xref: /openbmc/u-boot/lib/hashtable.c (revision 849fc424)
1 /*
2  * This implementation is based on code from uClibc-0.9.30.3 but was
3  * modified and extended for use within U-Boot.
4  *
5  * Copyright (C) 2010 Wolfgang Denk <wd@denx.de>
6  *
7  * Original license header:
8  *
9  * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
10  * This file is part of the GNU C Library.
11  * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
12  *
13  * The GNU C Library is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU Lesser General Public
15  * License as published by the Free Software Foundation; either
16  * version 2.1 of the License, or (at your option) any later version.
17  *
18  * The GNU C Library is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
21  * Lesser General Public License for more details.
22  *
23  * You should have received a copy of the GNU Lesser General Public
24  * License along with the GNU C Library; if not, write to the Free
25  * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
26  * 02111-1307 USA.
27  */
28 
29 #include <errno.h>
30 #include <malloc.h>
31 
32 #ifdef USE_HOSTCC		/* HOST build */
33 # include <string.h>
34 # include <assert.h>
35 # include <ctype.h>
36 
37 # ifndef debug
38 #  ifdef DEBUG
39 #   define debug(fmt,args...)	printf(fmt ,##args)
40 #  else
41 #   define debug(fmt,args...)
42 #  endif
43 # endif
44 #else				/* U-Boot build */
45 # include <common.h>
46 # include <linux/string.h>
47 # include <linux/ctype.h>
48 #endif
49 
50 #ifndef	CONFIG_ENV_MIN_ENTRIES	/* minimum number of entries */
51 #define	CONFIG_ENV_MIN_ENTRIES 64
52 #endif
53 #ifndef	CONFIG_ENV_MAX_ENTRIES	/* maximum number of entries */
54 #define	CONFIG_ENV_MAX_ENTRIES 512
55 #endif
56 
57 #include "search.h"
58 
59 /*
60  * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
61  * [Knuth]	      The Art of Computer Programming, part 3 (6.4)
62  */
63 
64 /*
65  * The reentrant version has no static variables to maintain the state.
66  * Instead the interface of all functions is extended to take an argument
67  * which describes the current status.
68  */
69 typedef struct _ENTRY {
70 	int used;
71 	ENTRY entry;
72 } _ENTRY;
73 
74 
75 /*
76  * hcreate()
77  */
78 
79 /*
80  * For the used double hash method the table size has to be a prime. To
81  * correct the user given table size we need a prime test.  This trivial
82  * algorithm is adequate because
83  * a)  the code is (most probably) called a few times per program run and
84  * b)  the number is small because the table must fit in the core
85  * */
86 static int isprime(unsigned int number)
87 {
88 	/* no even number will be passed */
89 	unsigned int div = 3;
90 
91 	while (div * div < number && number % div != 0)
92 		div += 2;
93 
94 	return number % div != 0;
95 }
96 
97 /*
98  * Before using the hash table we must allocate memory for it.
99  * Test for an existing table are done. We allocate one element
100  * more as the found prime number says. This is done for more effective
101  * indexing as explained in the comment for the hsearch function.
102  * The contents of the table is zeroed, especially the field used
103  * becomes zero.
104  */
105 
106 int hcreate_r(size_t nel, struct hsearch_data *htab)
107 {
108 	/* Test for correct arguments.  */
109 	if (htab == NULL) {
110 		__set_errno(EINVAL);
111 		return 0;
112 	}
113 
114 	/* There is still another table active. Return with error. */
115 	if (htab->table != NULL)
116 		return 0;
117 
118 	/* Change nel to the first prime number not smaller as nel. */
119 	nel |= 1;		/* make odd */
120 	while (!isprime(nel))
121 		nel += 2;
122 
123 	htab->size = nel;
124 	htab->filled = 0;
125 
126 	/* allocate memory and zero out */
127 	htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY));
128 	if (htab->table == NULL)
129 		return 0;
130 
131 	/* everything went alright */
132 	return 1;
133 }
134 
135 
136 /*
137  * hdestroy()
138  */
139 
140 /*
141  * After using the hash table it has to be destroyed. The used memory can
142  * be freed and the local static variable can be marked as not used.
