1 // SPDX-License-Identifier: LGPL-2.1+ 2 /* 3 * This implementation is based on code from uClibc-0.9.30.3 but was 4 * modified and extended for use within U-Boot. 5 * 6 * Copyright (C) 2010-2013 Wolfgang Denk <wd@denx.de> 7 * 8 * Original license header: 9 * 10 * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc. 11 * This file is part of the GNU C Library. 12 * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993. 13 */ 14 15 #include <errno.h> 16 #include <malloc.h> 17 18 #ifdef USE_HOSTCC /* HOST build */ 19 # include <string.h> 20 # include <assert.h> 21 # include <ctype.h> 22 23 # ifndef debug 24 # ifdef DEBUG 25 # define debug(fmt,args...) printf(fmt ,##args) 26 # else 27 # define debug(fmt,args...) 28 # endif 29 # endif 30 #else /* U-Boot build */ 31 # include <common.h> 32 # include <linux/string.h> 33 # include <linux/ctype.h> 34 #endif 35 36 #ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */ 37 #define CONFIG_ENV_MIN_ENTRIES 64 38 #endif 39 #ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */ 40 #define CONFIG_ENV_MAX_ENTRIES 512 41 #endif 42 43 #include <env_callback.h> 44 #include <env_flags.h> 45 #include <search.h> 46 #include <slre.h> 47 48 /* 49 * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986 50 * [Knuth] The Art of Computer Programming, part 3 (6.4) 51 */ 52 53 /* 54 * The reentrant version has no static variables to maintain the state. 55 * Instead the interface of all functions is extended to take an argument 56 * which describes the current status. 57 */ 58 59 typedef struct _ENTRY { 60 int used; 61 ENTRY entry; 62 } _ENTRY; 63 64 65 static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep, 66 int idx); 67 68 /* 69 * hcreate() 70 */ 71 72 /* 73 * For the used double hash method the table size has to be a prime. To 74 * correct the user given table size we need a prime test. This trivial 75 * algorithm is adequate because 76 * a) the code is (most probably) called a few times per program run and 77 * b) the number is small because the table must fit in the core 78 * */ 79 static int isprime(unsigned int number) 80 { 81 /* no even number will be passed */ 82 unsigned int div = 3; 83 84 while (div * div < number && number % div != 0) 85 div += 2; 86 87 return number % div != 0; 88 } 89 90 /* 91 * Before using the hash table we must allocate memory for it. 92 * Test for an existing table are done. We allocate one element 93 * more as the found prime number says. This is done for more effective 94 * indexing as explained in the comment for the hsearch function. 95 * The contents of the table is zeroed, especially the field used 96 * becomes zero. 97 */ 98 99 int hcreate_r(size_t nel, struct hsearch_data *htab) 100 { 101 /* Test for correct arguments. */ 102 if (htab == NULL) { 103 __set_errno(EINVAL); 104 return 0; 105 } 106 107 /* There is still another table active. Return with error. */ 108 if (htab->table != NULL) 109 return 0; 110 111 /* Change nel to the first prime number not smaller as nel. */ 112 nel |= 1; /* make odd */ 113 while (!isprime(nel)) 114 nel += 2; 115 116 htab->size = nel; 117 htab->filled = 0; 118 119 /* allocate memory and zero out */ 120 htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY)); 121 if (htab->table == NULL) 122 return 0; 123 124 /* everything went alright */ 125 return 1; 126 } 127 128 129 /* 130 * hdestroy() 131 */ 132 133 /* 134 * After using the hash table it has to be destroyed. The used memory can 135 * be freed and the local static variable can be marked as not used. 136 */ 137 138 void hdestroy_r(struct hsearch_data *htab) 139 { 140 int i; 141 142 /* Test for correct arguments. */ 143 if (htab == NULL) { 144 __set_errno(EINVAL); 145 return; 146 } 147 148 /* free used memory */ 149 for (i = 1; i <= htab->size; ++i) { 150 if (htab->table[i].used > 0) { 151 ENTRY *ep = &htab->table[i].entry; 152 153 free((void *)ep->key); 154 free(ep->data); 155 } 156 } 157 free(htab->table); 158 159 /* the sign for an existing table is an value != NULL in htable */ 160 htab->table = NULL; 161 } 162 163 /* 164 * hsearch() 165 */ 166 167 /* 168 * This is the search function. It uses double hashing with open addressing. 