1 /* 2 * This implementation is based on code from uClibc-0.9.30.3 but was 3 * modified and extended for use within U-Boot. 4 * 5 * Copyright (C) 2010-2013 Wolfgang Denk <wd@denx.de> 6 * 7 * Original license header: 8 * 9 * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc. 10 * This file is part of the GNU C Library. 11 * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993. 12 * 13 * SPDX-License-Identifier: LGPL-2.1+ 14 */ 15 16 #include <errno.h> 17 #include <malloc.h> 18 19 #ifdef USE_HOSTCC /* HOST build */ 20 # include <string.h> 21 # include <assert.h> 22 # include <ctype.h> 23 24 # ifndef debug 25 # ifdef DEBUG 26 # define debug(fmt,args...) printf(fmt ,##args) 27 # else 28 # define debug(fmt,args...) 29 # endif 30 # endif 31 #else /* U-Boot build */ 32 # include <common.h> 33 # include <linux/string.h> 34 # include <linux/ctype.h> 35 #endif 36 37 #ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */ 38 #define CONFIG_ENV_MIN_ENTRIES 64 39 #endif 40 #ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */ 41 #define CONFIG_ENV_MAX_ENTRIES 512 42 #endif 43 44 #include <env_callback.h> 45 #include <env_flags.h> 46 #include <search.h> 47 #include <slre.h> 48 49 /* 50 * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986 51 * [Knuth] The Art of Computer Programming, part 3 (6.4) 52 */ 53 54 /* 55 * The reentrant version has no static variables to maintain the state. 56 * Instead the interface of all functions is extended to take an argument 57 * which describes the current status. 58 */ 59 60 typedef struct _ENTRY { 61 int used; 62 ENTRY entry; 63 } _ENTRY; 64 65 66 static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep, 67 int idx); 68 69 /* 70 * hcreate() 71 */ 72 73 /* 74 * For the used double hash method the table size has to be a prime. To 75 * correct the user given table size we need a prime test. This trivial 76 * algorithm is adequate because 77 * a) the code is (most probably) called a few times per program run and 78 * b) the number is small because the table must fit in the core 79 * */ 80 static int isprime(unsigned int number) 81 { 82 /* no even number will be passed */ 83 unsigned int div = 3; 84 85 while (div * div < number && number % div != 0) 86 div += 2; 87 88 return number % div != 0; 89 } 90 91 /* 92 * Before using the hash table we must allocate memory for it. 93 * Test for an existing table are done. We allocate one element 94 * more as the found prime number says. This is done for more effective 95 * indexing as explained in the comment for the hsearch function. 96 * The contents of the table is zeroed, especially the field used 97 * becomes zero. 98 */ 99 100 int hcreate_r(size_t nel, struct hsearch_data *htab) 101 { 102 /* Test for correct arguments. */ 103 if (htab == NULL) { 104 __set_errno(EINVAL); 105 return 0; 106 } 107 108 /* There is still another table active. Return with error. */ 109 if (htab->table != NULL) 110 return 0; 111 112 /* Change nel to the first prime number not smaller as nel. */ 113 nel |= 1; /* make odd */ 114 while (!isprime(nel)) 115 nel += 2; 116 117 htab->size = nel; 118 htab->filled = 0; 119 120 /* allocate memory and zero out */ 121 htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY)); 122 if (htab->table == NULL) 123 return 0; 124 125 /* everything went alright */ 126 return 1; 127 } 128 129 130 /* 131 * hdestroy() 132 */ 133 134 /* 135 * After using the hash table it has to be destroyed. The used memory can 136 * be freed and the local static variable can be marked as not used. 137 */ 138 139 void hdestroy_r(struct hsearch_data *htab) 140 { 141 int i; 142 143 /* Test for correct arguments. */ 144 if (htab == NULL) { 145 __set_errno(EINVAL); 146 return; 147 } 148 149 /* free used memory */ 150 for (i = 1; i <= htab->size; ++i) { 151 if (htab->table[i].used > 0) { 152 ENTRY *ep = &htab->table[i].entry; 153 154 free((void *)ep->key); 155 free(ep->data); 156 } 157 } 158 free(htab->table); 159 160 /* the sign for an existing table is an value != NULL in htable */ 161 htab->table = NULL; 162 } 163 164 /* 165 * hsearch() 166 */ 167 168 /* 169 * This is the search function. It uses double hashing with open addressing. 