143  */
144 
145 void hdestroy_r(struct hsearch_data *htab, int do_apply)
146 {
147 	int i;
148 
149 	/* Test for correct arguments.  */
150 	if (htab == NULL) {
151 		__set_errno(EINVAL);
152 		return;
153 	}
154 
155 	/* free used memory */
156 	for (i = 1; i <= htab->size; ++i) {
157 		if (htab->table[i].used > 0) {
158 			ENTRY *ep = &htab->table[i].entry;
159 			if (do_apply && htab->apply != NULL) {
160 				/* deletion is always forced */
161 				htab->apply(ep->key, ep->data, NULL, H_FORCE);
162 			}
163 			free((void *)ep->key);
164 			free(ep->data);
165 		}
166 	}
167 	free(htab->table);
168 
169 	/* the sign for an existing table is an value != NULL in htable */
170 	htab->table = NULL;
171 }
172 
173 /*
174  * hsearch()
175  */
176 
177 /*
178  * This is the search function. It uses double hashing with open addressing.
179  * The argument item.key has to be a pointer to an zero terminated, most
180  * probably strings of chars. The function for generating a number of the
181  * strings is simple but fast. It can be replaced by a more complex function
182  * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
183  *
184  * We use an trick to speed up the lookup. The table is created by hcreate
185  * with one more element available. This enables us to use the index zero
186  * special. This index will never be used because we store the first hash
187  * index in the field used where zero means not used. Every other value
188  * means used. The used field can be used as a first fast comparison for
189  * equality of the stored and the parameter value. This helps to prevent
190  * unnecessary expensive calls of strcmp.
191  *
192  * This implementation differs from the standard library version of
193  * this function in a number of ways:
194  *
195  * - While the standard version does not make any assumptions about
196  *   the type of the stored data objects at all, this implementation
197  *   works with NUL terminated strings only.
198  * - Instead of storing just pointers to the original objects, we
199  *   create local copies so the caller does not need to care about the
200  *   data any more.
201  * - The standard implementation does not provide a way to update an
202  *   existing entry.  This version will create a new entry or update an
203  *   existing one when both "action == ENTER" and "item.data != NULL".
204  * - Instead of returning 1 on success, we return the index into the
205  *   internal hash table, which is also guaranteed to be positive.
206  *   This allows us direct access to the found hash table slot for
207  *   example for functions like hdelete().
208  */
209 
210 /*
211  * hstrstr_r - return index to entry whose key and/or data contains match
212  */
213 int hstrstr_r(const char *match, int last_idx, ENTRY ** retval,
214 	      struct hsearch_data *htab)
215 {
216 	unsigned int idx;
217 
218 	for (idx = last_idx + 1; idx < htab->size; ++idx) {
219 		if (htab->table[idx].used <= 0)
220 			continue;
221 		if (strstr(htab->table[idx].entry.key, match) ||
222 		    strstr(htab->table[idx].entry.data, match)) {
223 			*retval = &htab->table[idx].entry;
224 			return idx;
225 		}
226 	}
227 
228 	__set_errno(ESRCH);
229 	*retval = NULL;
230 	return 0;
231 }
232 
233 int hmatch_r(const char *match, int last_idx, ENTRY ** retval,
234 	     struct hsearch_data *htab)
235 {
236 	unsigned int idx;
237 	size_t key_len = strlen(match);
238 
239 	for (idx = last_idx + 1; idx < htab->size; ++idx) {
240 		if (htab->table[idx].used <= 0)
241 			continue;
242 		if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
243 			*retval = &htab->table[idx].entry;
244 			return idx;
245 		}
246 	}
247 
248 	__set_errno(ESRCH);
249 	*retval = NULL;
250 	return 0;
251 }
252 
253 int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval,
254 	      struct hsearch_data *htab)
255 {
256 	unsigned int hval;
257 	unsigned int count;
258 	unsigned int len = strlen(item.key);
259 	unsigned int idx;
260 	unsigned int first_deleted = 0;
261 
262 	/* Compute an value for the given string. Perhaps use a better method. */
263 	hval = len;
264 	count = len;
265 	while (count-- > 0) {
266 		hval <<= 4;
267 		hval += item.key[count];
268 	}
269 
270 	/*
271 	 * First hash function:
272 	 * simply take the modul but prevent zero.