169 * The argument item.key has to be a pointer to an zero terminated, most 170 * probably strings of chars. The function for generating a number of the 171 * strings is simple but fast. It can be replaced by a more complex function 172 * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown. 173 * 174 * We use an trick to speed up the lookup. The table is created by hcreate 175 * with one more element available. This enables us to use the index zero 176 * special. This index will never be used because we store the first hash 177 * index in the field used where zero means not used. Every other value 178 * means used. The used field can be used as a first fast comparison for 179 * equality of the stored and the parameter value. This helps to prevent 180 * unnecessary expensive calls of strcmp. 181 * 182 * This implementation differs from the standard library version of 183 * this function in a number of ways: 184 * 185 * - While the standard version does not make any assumptions about 186 * the type of the stored data objects at all, this implementation 187 * works with NUL terminated strings only. 188 * - Instead of storing just pointers to the original objects, we 189 * create local copies so the caller does not need to care about the 190 * data any more. 191 * - The standard implementation does not provide a way to update an 192 * existing entry. This version will create a new entry or update an 193 * existing one when both "action == ENTER" and "item.data != NULL". 194 * - Instead of returning 1 on success, we return the index into the 195 * internal hash table, which is also guaranteed to be positive. 196 * This allows us direct access to the found hash table slot for 197 * example for functions like hdelete(). 198 */ 199 200 int hmatch_r(const char *match, int last_idx, ENTRY ** retval, 201 struct hsearch_data *htab) 202 { 203 unsigned int idx; 204 size_t key_len = strlen(match); 205 206 for (idx = last_idx + 1; idx < htab->size; ++idx) { 207 if (htab->table[idx].used <= 0) 208 continue; 209 if (!strncmp(match, htab->table[idx].entry.key, key_len)) { 210 *retval = &htab->table[idx].entry; 211 return idx; 212 } 213 } 214 215 __set_errno(ESRCH); 216 *retval = NULL; 217 return 0; 218 } 219 220 /* 221 * Compare an existing entry with the desired key, and overwrite if the action 222 * is ENTER. This is simply a helper function for hsearch_r(). 223 */ 224 static inline int _compare_and_overwrite_entry(ENTRY item, ACTION action, 225 ENTRY **retval, struct hsearch_data *htab, int flag, 226 unsigned int hval, unsigned int idx) 227 { 228 if (htab->table[idx].used == hval 229 && strcmp(item.key, htab->table[idx].entry.key) == 0) { 230 /* Overwrite existing value? */ 231 if ((action == ENTER) && (item.data != NULL)) { 232 /* check for permission */ 233 if (htab->change_ok != NULL && htab->change_ok( 234 &htab->table[idx].entry, item.data, 235 env_op_overwrite, flag)) { 236 debug("change_ok() rejected setting variable " 237 "%s, skipping it!\n", item.key); 238 __set_errno(EPERM); 239 *retval = NULL; 240 return 0; 241 } 242 243 /* If there is a callback, call it */ 244 if (htab->table[idx].entry.callback && 245 htab->table[idx].entry.callback(item.key, 246 item.data, env_op_overwrite, flag)) { 247 debug("callback() rejected setting variable " 248 "%s, skipping it!