space) with a '#' character are
777  * considered comments and ignored.
778  *
779  * [NOTE: this means that a variable name cannot start with a '#'
780  * character.]
781  *
782  * When using a non-NUL separator character, backslash is used as
783  * escape character in the value part, allowing for example for
784  * multi-line values.
785  *
786  * In theory, arbitrary separator characters can be used, but only
787  * '\0' and '\n' have really been tested.
788  */
789 
790 int himport_r(struct hsearch_data *htab,
791 		const char *env, size_t size, const char sep, int flag,
792 		int nvars, char * const vars[])
793 {
794 	char *data, *sp, *dp, *name, *value;
795 	char *localvars[nvars];
796 	int i;
797 
798 	/* Test for correct arguments.  */
799 	if (htab == NULL) {
800 		__set_errno(EINVAL);
801 		return 0;
802 	}
803 
804 	/* we allocate new space to make sure we can write to the array */
805 	if ((data = malloc(size)) == NULL) {
806 		debug("himport_r: can't malloc %zu bytes\n", size);
807 		__set_errno(ENOMEM);
808 		return 0;
809 	}
810 	memcpy(data, env, size);
811 	dp = data;
812 
813 	/* make a local copy of the list of variables */
814 	if (nvars)
815 		memcpy(localvars, vars, sizeof(vars[0]) * nvars);
816 
817 	if ((flag & H_NOCLEAR) == 0) {
818 		/* Destroy old hash table if one exists */
819 		debug("Destroy Hash Table: %p table = %p\n", htab,
820 		       htab->table);
821 		if (htab->table)
822 			hdestroy_r(htab);
823 	}
824 
825 	/*
826 	 * Create new hash table (if needed).  The computation of the hash
827 	 * table size is based on heuristics: in a sample of some 70+
828 	 * existing systems we found an average size of 39+ bytes per entry
829 	 * in the environment (for the whole key=value pair). Assuming a
830 	 * size of 8 per entry (= safety factor of ~5) should provide enough
831 	 * safety margin for any existing environment definitions and still
832 	 * allow for more than enough dynamic additions. Note that the
833 	 * "size" argument is supposed to give the maximum enviroment size
834 	 * (CONFIG_ENV_SIZE).  This heuristics will result in
835 	 * unreasonably large numbers (and thus memory footprint) for
836 	 * big flash environments (>8,000 entries for 64 KB
837 	 * envrionment size), so we clip it to a reasonable value.
838 	 * On the other hand we need to add some more entries for free
839 	 * space when importing very small buffers. Both boundaries can
840 	 * be overwritten in the board config file if needed.
841 	 */
842 
843 	if (!htab->table) {
844 		int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
845 
846 		if (nent > CONFIG_ENV_MAX_ENTRIES)
847 			nent = CONFIG_ENV_MAX_ENTRIES;
848 
849 		debug("Create Hash Table: N=%d\n", nent);
850 
851 		if (hcreate_r(nent, htab) == 0) {
852 			free(data);
853 			return 0;
854 		}
855 	}
856 
857 	/* Parse environment; allow for '\0' and 'sep' as separators */
858 	do {
859 		ENTRY e, *rv;
860 
861 		/* skip leading white space */
862 		while (isblank(*dp))
863 			++dp;
864 
865 		/* skip comment lines */
866 		if (*dp == '#') {
867 			while (*dp && (*dp != sep))
868 				++dp;
869 			++dp;
870 			continue;
871 		}
872 
873 		/* parse name */
874 		for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
875 			;
876 
877 		/* deal with "name" and "name=" entries (delete var) */
878 		if (*dp == '\0' || *(dp + 1) == '\0' ||
879 		    *dp == sep || *(dp + 1) == sep) {
880 			if (*dp == '=')
881 				*dp++ = '\0';
882 			*dp++ = '\0';	/* terminate name */
883 
884 			debug("DELETE CANDIDATE: \"%s\"\n", name);
885 			if (!drop_var_from_set(name, nvars, localvars))
886 				continue;
887 
888 			if (hdelete_r(name, htab, flag) == 0)
889 				debug("DELETE ERROR ##############################\n");
890 
891 			continue;
892 		}
893 		*dp++ = '\0';	/* terminate name */
894 
895 		/* parse value; deal with escapes */
896 		for (value = sp = dp; *dp && (*dp != sep); ++dp) {
897 			if ((*dp == '\\') && *(dp + 1))
898 				++dp;
899 			*sp++ = *dp;
900 		}
901 		*sp++ = '\0';	/* terminate value */
902 		++dp;
903 
904 		/* Skip variables which are not supposed to be processed */
905 		if (!drop_var_from_set(name, nvars, localvars))
906 			continue;
907 
908 		/* enter into hash table */
909 		e.key = name;
910 		e.data = value;
911 
912 		hsearch_r(e, ENTER, &rv, htab, flag);
913 		if (rv == NULL)
914 			printf("himport_r: can't insert \"%s=%s\" into hash table\n",
915 				name, value);
916 
917 		debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
918 			htab, htab->filled, htab->size,
919 			rv, name, value);
920 	} while ((dp < data + size) && *dp);	/* size check needed for text */
921 						/* without '\0' termination */
922 	debug("INSERT: free(data = %p)\n", data);
923 	free(data);
924 
925 	/* process variables which were not considered */
926 	for (i = 0; i < nvars; i++) {
927 		if (localvars[i] == NULL)
928 			continue;
929 		/*
930 		 * All variables which were not deleted from the variable list
931 		 * were not present in the imported env
932 		 * This could mean two things:
933 		 * a) if the variable was present in current env, we delete it
934 		 * b) if the variable was not present in current env, we notify
935 		 *    it might be a typo
936 		 */
937 		if (hdelete_r(localvars[i], htab, flag) == 0)
938 			printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]);
939 		else
940 			printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]);
941 	}
942 
943 	debug("INSERT: done\n");
944 	return 1;		/* everything OK */
945 }
946 
947 /*
948  * hwalk_r()
949  */
950 
951 /*
952  * Walk all of the entries in the hash, calling the callback for each one.
953  * this allows some generic operation to be performed on each element.
954  */
955 int hwalk_r(struct hsearch_data *htab, int (*callback)(ENTRY *))
956 {
957 	int i;
958 	int retval;
959 
960 	for (i = 1; i <= htab->size; ++i) {
961 		if (htab->table[i].used > 0) {
962 			retval = callback(&htab->table[i].entry);
963 			if (retval)
964 				return retval;
965 		}
966 	}
967 
968 	return 0;
969 }
970