170 * The argument item.key has to be a pointer to an zero terminated, most 171 * probably strings of chars. The function for generating a number of the 172 * strings is simple but fast. It can be replaced by a more complex function 173 * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown. 174 * 175 * We use an trick to speed up the lookup. The table is created by hcreate 176 * with one more element available. This enables us to use the index zero 177 * special. This index will never be used because we store the first hash 178 * index in the field used where zero means not used. Every other value 179 * means used. The used field can be used as a first fast comparison for 180 * equality of the stored and the parameter value. This helps to prevent 181 * unnecessary expensive calls of strcmp. 182 * 183 * This implementation differs from the standard library version of 184 * this function in a number of ways: 185 * 186 * - While the standard version does not make any assumptions about 187 * the type of the stored data objects at all, this implementation 188 * works with NUL terminated strings only. 189 * - Instead of storing just pointers to the original objects, we 190 * create local copies so the caller does not need to care about the 191 * data any more. 192 * - The standard implementation does not provide a way to update an 193 * existing entry. This version will create a new entry or update an 194 * existing one when both "action == ENTER" and "item.data != NULL". 195 * - Instead of returning 1 on success, we return the index into the 196 * internal hash table, which is also guaranteed to be positive. 197 * This allows us direct access to the found hash table slot for 198 * example for functions like hdelete(). 199 */ 200 201 int hmatch_r(const char *match, int last_idx, ENTRY ** retval, 202 struct hsearch_data *htab) 203 { 204 unsigned int idx; 205 size_t key_len = strlen(match); 206 207 for (idx = last_idx + 1; idx < htab->size; ++idx) { 208 if (htab->table[idx].used <= 0) 209 continue; 210 if (!strncmp(match, htab->table[idx].entry.key, key_len)) { 211 *retval = &htab->table[idx].entry; 212 return idx; 213 } 214 } 215 216 __set_errno(ESRCH); 217 *retval = NULL; 218 return 0; 219 } 220 221 /* 222 * Compare an existing entry with the desired key, and overwrite if the action 223 * is ENTER. This is simply a helper function for hsearch_r(). 224 */ 225 static inline int _compare_and_overwrite_entry(ENTRY item, ACTION action, 226 ENTRY **retval, struct hsearch_data *htab, int flag, 227 unsigned int hval, unsigned int idx) 228 { 229 if (htab->table[idx].used == hval 230 && strcmp(item.key, htab->table[idx].entry.key) == 0) { 231 /* Overwrite existing value? */ 232 if ((action == ENTER) && (item.data != NULL)) { 233 /* check for permission */ 234 if (htab->change_ok != NULL && htab->change_ok( 235 &htab->table[idx].entry, item.data, 236 env_op_overwrite, flag)) { 237 debug("change_ok() rejected setting variable " 238 "%s, skipping it!\n", item.key); 239 __set_errno(EPERM); 240 *retval = NULL; 241 return 0; 242 } 243 244 /* If there is a callback, call it */ 245 if (htab->table[idx].entry.callback && 246 htab->table[idx].entry.callback(item.key, 247 item.data, env_op_overwrite, flag)) { 248 debug("callback() rejected setting variable " 249 "%s, skipping it!