\n", item.key); 249 __set_errno(EINVAL); 250 *retval = NULL; 251 return 0; 252 } 253 254 free(htab->table[idx].entry.data); 255 htab->table[idx].entry.data = strdup(item.data); 256 if (!htab->table[idx].entry.data) { 257 __set_errno(ENOMEM); 258 *retval = NULL; 259 return 0; 260 } 261 } 262 /* return found entry */ 263 *retval = &htab->table[idx].entry; 264 return idx; 265 } 266 /* keep searching */ 267 return -1; 268 } 269 270 int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval, 271 struct hsearch_data *htab, int flag) 272 { 273 unsigned int hval; 274 unsigned int count; 275 unsigned int len = strlen(item.key); 276 unsigned int idx; 277 unsigned int first_deleted = 0; 278 int ret; 279 280 /* Compute an value for the given string. Perhaps use a better method. */ 281 hval = len; 282 count = len; 283 while (count-- > 0) { 284 hval <<= 4; 285 hval += item.key[count]; 286 } 287 288 /* 289 * First hash function: 290 * simply take the modul but prevent zero. 291 */ 292 hval %= htab->size; 293 if (hval == 0) 294 ++hval; 295 296 /* The first index tried. */ 297 idx = hval; 298 299 if (htab->table[idx].used) { 300 /* 301 * Further action might be required according to the 302 * action value. 303 */ 304 unsigned hval2; 305 306 if (htab->table[idx].used == -1 307 && !first_deleted) 308 first_deleted = idx; 309 310 ret = _compare_and_overwrite_entry(item, action, retval, htab, 311 flag, hval, idx); 312 if (ret != -1) 313 return ret; 314 315 /* 316 * Second hash function: 317 * as suggested in [Knuth] 318 */ 319 hval2 = 1 + hval % (htab->size - 2); 320 321 do { 322 /* 323 * Because SIZE is prime this guarantees to 324 * step through all available indices. 325 */ 326 if (idx <= hval2) 327 idx = htab->size + idx - hval2; 328 else 329 idx -= hval2; 330 331 /* 332 * If we visited all entries leave the loop 333 * unsuccessfully. 334 */ 335 if (idx == hval) 336 break; 337 338 /* If entry is found use it. */ 339 ret = _compare_and_overwrite_entry(item, action, retval, 340 htab, flag, hval, idx); 341 if (ret != -1) 342 return ret; 343 } 344 while (htab->table[idx].used); 345 } 346 347 /* An empty bucket has been found. */ 348 if (action == ENTER) { 349 /* 350 * If table is full and another entry should be 351 * entered return with error. 352 */ 353 if (htab->filled == htab->size) { 354 __set_errno(ENOMEM); 355 *retval = NULL; 356 return 0; 357 } 358 359 /* 360 * Create new entry; 361 * create copies of item.key and item.data 362 */ 363 if (first_deleted) 364 idx = first_deleted; 365 366 htab->table[idx].used = hval; 367 htab->table[idx].entry.key = strdup(item.key); 368 htab->table[idx].entry.data = strdup(item.data); 369 if (!htab->table[idx].entry.key || 370 !htab->table[idx].entry.data) { 371 __set_errno(ENOMEM); 372 *retval = NULL; 373 return 0; 374 } 375 376 ++htab->filled; 377 378 /* This is a new entry, so look up a possible callback */ 379 env_callback_init(&htab->table[idx].entry); 380 /* Also look for flags */ 381 env_flags_init(&htab->table[idx].entry); 382 383 /* check for permission */ 384 if (htab->change_ok != NULL && htab->change_ok( 385 &htab->table[idx].entry, item.data, env_op_create, flag)) { 386 debug("change_ok() rejected setting variable " 387 "%s, skipping it!\n", item.key); 388 _hdelete(item.key, htab, &htab->table[idx].entry, idx); 389 __set_errno(EPERM); 390 *retval = NULL; 391 return 0; 392 } 393 394 /* If there is a callback, call it */ 395 if (htab->table[idx].entry.callback && 396 htab->table[idx].entry.callback(item.key, item.data, 397 env_op_create, flag)) { 398 debug("callback() rejected setting variable " 399 "%s, skipping it!