273 	 */
274 	hval %= htab->size;
275 	if (hval == 0)
276 		++hval;
277 
278 	/* The first index tried. */
279 	idx = hval;
280 
281 	if (htab->table[idx].used) {
282 		/*
283 		 * Further action might be required according to the
284 		 * action value.
285 		 */
286 		unsigned hval2;
287 
288 		if (htab->table[idx].used == -1
289 		    && !first_deleted)
290 			first_deleted = idx;
291 
292 		if (htab->table[idx].used == hval
293 		    && strcmp(item.key, htab->table[idx].entry.key) == 0) {
294 			/* Overwrite existing value? */
295 			if ((action == ENTER) && (item.data != NULL)) {
296 				free(htab->table[idx].entry.data);
297 				htab->table[idx].entry.data =
298 					strdup(item.data);
299 				if (!htab->table[idx].entry.data) {
300 					__set_errno(ENOMEM);
301 					*retval = NULL;
302 					return 0;
303 				}
304 			}
305 			/* return found entry */
306 			*retval = &htab->table[idx].entry;
307 			return idx;
308 		}
309 
310 		/*
311 		 * Second hash function:
312 		 * as suggested in [Knuth]
313 		 */
314 		hval2 = 1 + hval % (htab->size - 2);
315 
316 		do {
317 			/*
318 			 * Because SIZE is prime this guarantees to
319 			 * step through all available indices.
320 			 */
321 			if (idx <= hval2)
322 				idx = htab->size + idx - hval2;
323 			else
324 				idx -= hval2;
325 
326 			/*
327 			 * If we visited all entries leave the loop
328 			 * unsuccessfully.
329 			 */
330 			if (idx == hval)
331 				break;
332 
333 			/* If entry is found use it. */
334 			if ((htab->table[idx].used == hval)
335 			    && strcmp(item.key, htab->table[idx].entry.key) == 0) {
336 				/* Overwrite existing value? */
337 				if ((action == ENTER) && (item.data != NULL)) {
338 					free(htab->table[idx].entry.data);
339 					htab->table[idx].entry.data =
340 						strdup(item.data);
341 					if (!htab->table[idx].entry.data) {
342 						__set_errno(ENOMEM);
343 						*retval = NULL;
344 						return 0;
345 					}
346 				}
347 				/* return found entry */
348 				*retval = &htab->table[idx].entry;
349 				return idx;
350 			}
351 		}
352 		while (htab->table[idx].used);
353 	}
354 
355 	/* An empty bucket has been found. */
356 	if (action == ENTER) {
357 		/*
358 		 * If table is full and another entry should be
359 		 * entered return with error.