\n", item.key); 250 __set_errno(EINVAL); 251 *retval = NULL; 252 return 0; 253 } 254 255 free(htab->table[idx].entry.data); 256 htab->table[idx].entry.data = strdup(item.data); 257 if (!htab->table[idx].entry.data) { 258 __set_errno(ENOMEM); 259 *retval = NULL; 260 return 0; 261 } 262 } 263 /* return found entry */ 264 *retval = &htab->table[idx].entry; 265 return idx; 266 } 267 /* keep searching */ 268 return -1; 269 } 270 271 int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval, 272 struct hsearch_data *htab, int flag) 273 { 274 unsigned int hval; 275 unsigned int count; 276 unsigned int len = strlen(item.key); 277 unsigned int idx; 278 unsigned int first_deleted = 0; 279 int ret; 280 281 /* Compute an value for the given string. Perhaps use a better method. */ 282 hval = len; 283 count = len; 284 while (count-- > 0) { 285 hval <<= 4; 286 hval += item.key[count]; 287 } 288 289 /* 290 * First hash function: 291 * simply take the modul but prevent zero. 292 */ 293 hval %= htab->size; 294 if (hval == 0) 295 ++hval; 296 297 /* The first index tried. */ 298 idx = hval; 299 300 if (htab->table[idx].used) { 301 /* 302 * Further action might be required according to the 303 * action value. 304 */ 305 unsigned hval2; 306 307 if (htab->table[idx].used == -1 308 && !first_deleted) 309 first_deleted = idx; 310 311 ret = _compare_and_overwrite_entry(item, action, retval, htab, 312 flag, hval, idx); 313 if (ret != -1) 314 return ret; 315 316 /* 317 * Second hash function: 318 * as suggested in [Knuth] 319 */ 320 hval2 = 1 + hval % (htab->size - 2); 321 322 do { 323 /* 324 * Because SIZE is prime this guarantees to 325 * step through all available indices. 326 */ 327 if (idx <= hval2) 328 idx = htab->size + idx - hval2; 329 else 330 idx -= hval2; 331 332 /* 333 * If we visited all entries leave the loop 334 * unsuccessfully. 335 */ 336 if (idx == hval) 337 break; 338 339 /* If entry is found use it. */ 340 ret = _compare_and_overwrite_entry(item, action, retval, 341 htab, flag, hval, idx); 342 if (ret != -1) 343 return ret; 344 } 345 while (htab->table[idx].used); 346 } 347 348 /* An empty bucket has been found. */ 349 if (action == ENTER) { 350 /* 351 * If table is full and another entry should be 352 * entered return with error. 353 */ 354 if (htab->filled == htab->size) { 355 __set_errno(ENOMEM); 356 *retval = NULL; 357 return 0; 358 } 359 360 /* 361 * Create new entry; 362 * create copies of item.key and item.data 363 */ 364 if (first_deleted) 365 idx = first_deleted; 366 367 htab->table[idx].used = hval; 368 htab->table[idx].entry.key = strdup(item.key); 369 htab->table[idx].entry.data = strdup(item.data); 370 if (!htab->table[idx].entry.key || 371 !htab->table[idx].entry.data) { 372 __set_errno(ENOMEM); 373 *retval = NULL; 374 return 0; 375 } 376 377 ++htab->filled; 378 379 /* This is a new entry, so look up a possible callback */ 380 env_callback_init(&htab->table[idx].entry); 381 /* Also look for flags */ 382 env_flags_init(&htab->table[idx].entry); 383 384 /* check for permission */ 385 if (htab->change_ok != NULL && htab->change_ok( 386 &htab->table[idx].entry, item.data, env_op_create, flag)) { 387 debug("change_ok() rejected setting variable " 388 "%s, skipping it!\n", item.key); 389 _hdelete(item.key, htab, &htab->table[idx].entry, idx); 390 __set_errno(EPERM); 391 *retval = NULL; 392 return 0; 393 } 394 395 /* If there is a callback, call it */ 396 if (htab->table[idx].entry.callback && 397 htab->table[idx].entry.callback(item.key, item.data, 398 env_op_create, flag)) { 399 debug("callback() rejected setting variable " 400 "%s, skipping it!