\n", item.key); 400 _hdelete(item.key, htab, &htab->table[idx].entry, idx); 401 __set_errno(EINVAL); 402 *retval = NULL; 403 return 0; 404 } 405 406 /* return new entry */ 407 *retval = &htab->table[idx].entry; 408 return 1; 409 } 410 411 __set_errno(ESRCH); 412 *retval = NULL; 413 return 0; 414 } 415 416 417 /* 418 * hdelete() 419 */ 420 421 /* 422 * The standard implementation of hsearch(3) does not provide any way 423 * to delete any entries from the hash table. We extend the code to 424 * do that. 425 */ 426 427 static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep, 428 int idx) 429 { 430 /* free used ENTRY */ 431 debug("hdelete: DELETING key \"%s\"\n", key); 432 free((void *)ep->key); 433 free(ep->data); 434 ep->callback = NULL; 435 ep->flags = 0; 436 htab->table[idx].used = -1; 437 438 --htab->filled; 439 } 440 441 int hdelete_r(const char *key, struct hsearch_data *htab, int flag) 442 { 443 ENTRY e, *ep; 444 int idx; 445 446 debug("hdelete: DELETE key \"%s\"\n", key); 447 448 e.key = (char *)key; 449 450 idx = hsearch_r(e, FIND, &ep, htab, 0); 451 if (idx == 0) { 452 __set_errno(ESRCH); 453 return 0; /* not found */ 454 } 455 456 /* Check for permission */ 457 if (htab->change_ok != NULL && 458 htab->change_ok(ep, NULL, env_op_delete, flag)) { 459 debug("change_ok() rejected deleting variable " 460 "%s, skipping it!\n", key); 461 __set_errno(EPERM); 462 return 0; 463 } 464 465 /* If there is a callback, call it */ 466 if (htab->table[idx].entry.callback && 467 htab->table[idx].entry.callback(key, NULL, env_op_delete, flag)) { 468 debug("callback() rejected deleting variable " 469 "%s, skipping it!\n", key); 470 __set_errno(EINVAL); 471 return 0; 472 } 473 474 _hdelete(key, htab, ep, idx); 475 476 return 1; 477 } 478 479 #if !(defined(CONFIG_SPL_BUILD) && !defined(CONFIG_SPL_SAVEENV)) 480 /* 481 * hexport() 482 */ 483 484 /* 485 * Export the data stored in the hash table in linearized form. 486 * 487 * Entries are exported as "name=value" strings, separated by an 488 * arbitrary (non-NUL, of course) separator character. This allows to 489 * use this function both when formatting the U-Boot environment for 490 * external storage (using '\0' as separator), but also when using it 491 * for the "printenv" command to print all variables, simply by using 492 * as '\n" as separator. This can also be used for new features like 493 * exporting the environment data as text file, including the option 494 * for later re-import. 495 * 496 * The entries in the result list will be sorted by ascending key 497 * values. 498 * 499 * If the separator character is different from NUL, then any 500 * separator characters and backslash characters in the values will 501 * be escaped by a preceding backslash in output. This is needed for 502 * example to enable multi-line values, especially when the output 503 * shall later be parsed (for example, for re-import). 504 * 505 * There are several options how the result buffer is handled: 506 * 507 * *resp size 508 * ----------- 509 * NULL 0 A string of sufficient length will be allocated. 510 * NULL >0 A string of the size given will be 511 * allocated. An error will be returned if the size is 512 * not sufficient. Any unused bytes in the string will 513 * be '\0'-padded. 514 * !NULL 0 The user-supplied buffer will be used. No length 515 * checking will be performed, i. e. it is assumed that 516 * the buffer size will always be big enough. DANGEROUS. 517 * !NULL >0 The user-supplied buffer will be used. An error will 518 * be returned if the size is not sufficient. Any unused 519 * bytes in the string will be '\0'-padded. 520 */ 521 522 static int cmpkey(const void *p1, const void *p2) 523 { 524 ENTRY *e1 = *(ENTRY **) p1; 525 ENTRY *e2 = *(ENTRY **) p2; 526 527 return (strcmp(e1->key, e2->key)); 528 } 529 530 static int match_string(int flag, const char *str, const char *pat, void *priv) 531 { 532 switch (flag & H_MATCH_METHOD) { 533 case H_MATCH_IDENT: 534 if (strcmp(str, pat) == 0) 535 return 1; 536 break; 537 case H_MATCH_SUBSTR: 538 if (strstr(str, pat)) 539 return 1; 540 break; 541 #ifdef CONFIG_REGEX 542 case H_MATCH_REGEX: 543 { 544 struct slre *slrep = (struct slre *)priv; 545 struct cap caps[slrep->num_caps + 2]; 546 547 if (slre_match(slrep, str, strlen(str), caps)) 