360 		 */
361 		if (htab->filled == htab->size) {
362 			__set_errno(ENOMEM);
363 			*retval = NULL;
364 			return 0;
365 		}
366 
367 		/*
368 		 * Create new entry;
369 		 * create copies of item.key and item.data
370 		 */
371 		if (first_deleted)
372 			idx = first_deleted;
373 
374 		htab->table[idx].used = hval;
375 		htab->table[idx].entry.key = strdup(item.key);
376 		htab->table[idx].entry.data = strdup(item.data);
377 		if (!htab->table[idx].entry.key ||
378 		    !htab->table[idx].entry.data) {
379 			__set_errno(ENOMEM);
380 			*retval = NULL;
381 			return 0;
382 		}
383 
384 		++htab->filled;
385 
386 		/* return new entry */
387 		*retval = &htab->table[idx].entry;
388 		return 1;
389 	}
390 
391 	__set_errno(ESRCH);
392 	*retval = NULL;
393 	return 0;
394 }
395 
396 
397 /*
398  * hdelete()
399  */
400 
401 /*
402  * The standard implementation of hsearch(3) does not provide any way
403  * to delete any entries from the hash table.  We extend the code to
404  * do that.
405  */
406 
407 int hdelete_r(const char *key, struct hsearch_data *htab, int do_apply)
408 {
409 	ENTRY e, *ep;
410 	int idx;
411 
412 	debug("hdelete: DELETE key \"%s\"\n", key);
413 
414 	e.key = (char *)key;
415 
416 	if ((idx = hsearch_r(e, FIND, &ep, htab)) == 0) {
417 		__set_errno(ESRCH);
418 		return 0;	/* not found */
419 	}
420 
421 	/* free used ENTRY */
422 	debug("hdelete: DELETING key \"%s\"\n", key);
423 	if (do_apply && htab->apply != NULL)
424 		htab->apply(ep->key, ep->data, NULL, H_FORCE);
425 	free((void *)ep->key);
426 	free(ep->data);
427 	htab->table[idx].used = -1;
428 
429 	--htab->filled;
430 
431 	return 1;
432 }
433 
434 /*
435  * hexport()
436  */
437 
438 /*
439  * Export the data stored in the hash table in linearized form.
440  *
441  * Entries are exported as "name=value" strings, separated by an
442  * arbitrary (non-NUL, of course) separator character. This allows to
443  * use this function both when formatting the U-Boot environment for
444  * external storage (using '\0' as separator), but also when using it
445  * for the "printenv" command to print all variables, simply by using
446  * as '\n" as separator. This can also be used for new features like
447  * exporting the environment data as text file, including the option
448  * for later re-import.
449  *
450  * The entries in the result list will be sorted by ascending key
451  * values.
452  *
453  * If the separator character is different from NUL, then any
454  * separator characters and backslash characters in the values will
455  * be escaped by a preceeding backslash in output. This is needed for
456  * example to enable multi-line values, especially when the output
457  * shall later be parsed (for example, for re-import).
458  *
459  * There are several options how the result buffer is handled:
460  *
461  * *resp  size
462  * -----------
463  *  NULL    0	A string of sufficient length will be allocated.
464  *  NULL   >0	A string of the size given will be
465  *		allocated. An error will be returned if the size is
466  *		not sufficient.  Any unused bytes in the string will
467  *		be '\0'-padded.
468  * !NULL    0	The user-supplied buffer will be used. No length
469  *		checking will be performed, i. e. it is assumed that
470  *		the buffer size will always be big enough. DANGEROUS.
471  * !NULL   >0	The user-supplied buffer will be used. An error will
472  *		be returned if the size is not sufficient.  Any unused
473  *		bytes in the string will be '\0'-padded.