\n", item.key); 401 _hdelete(item.key, htab, &htab->table[idx].entry, idx); 402 __set_errno(EINVAL); 403 *retval = NULL; 404 return 0; 405 } 406 407 /* return new entry */ 408 *retval = &htab->table[idx].entry; 409 return 1; 410 } 411 412 __set_errno(ESRCH); 413 *retval = NULL; 414 return 0; 415 } 416 417 418 /* 419 * hdelete() 420 */ 421 422 /* 423 * The standard implementation of hsearch(3) does not provide any way 424 * to delete any entries from the hash table. We extend the code to 425 * do that. 426 */ 427 428 static void _hdelete(const char *key, struct hsearch_data *htab, ENTRY *ep, 429 int idx) 430 { 431 /* free used ENTRY */ 432 debug("hdelete: DELETING key \"%s\"\n", key); 433 free((void *)ep->key); 434 free(ep->data); 435 ep->callback = NULL; 436 ep->flags = 0; 437 htab->table[idx].used = -1; 438 439 --htab->filled; 440 } 441 442 int hdelete_r(const char *key, struct hsearch_data *htab, int flag) 443 { 444 ENTRY e, *ep; 445 int idx; 446 447 debug("hdelete: DELETE key \"%s\"\n", key); 448 449 e.key = (char *)key; 450 451 idx = hsearch_r(e, FIND, &ep, htab, 0); 452 if (idx == 0) { 453 __set_errno(ESRCH); 454 return 0; /* not found */ 455 } 456 457 /* Check for permission */ 458 if (htab->change_ok != NULL && 459 htab->change_ok(ep, NULL, env_op_delete, flag)) { 460 debug("change_ok() rejected deleting variable " 461 "%s, skipping it!\n", key); 462 __set_errno(EPERM); 463 return 0; 464 } 465 466 /* If there is a callback, call it */ 467 if (htab->table[idx].entry.callback && 468 htab->table[idx].entry.callback(key, NULL, env_op_delete, flag)) { 469 debug("callback() rejected deleting variable " 470 "%s, skipping it!\n", key); 471 __set_errno(EINVAL); 472 return 0; 473 } 474 475 _hdelete(key, htab, ep, idx); 476 477 return 1; 478 } 479 480 #if !(defined(CONFIG_SPL_BUILD) && !defined(CONFIG_SPL_SAVEENV)) 481 /* 482 * hexport() 483 */ 484 485 /* 486 * Export the data stored in the hash table in linearized form. 487 * 488 * Entries are exported as "name=value" strings, separated by an 489 * arbitrary (non-NUL, of course) separator character. This allows to 490 * use this function both when formatting the U-Boot environment for 491 * external storage (using '\0' as separator), but also when using it 492 * for the "printenv" command to print all variables, simply by using 493 * as '\n" as separator. This can also be used for new features like 494 * exporting the environment data as text file, including the option 495 * for later re-import. 496 * 497 * The entries in the result list will be sorted by ascending key 498 * values. 499 * 500 * If the separator character is different from NUL, then any 501 * separator characters and backslash characters in the values will 502 * be escaped by a preceding backslash in output. This is needed for 503 * example to enable multi-line values, especially when the output 504 * shall later be parsed (for example, for re-import). 505 * 506 * There are several options how the result buffer is handled: 507 * 508 * *resp size 509 * ----------- 510 * NULL 0 A string of sufficient length will be allocated. 511 * NULL >0 A string of the size given will be 512 * allocated. An error will be returned if the size is 513 * not sufficient. Any unused bytes in the string will 514 * be '\0'-padded. 515 * !NULL 0 The user-supplied buffer will be used. No length 516 * checking will be performed, i. e. it is assumed that 517 * the buffer size will always be big enough. DANGEROUS. 518 * !NULL >0 The user-supplied buffer will be used. An error will 519 * be returned if the size is not sufficient. Any unused 520 * bytes in the string will be '\0'-padded. 521 */ 522 523 static int cmpkey(const void *p1, const void *p2) 524 { 525 ENTRY *e1 = *(ENTRY **) p1; 526 ENTRY *e2 = *(ENTRY **) p2; 527 528 return (strcmp(e1->key, e2->key)); 529 } 530 531 static int match_string(int flag, const char *str, const char *pat, void *priv) 532 { 533 switch (flag & H_MATCH_METHOD) { 534 case H_MATCH_IDENT: 535 if (strcmp(str, pat) == 0) 536 return 1; 537 break; 538 case H_MATCH_SUBSTR: 539 if (strstr(str, pat)) 540 return 1; 541 break; 542 #ifdef CONFIG_REGEX 543 case H_MATCH_REGEX: 544 { 545 struct slre *slrep = (struct slre *)priv; 546 struct cap caps[slrep->num_caps + 2]; 547 548 if (slre_match(slrep, str, strlen(str), caps)) 