548 return 1; 549 } 550 break; 551 #endif 552 default: 553 printf("## ERROR: unsupported match method: 0x%02x\n", 554 flag & H_MATCH_METHOD); 555 break; 556 } 557 return 0; 558 } 559 560 static int match_entry(ENTRY *ep, int flag, 561 int argc, char * const argv[]) 562 { 563 int arg; 564 void *priv = NULL; 565 566 for (arg = 0; arg < argc; ++arg) { 567 #ifdef CONFIG_REGEX 568 struct slre slre; 569 570 if (slre_compile(&slre, argv[arg]) == 0) { 571 printf("Error compiling regex: %s\n", slre.err_str); 572 return 0; 573 } 574 575 priv = (void *)&slre; 576 #endif 577 if (flag & H_MATCH_KEY) { 578 if (match_string(flag, ep->key, argv[arg], priv)) 579 return 1; 580 } 581 if (flag & H_MATCH_DATA) { 582 if (match_string(flag, ep->data, argv[arg], priv)) 583 return 1; 584 } 585 } 586 return 0; 587 } 588 589 ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag, 590 char **resp, size_t size, 591 int argc, char * const argv[]) 592 { 593 ENTRY *list[htab->size]; 594 char *res, *p; 595 size_t totlen; 596 int i, n; 597 598 /* Test for correct arguments. */ 599 if ((resp == NULL) || (htab == NULL)) { 600 __set_errno(EINVAL); 601 return (-1); 602 } 603 604 debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, size = %lu\n", 605 htab, htab->size, htab->filled, (ulong)size); 606 /* 607 * Pass 1: 608 * search used entries, 609 * save addresses and compute total length 610 */ 611 for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) { 612 613 if (htab->table[i].used > 0) { 614 ENTRY *ep = &htab->table[i].entry; 615 int found = match_entry(ep, flag, argc, argv); 616 617 if ((argc > 0) && (found == 0)) 618 continue; 619 620 if ((flag & H_HIDE_DOT) && ep->key[0] == '.') 621 continue; 622 623 list[n++] = ep; 624 625 totlen += strlen(ep->key) + 2; 626 627 if (sep == '\0') { 628 totlen += strlen(ep->data); 629 } else { /* check if escapes are needed */ 630 char *s = ep->data; 631 632 while (*s) { 633 ++totlen; 634 /* add room for needed escape chars */ 635 if ((*s == sep) || (*s == '\\')) 636 ++totlen; 637 ++s; 638 } 639 } 640 totlen += 2; /* for '=' and 'sep' char */ 641 } 642 } 643 644 #ifdef DEBUG 645 /* Pass 1a: print unsorted list */ 646 printf("Unsorted: n=%d\n", n); 647 for (i = 0; i < n; ++i) { 648 printf("\t%3d: %p ==> %-10s => %s\n", 649 i, list[i], list[i]->key, list[i]->data); 650 } 651 #endif 652 653 /* Sort list by keys */ 654 qsort(list, n, sizeof(ENTRY *), cmpkey); 655 656 /* Check if the user supplied buffer size is sufficient */ 657 if (size) { 658 if (size < totlen + 1) { /* provided buffer too small */ 659 printf("Env export buffer too small: %lu, but need %lu\n", 660 (ulong)size, (ulong)totlen + 1); 661 __set_errno(ENOMEM); 662 return (-1); 663 } 664 } else { 665 size = totlen + 1; 666 } 667 668 /* Check if the user provided a buffer */ 669 if (*resp) { 670 /* yes; clear it */ 671 res = *resp; 672 memset(res, '\0', size); 673 } else { 674 /* no, allocate and clear one */ 675 *resp = res = calloc(1, size); 676 if (res == NULL) { 677 __set_errno(ENOMEM); 678 return (-1); 679 } 680 } 681 /* 682 * Pass 2: 683 * export sorted list of result data 684 */ 685 for (i = 0, p = res; i < n; ++i) { 686 const char *s; 687 688 s = list[i]->key; 689 while (*s) 690 *p++ = *s++; 691 *p++ = '='; 692 693 s = list[i]->data; 694 695 while (*s) { 696 if ((*s == sep) || (*s == '\\')) 697 *p++ = '\\'; /* escape */ 698 *p++ = *s++; 699 } 700 *p++ = sep; 701 } 702 *p = '\0'; /* terminate result */ 703 704 return size; 705 } 706 #endif 707 708 709 /* 710 * himport() 711 */ 712 713 /* 714 * Check whether variable 'name' is amongst vars[], 715 * and remove all instances by setting the pointer to NULL 716 */ 717 static int drop_var_from_set(const char *name, int nvars, char * vars[]) 718 { 719 int i = 0; 720 int res = 0; 721 722 /* No variables specified means process all of them */ 723 if (nvars == 0) 724 return 1; 725 726 for (i = 0; i < nvars; i++) { 727 if (vars[i] == NULL) 728 continue; 729 /* If we found it, delete all of them */ 730 if (!strcmp(name, vars[i])) { 731 vars[i] = NULL; 732 res = 1; 733 } 734 } 735 if (!res) 736 debug("Skipping non-listed variable %s\n", name); 737 738 return res; 739 } 740 741 /* 742 * Import linearized data into hash table. 