474  */
475 
476 static int cmpkey(const void *p1, const void *p2)
477 {
478 	ENTRY *e1 = *(ENTRY **) p1;
479 	ENTRY *e2 = *(ENTRY **) p2;
480 
481 	return (strcmp(e1->key, e2->key));
482 }
483 
484 ssize_t hexport_r(struct hsearch_data *htab, const char sep,
485 		 char **resp, size_t size,
486 		 int argc, char * const argv[])
487 {
488 	ENTRY *list[htab->size];
489 	char *res, *p;
490 	size_t totlen;
491 	int i, n;
492 
493 	/* Test for correct arguments.  */
494 	if ((resp == NULL) || (htab == NULL)) {
495 		__set_errno(EINVAL);
496 		return (-1);
497 	}
498 
499 	debug("EXPORT  table = %p, htab.size = %d, htab.filled = %d, "
500 		"size = %zu\n", htab, htab->size, htab->filled, size);
501 	/*
502 	 * Pass 1:
503 	 * search used entries,
504 	 * save addresses and compute total length
505 	 */
506 	for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
507 
508 		if (htab->table[i].used > 0) {
509 			ENTRY *ep = &htab->table[i].entry;
510 			int arg, found = 0;
511 
512 			for (arg = 0; arg < argc; ++arg) {
513 				if (strcmp(argv[arg], ep->key) == 0) {
514 					found = 1;
515 					break;
516 				}
517 			}
518 			if ((argc > 0) && (found == 0))
519 				continue;
520 
521 			list[n++] = ep;
522 
523 			totlen += strlen(ep->key) + 2;
524 
525 			if (sep == '\0') {
526 				totlen += strlen(ep->data);
527 			} else {	/* check if escapes are needed */
528 				char *s = ep->data;
529 
530 				while (*s) {
531 					++totlen;
532 					/* add room for needed escape chars */
533 					if ((*s == sep) || (*s == '\\'))
534 						++totlen;
535 					++s;
536 				}
537 			}
538 			totlen += 2;	/* for '=' and 'sep' char */
539 		}
540 	}
541 
542 #ifdef DEBUG
543 	/* Pass 1a: print unsorted list */
544 	printf("Unsorted: n=%d\n", n);
545 	for (i = 0; i < n; ++i) {
546 		printf("\t%3d: %p ==> %-10s => %s\n",
547 		       i, list[i], list[i]->key, list[i]->data);
548 	}
549 #endif
550 
551 	/* Sort list by keys */
552 	qsort(list, n, sizeof(ENTRY *), cmpkey);
553 
554 	/* Check if the user supplied buffer size is sufficient */
555 	if (size) {
556 		if (size < totlen + 1) {	/* provided buffer too small */
557 			printf("Env export buffer too small: %zu, "
558 				"but need %zu\n", size, totlen + 1);
559 			__set_errno(ENOMEM);
560 			return (-1);
561 		}
562 	} else {
563 		size = totlen + 1;
564 	}
565 
566 	/* Check if the user provided a buffer */
567 	if (*resp) {
568 		/* yes; clear it */
569 		res = *resp;
570 		memset(res, '\0', size);
571 	} else {
572 		/* no, allocate and clear one */
573 		*resp = res = calloc(1, size);
574 		if (res == NULL) {
575 			__set_errno(ENOMEM);
576 			return (-1);
577 		}
578 	}
579 	/*
580 	 * Pass 2:
581 	 * export sorted list of result data
582 	 */
583 	for (i = 0, p = res; i < n; ++i) {
584 		const char *s;
585 
586 		s = list[i]->key;
587 		while (*s)
588 			*p++ = *s++;
589 		*p++ = '=';
590 
591 		s = list[i]->data;
592 
593 		while (*s) {
594 			if ((*s == sep) || (*s == '\\'))
595 				*p++ = '\\';	/* escape */
596 			*p++ = *s++;
597 		}
598 		*p++ = sep;
599 	}
600 	*p = '\0';		/* terminate result */
601 
602 	return size;
603 }
604 
605 
606 /*
607  * himport()
608  */
609 
610 /*
611  * Check whether variable 'name' is amongst vars[],
612  * and remove all instances by setting the pointer to NULL
613  */
614 static int drop_var_from_set(const char *name, int nvars, char * vars[])
615 {
616 	int i = 0;
617 	int res = 0;
618 
619 	/* No variables specified means process all of them */
620 	if (nvars == 0)
621 		return 1;
622 
623 	for (i = 0; i < nvars; i++) {
624 		if (vars[i] == NULL)
625 			continue;
626 		/* If we found it, delete all of them */
627 		if (!strcmp(name, vars[i])) {
628 			vars[i] = NULL;
629 			res = 1;
630 		}
631 	}
632 	if (!res)
633 		debug("Skipping non-listed variable %s\n", name);
634 
635 	return res;
636 }
637 
638 /*
639  * Import linearized data into hash table.