549 return 1; 550 } 551 break; 552 #endif 553 default: 554 printf("## ERROR: unsupported match method: 0x%02x\n", 555 flag & H_MATCH_METHOD); 556 break; 557 } 558 return 0; 559 } 560 561 static int match_entry(ENTRY *ep, int flag, 562 int argc, char * const argv[]) 563 { 564 int arg; 565 void *priv = NULL; 566 567 for (arg = 0; arg < argc; ++arg) { 568 #ifdef CONFIG_REGEX 569 struct slre slre; 570 571 if (slre_compile(&slre, argv[arg]) == 0) { 572 printf("Error compiling regex: %s\n", slre.err_str); 573 return 0; 574 } 575 576 priv = (void *)&slre; 577 #endif 578 if (flag & H_MATCH_KEY) { 579 if (match_string(flag, ep->key, argv[arg], priv)) 580 return 1; 581 } 582 if (flag & H_MATCH_DATA) { 583 if (match_string(flag, ep->data, argv[arg], priv)) 584 return 1; 585 } 586 } 587 return 0; 588 } 589 590 ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag, 591 char **resp, size_t size, 592 int argc, char * const argv[]) 593 { 594 ENTRY *list[htab->size]; 595 char *res, *p; 596 size_t totlen; 597 int i, n; 598 599 /* Test for correct arguments. */ 600 if ((resp == NULL) || (htab == NULL)) { 601 __set_errno(EINVAL); 602 return (-1); 603 } 604 605 debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, size = %lu\n", 606 htab, htab->size, htab->filled, (ulong)size); 607 /* 608 * Pass 1: 609 * search used entries, 610 * save addresses and compute total length 611 */ 612 for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) { 613 614 if (htab->table[i].used > 0) { 615 ENTRY *ep = &htab->table[i].entry; 616 int found = match_entry(ep, flag, argc, argv); 617 618 if ((argc > 0) && (found == 0)) 619 continue; 620 621 if ((flag & H_HIDE_DOT) && ep->key[0] == '.') 622 continue; 623 624 list[n++] = ep; 625 626 totlen += strlen(ep->key) + 2; 627 628 if (sep == '\0') { 629 totlen += strlen(ep->data); 630 } else { /* check if escapes are needed */ 631 char *s = ep->data; 632 633 while (*s) { 634 ++totlen; 635 /* add room for needed escape chars */ 636 if ((*s == sep) || (*s == '\\')) 637 ++totlen; 638 ++s; 639 } 640 } 641 totlen += 2; /* for '=' and 'sep' char */ 642 } 643 } 644 645 #ifdef DEBUG 646 /* Pass 1a: print unsorted list */ 647 printf("Unsorted: n=%d\n", n); 648 for (i = 0; i < n; ++i) { 649 printf("\t%3d: %p ==> %-10s => %s\n", 650 i, list[i], list[i]->key, list[i]->data); 651 } 652 #endif 653 654 /* Sort list by keys */ 655 qsort(list, n, sizeof(ENTRY *), cmpkey); 656 657 /* Check if the user supplied buffer size is sufficient */ 658 if (size) { 659 if (size < totlen + 1) { /* provided buffer too small */ 660 printf("Env export buffer too small: %lu, but need %lu\n", 661 (ulong)size, (ulong)totlen + 1); 662 __set_errno(ENOMEM); 663 return (-1); 664 } 665 } else { 666 size = totlen + 1; 667 } 668 669 /* Check if the user provided a buffer */ 670 if (*resp) { 671 /* yes; clear it */ 672 res = *resp; 673 memset(res, '\0', size); 674 } else { 675 /* no, allocate and clear one */ 676 *resp = res = calloc(1, size); 677 if (res == NULL) { 678 __set_errno(ENOMEM); 679 return (-1); 680 } 681 } 682 /* 683 * Pass 2: 684 * export sorted list of result data 685 */ 686 for (i = 0, p = res; i < n; ++i) { 687 const char *s; 688 689 s = list[i]->key; 690 while (*s) 691 *p++ = *s++; 692 *p++ = '='; 693 694 s = list[i]->data; 695 696 while (*s) { 697 if ((*s == sep) || (*s == '\\')) 698 *p++ = '\\'; /* escape */ 699 *p++ = *s++; 700 } 701 *p++ = sep; 702 } 703 *p = '\0'; /* terminate result */ 704 705 return size; 706 } 707 #endif 708 709 710 /* 711 * himport() 712 */ 713 714 /* 715 * Check whether variable 'name' is amongst vars[], 716 * and remove all instances by setting the pointer to NULL 717 */ 718 static int drop_var_from_set(const char *name, int nvars, char * vars[]) 719 { 720 int i = 0; 721 int res = 0; 722 723 /* No variables specified means process all of them */ 724 if (nvars == 0) 725 return 1; 726 727 for (i = 0; i < nvars; i++) { 728 if (vars[i] == NULL) 729 continue; 730 /* If we found it, delete all of them */ 731 if (!strcmp(name, vars[i])) { 732 vars[i] = NULL; 733 res = 1; 734 } 735 } 736 if (!res) 737 debug("Skipping non-listed variable %s\n", name); 738 739 return res; 740 } 741 742 /* 743 * Import linearized data into hash table. 