743 * 744 * This is the inverse function to hexport(): it takes a linear list 745 * of "name=value" pairs and creates hash table entries from it. 746 * 747 * Entries without "value", i. e. consisting of only "name" or 748 * "name=", will cause this entry to be deleted from the hash table. 749 * 750 * The "flag" argument can be used to control the behaviour: when the 751 * H_NOCLEAR bit is set, then an existing hash table will kept, i. e. 752 * new data will be added to an existing hash table; otherwise, old 753 * data will be discarded and a new hash table will be created. 754 * 755 * The separator character for the "name=value" pairs can be selected, 756 * so we both support importing from externally stored environment 757 * data (separated by NUL characters) and from plain text files 758 * (entries separated by newline characters). 759 * 760 * To allow for nicely formatted text input, leading white space 761 * (sequences of SPACE and TAB chars) is ignored, and entries starting 762 * (after removal of any leading white space) with a '#' character are 763 * considered comments and ignored. 764 * 765 * [NOTE: this means that a variable name cannot start with a '#' 766 * character.] 767 * 768 * When using a non-NUL separator character, backslash is used as 769 * escape character in the value part, allowing for example for 770 * multi-line values. 771 * 772 * In theory, arbitrary separator characters can be used, but only 773 * '\0' and '\n' have really been tested. 774 */ 775 776 int himport_r(struct hsearch_data *htab, 777 const char *env, size_t size, const char sep, int flag, 778 int crlf_is_lf, int nvars, char * const vars[]) 779 { 780 char *data, *sp, *dp, *name, *value; 781 char *localvars[nvars]; 782 int i; 783 784 /* Test for correct arguments. */ 785 if (htab == NULL) { 786 __set_errno(EINVAL); 787 return 0; 788 } 789 790 /* we allocate new space to make sure we can write to the array */ 791 if ((data = malloc(size + 1)) == NULL) { 792 debug("himport_r: can't malloc %lu bytes\n", (ulong)size + 1); 793 __set_errno(ENOMEM); 794 return 0; 795 } 796 memcpy(data, env, size); 797 data[size] = '\0'; 798 dp = data; 799 800 /* make a local copy of the list of variables */ 801 if (nvars) 802 memcpy(localvars, vars, sizeof(vars[0]) * nvars); 803 804 if ((flag & H_NOCLEAR) == 0) { 805 /* Destroy old hash table if one exists */ 806 debug("Destroy Hash Table: %p table = %p\n", htab, 807 htab->table); 808 if (htab->table) 809 hdestroy_r(htab); 810 } 811 812 /* 813 * Create new hash table (if needed). The computation of the hash 814 * table size is based on heuristics: in a sample of some 70+ 815 * existing systems we found an average size of 39+ bytes per entry 816 * in the environment (for the whole key=value pair). Assuming a 817 * size of 8 per entry (= safety factor of ~5) should provide enough 818 * safety margin for any existing environment definitions and still 819 * allow for more than enough dynamic additions. Note that the 820 * "size" argument is supposed to give the maximum environment size 821 * (CONFIG_ENV_SIZE). This heuristics will result in 822 * unreasonably large numbers (and thus memory footprint) for 823 * big flash environments (>8,000 entries for 64 KB 824 * environment size), so we clip it to a reasonable value. 825 * On the other hand we need to add some more entries for free 826 * space when importing very small buffers. Both boundaries can 827 * be overwritten in the board config file if needed. 