640  *
641  * This is the inverse function to hexport(): it takes a linear list
642  * of "name=value" pairs and creates hash table entries from it.
643  *
644  * Entries without "value", i. e. consisting of only "name" or
645  * "name=", will cause this entry to be deleted from the hash table.
646  *
647  * The "flag" argument can be used to control the behaviour: when the
648  * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
649  * new data will be added to an existing hash table; otherwise, old
650  * data will be discarded and a new hash table will be created.
651  *
652  * The separator character for the "name=value" pairs can be selected,
653  * so we both support importing from externally stored environment
654  * data (separated by NUL characters) and from plain text files
655  * (entries separated by newline characters).
656  *
657  * To allow for nicely formatted text input, leading white space
658  * (sequences of SPACE and TAB chars) is ignored, and entries starting
659  * (after removal of any leading white space) with a '#' character are
660  * considered comments and ignored.
661  *
662  * [NOTE: this means that a variable name cannot start with a '#'
663  * character.]
664  *
665  * When using a non-NUL separator character, backslash is used as
666  * escape character in the value part, allowing for example for
667  * multi-line values.
668  *
669  * In theory, arbitrary separator characters can be used, but only
670  * '\0' and '\n' have really been tested.
671  */
672 
673 int himport_r(struct hsearch_data *htab,
674 		const char *env, size_t size, const char sep, int flag,
675 		int nvars, char * const vars[], int do_apply)
676 {
677 	char *data, *sp, *dp, *name, *value;
678 	char *localvars[nvars];
679 	int i;
680 
681 	/* Test for correct arguments.  */
682 	if (htab == NULL) {
683 		__set_errno(EINVAL);
684 		return 0;
685 	}
686 
687 	/* we allocate new space to make sure we can write to the array */
688 	if ((data = malloc(size)) == NULL) {
689 		debug("himport_r: can't malloc %zu bytes\n", size);
690 		__set_errno(ENOMEM);
691 		return 0;
692 	}
693 	memcpy(data, env, size);
694 	dp = data;
695 
696 	/* make a local copy of the list of variables */
697 	if (nvars)
698 		memcpy(localvars, vars, sizeof(vars[0]) * nvars);
699 
700 	if ((flag & H_NOCLEAR) == 0) {
701 		/* Destroy old hash table if one exists */
702 		debug("Destroy Hash Table: %p table = %p\n", htab,
703 		       htab->table);
704 		if (htab->table)
705 			hdestroy_r(htab, do_apply);
706 	}
707 
708 	/*
709 	 * Create new hash table (if needed).  The computation of the hash
710 	 * table size is based on heuristics: in a sample of some 70+
711 	 * existing systems we found an average size of 39+ bytes per entry
712 	 * in the environment (for the whole key=value pair). Assuming a
713 	 * size of 8 per entry (= safety factor of ~5) should provide enough
714 	 * safety margin for any existing environment definitions and still
715 	 * allow for more than enough dynamic additions. Note that the
716 	 * "size" argument is supposed to give the maximum enviroment size
717 	 * (CONFIG_ENV_SIZE).  This heuristics will result in
718 	 * unreasonably large numbers (and thus memory footprint) for
719 	 * big flash environments (>8,000 entries for 64 KB
720 	 * envrionment size), so we clip it to a reasonable value.
721 	 * On the other hand we need to add some more entries for free
722 	 * space when importing very small buffers. Both boundaries can
723 	 * be overwritten in the board config file if needed.