744 * 745 * This is the inverse function to hexport(): it takes a linear list 746 * of "name=value" pairs and creates hash table entries from it. 747 * 748 * Entries without "value", i. e. consisting of only "name" or 749 * "name=", will cause this entry to be deleted from the hash table. 750 * 751 * The "flag" argument can be used to control the behaviour: when the 752 * H_NOCLEAR bit is set, then an existing hash table will kept, i. e. 753 * new data will be added to an existing hash table; otherwise, old 754 * data will be discarded and a new hash table will be created. 755 * 756 * The separator character for the "name=value" pairs can be selected, 757 * so we both support importing from externally stored environment 758 * data (separated by NUL characters) and from plain text files 759 * (entries separated by newline characters). 760 * 761 * To allow for nicely formatted text input, leading white space 762 * (sequences of SPACE and TAB chars) is ignored, and entries starting 763 * (after removal of any leading white space) with a '#' character are 764 * considered comments and ignored. 765 * 766 * [NOTE: this means that a variable name cannot start with a '#' 767 * character.] 768 * 769 * When using a non-NUL separator character, backslash is used as 770 * escape character in the value part, allowing for example for 771 * multi-line values. 772 * 773 * In theory, arbitrary separator characters can be used, but only 774 * '\0' and '\n' have really been tested. 775 */ 776 777 int himport_r(struct hsearch_data *htab, 778 const char *env, size_t size, const char sep, int flag, 779 int crlf_is_lf, int nvars, char * const vars[]) 780 { 781 char *data, *sp, *dp, *name, *value; 782 char *localvars[nvars]; 783 int i; 784 785 /* Test for correct arguments. */ 786 if (htab == NULL) { 787 __set_errno(EINVAL); 788 return 0; 789 } 790 791 /* we allocate new space to make sure we can write to the array */ 792 if ((data = malloc(size + 1)) == NULL) { 793 debug("himport_r: can't malloc %lu bytes\n", (ulong)size + 1); 794 __set_errno(ENOMEM); 795 return 0; 796 } 797 memcpy(data, env, size); 798 data[size] = '\0'; 799 dp = data; 800 801 /* make a local copy of the list of variables */ 802 if (nvars) 803 memcpy(localvars, vars, sizeof(vars[0]) * nvars); 804 805 if ((flag & H_NOCLEAR) == 0) { 806 /* Destroy old hash table if one exists */ 807 debug("Destroy Hash Table: %p table = %p\n", htab, 808 htab->table); 809 if (htab->table) 810 hdestroy_r(htab); 811 } 812 813 /* 814 * Create new hash table (if needed). The computation of the hash 815 * table size is based on heuristics: in a sample of some 70+ 816 * existing systems we found an average size of 39+ bytes per entry 817 * in the environment (for the whole key=value pair). Assuming a 818 * size of 8 per entry (= safety factor of ~5) should provide enough 819 * safety margin for any existing environment definitions and still 820 * allow for more than enough dynamic additions. Note that the 821 * "size" argument is supposed to give the maximum environment size 822 * (CONFIG_ENV_SIZE). This heuristics will result in 823 * unreasonably large numbers (and thus memory footprint) for 824 * big flash environments (>8,000 entries for 64 KB 825 * environment size), so we clip it to a reasonable value. 826 * On the other hand we need to add some more entries for free 827 * space when importing very small buffers. Both boundaries can 828 * be overwritten in the board config file if needed. 