828 */ 829 830 if (!htab->table) { 831 int nent = CONFIG_ENV_MIN_ENTRIES + size / 8; 832 833 if (nent > CONFIG_ENV_MAX_ENTRIES) 834 nent = CONFIG_ENV_MAX_ENTRIES; 835 836 debug("Create Hash Table: N=%d\n", nent); 837 838 if (hcreate_r(nent, htab) == 0) { 839 free(data); 840 return 0; 841 } 842 } 843 844 if (!size) { 845 free(data); 846 return 1; /* everything OK */ 847 } 848 if(crlf_is_lf) { 849 /* Remove Carriage Returns in front of Line Feeds */ 850 unsigned ignored_crs = 0; 851 for(;dp < data + size && *dp; ++dp) { 852 if(*dp == '\r' && 853 dp < data + size - 1 && *(dp+1) == '\n') 854 ++ignored_crs; 855 else 856 *(dp-ignored_crs) = *dp; 857 } 858 size -= ignored_crs; 859 dp = data; 860 } 861 /* Parse environment; allow for '\0' and 'sep' as separators */ 862 do { 863 ENTRY e, *rv; 864 865 /* skip leading white space */ 866 while (isblank(*dp)) 867 ++dp; 868 869 /* skip comment lines */ 870 if (*dp == '#') { 871 while (*dp && (*dp != sep)) 872 ++dp; 873 ++dp; 874 continue; 875 } 876 877 /* parse name */ 878 for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp) 879 ; 880 881 /* deal with "name" and "name=" entries (delete var) */ 882 if (*dp == '\0' || *(dp + 1) == '\0' || 883 *dp == sep || *(dp + 1) == sep) { 884 if (*dp == '=') 885 *dp++ = '\0'; 886 *dp++ = '\0'; /* terminate name */ 887 888 debug("DELETE CANDIDATE: \"%s\"\n", name); 889 if (!drop_var_from_set(name, nvars, localvars)) 890 continue; 891 892 if (hdelete_r(name, htab, flag) == 0) 893 debug("DELETE ERROR ##############################\n"); 894 895 continue; 896 } 897 *dp++ = '\0'; /* terminate name */ 898 899 /* parse value; deal with escapes */ 900 for (value = sp = dp; *dp && (*dp != sep); ++dp) { 901 if ((*dp == '\\') && *(dp + 1)) 902 ++dp; 903 *sp++ = *dp; 904 } 905 *sp++ = '\0'; /* terminate value */ 906 ++dp; 907 908 if (*name == 0) { 909 debug("INSERT: unable to use an empty key\n"); 910 __set_errno(EINVAL); 911 free(data); 912 return 0; 913 } 914 915 /* Skip variables which are not supposed to be processed */ 916 if (!drop_var_from_set(name, nvars, localvars)) 917 continue; 918 919 /* enter into hash table */ 920 e.key = name; 921 e.data = value; 922 923 hsearch_r(e, ENTER, &rv, htab, flag); 924 if (rv == NULL) 925 printf("himport_r: can't insert \"%s=%s\" into hash table\n", 926 name, value); 927 928 debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n", 929 htab, htab->filled, htab->size, 930 rv, name, value); 931 } while ((dp < data + size) && *dp); /* size check needed for text */ 932 /* without '\0' termination */ 933 debug("INSERT: free(data = %p)\n", data); 934 free(data); 935 936 /* process variables which were not considered */ 937 for (i = 0; i < nvars; i++) { 938 if (localvars[i] == NULL) 939 continue; 940 /* 941 * All variables which were not deleted from the variable list 942 * were not present in the imported env 943 * This could mean two things: 944 * a) if the variable was present in current env, we delete it 945 * b) if the variable was not present in current env, we notify 946 * it might be a typo 947 */ 948 if (hdelete_r(localvars[i], htab, flag) == 0) 949 printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]); 950 else 951 printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]); 952 } 953 954 debug("INSERT: done\n"); 955 return 1; /* everything OK */ 956 } 957 958 /* 959 * hwalk_r() 960 */ 961 962 /* 963 * Walk all of the entries in the hash, calling the callback for each one. 964 * this allows some generic operation to be performed on each element. 965 */ 966 int hwalk_r(struct hsearch_data *htab, int (*callback)(ENTRY *)) 967 { 968 int i; 969 int retval; 970 971 for (i = 1; i <= htab->size; ++i) { 972 if (htab->table[i].used > 0) { 973 retval = callback(&htab->table[i].entry); 974 if (retval) 975 return retval; 976 } 977 } 978 979 return 0; 980 } 981