724 	 */
725 
726 	if (!htab->table) {
727 		int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
728 
729 		if (nent > CONFIG_ENV_MAX_ENTRIES)
730 			nent = CONFIG_ENV_MAX_ENTRIES;
731 
732 		debug("Create Hash Table: N=%d\n", nent);
733 
734 		if (hcreate_r(nent, htab) == 0) {
735 			free(data);
736 			return 0;
737 		}
738 	}
739 
740 	/* Parse environment; allow for '\0' and 'sep' as separators */
741 	do {
742 		ENTRY e, *rv;
743 
744 		/* skip leading white space */
745 		while (isblank(*dp))
746 			++dp;
747 
748 		/* skip comment lines */
749 		if (*dp == '#') {
750 			while (*dp && (*dp != sep))
751 				++dp;
752 			++dp;
753 			continue;
754 		}
755 
756 		/* parse name */
757 		for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
758 			;
759 
760 		/* deal with "name" and "name=" entries (delete var) */
761 		if (*dp == '\0' || *(dp + 1) == '\0' ||
762 		    *dp == sep || *(dp + 1) == sep) {
763 			if (*dp == '=')
764 				*dp++ = '\0';
765 			*dp++ = '\0';	/* terminate name */
766 
767 			debug("DELETE CANDIDATE: \"%s\"\n", name);
768 			if (!drop_var_from_set(name, nvars, localvars))
769 				continue;
770 
771 			if (hdelete_r(name, htab, do_apply) == 0)
772 				debug("DELETE ERROR ##############################\n");
773 
774 			continue;
775 		}
776 		*dp++ = '\0';	/* terminate name */
777 
778 		/* parse value; deal with escapes */
779 		for (value = sp = dp; *dp && (*dp != sep); ++dp) {
780 			if ((*dp == '\\') && *(dp + 1))
781 				++dp;
782 			*sp++ = *dp;
783 		}
784 		*sp++ = '\0';	/* terminate value */
785 		++dp;
786 
787 		/* Skip variables which are not supposed to be processed */
788 		if (!drop_var_from_set(name, nvars, localvars))
789 			continue;
790 
791 		/* enter into hash table */
792 		e.key = name;
793 		e.data = value;
794 
795 		/* if there is an apply function, check what it has to say */
796 		if (do_apply && htab->apply != NULL) {
797 			debug("searching before calling cb function"
798 				" for  %s\n", name);
799 			/*
800 			 * Search for variable in existing env, so to pass
801 			 * its previous value to the apply callback
802 			 */
803 			hsearch_r(e, FIND, &rv, htab);
804 			debug("previous value was %s\n", rv ? rv->data : "");
805 			if (htab->apply(name, rv ? rv->data : NULL,
806 				value, flag)) {
807 				debug("callback function refused to set"
808 					" variable %s, skipping it!\n", name);
809 				continue;
810 			}
811 		}
812 
813 		hsearch_r(e, ENTER, &rv, htab);
814 		if (rv == NULL) {
815 			printf("himport_r: can't insert \"%s=%s\" into hash table\n",
816 				name, value);
817 			return 0;
818 		}
819 
820 		debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
821 			htab, htab->filled, htab->size,
822 			rv, name, value);
823 	} while ((dp < data + size) && *dp);	/* size check needed for text */
824 						/* without '\0' termination */
825 	debug("INSERT: free(data = %p)\n", data);
826 	free(data);
827 
828 	/* process variables which were not considered */
829 	for (i = 0; i < nvars; i++) {
830 		if (localvars[i] == NULL)
831 			continue;
832 		/*
833 		 * All variables which were not deleted from the variable list
834 		 * were not present in the imported env
835 		 * This could mean two things:
836 		 * a) if the variable was present in current env, we delete it
837 		 * b) if the variable was not present in current env, we notify
838 		 *    it might be a typo
839 		 */
840 		if (hdelete_r(localvars[i], htab, do_apply) == 0)
841 			printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]);
842 		else
843 			printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]);
844 	}
845 
846 	debug("INSERT: done\n");
847 	return 1;		/* everything OK */
848 }
849