829 */ 830 831 if (!htab->table) { 832 int nent = CONFIG_ENV_MIN_ENTRIES + size / 8; 833 834 if (nent > CONFIG_ENV_MAX_ENTRIES) 835 nent = CONFIG_ENV_MAX_ENTRIES; 836 837 debug("Create Hash Table: N=%d\n", nent); 838 839 if (hcreate_r(nent, htab) == 0) { 840 free(data); 841 return 0; 842 } 843 } 844 845 if (!size) { 846 free(data); 847 return 1; /* everything OK */ 848 } 849 if(crlf_is_lf) { 850 /* Remove Carriage Returns in front of Line Feeds */ 851 unsigned ignored_crs = 0; 852 for(;dp < data + size && *dp; ++dp) { 853 if(*dp == '\r' && 854 dp < data + size - 1 && *(dp+1) == '\n') 855 ++ignored_crs; 856 else 857 *(dp-ignored_crs) = *dp; 858 } 859 size -= ignored_crs; 860 dp = data; 861 } 862 /* Parse environment; allow for '\0' and 'sep' as separators */ 863 do { 864 ENTRY e, *rv; 865 866 /* skip leading white space */ 867 while (isblank(*dp)) 868 ++dp; 869 870 /* skip comment lines */ 871 if (*dp == '#') { 872 while (*dp && (*dp != sep)) 873 ++dp; 874 ++dp; 875 continue; 876 } 877 878 /* parse name */ 879 for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp) 880 ; 881 882 /* deal with "name" and "name=" entries (delete var) */ 883 if (*dp == '\0' || *(dp + 1) == '\0' || 884 *dp == sep || *(dp + 1) == sep) { 885 if (*dp == '=') 886 *dp++ = '\0'; 887 *dp++ = '\0'; /* terminate name */ 888 889 debug("DELETE CANDIDATE: \"%s\"\n", name); 890 if (!drop_var_from_set(name, nvars, localvars)) 891 continue; 892 893 if (hdelete_r(name, htab, flag) == 0) 894 debug("DELETE ERROR ##############################\n"); 895 896 continue; 897 } 898 *dp++ = '\0'; /* terminate name */ 899 900 /* parse value; deal with escapes */ 901 for (value = sp = dp; *dp && (*dp != sep); ++dp) { 902 if ((*dp == '\\') && *(dp + 1)) 903 ++dp; 904 *sp++ = *dp; 905 } 906 *sp++ = '\0'; /* terminate value */ 907 ++dp; 908 909 if (*name == 0) { 910 debug("INSERT: unable to use an empty key\n"); 911 __set_errno(EINVAL); 912 free(data); 913 return 0; 914 } 915 916 /* Skip variables which are not supposed to be processed */ 917 if (!drop_var_from_set(name, nvars, localvars)) 918 continue; 919 920 /* enter into hash table */ 921 e.key = name; 922 e.data = value; 923 924 hsearch_r(e, ENTER, &rv, htab, flag); 925 if (rv == NULL) 926 printf("himport_r: can't insert \"%s=%s\" into hash table\n", 927 name, value); 928 929 debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n", 930 htab, htab->filled, htab->size, 931 rv, name, value); 932 } while ((dp < data + size) && *dp); /* size check needed for text */ 933 /* without '\0' termination */ 934 debug("INSERT: free(data = %p)\n", data); 935 free(data); 936 937 /* process variables which were not considered */ 938 for (i = 0; i < nvars; i++) { 939 if (localvars[i] == NULL) 940 continue; 941 /* 942 * All variables which were not deleted from the variable list 943 * were not present in the imported env 944 * This could mean two things: 945 * a) if the variable was present in current env, we delete it 946 * b) if the variable was not present in current env, we notify 947 * it might be a typo 948 */ 949 if (hdelete_r(localvars[i], htab, flag) == 0) 950 printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]); 951 else 952 printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]); 953 } 954 955 debug("INSERT: done\n"); 956 return 1; /* everything OK */ 957 } 958 959 /* 960 * hwalk_r() 961 */ 962 963 /* 964 * Walk all of the entries in the hash, calling the callback for each one. 965 * this allows some generic operation to be performed on each element. 966 */ 967 int hwalk_r(struct hsearch_data *htab, int (*callback)(ENTRY *)) 968 { 969 int i; 970 int retval; 971 972 for (i = 1; i <= htab->size; ++i) { 973 if (htab->table[i].used > 0) { 974 retval = callback(&htab->table[i].entry); 975 if (retval) 976 return retval; 977 } 978 } 979 980 return 0; 981 } 982