1 /* 2 * This implementation is based on code from uClibc-0.9.30.3 but was 3 * modified and extended for use within U-Boot. 4 * 5 * Copyright (C) 2010 Wolfgang Denk <wd@denx.de> 6 * 7 * Original license header: 8 * 9 * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc. 10 * This file is part of the GNU C Library. 11 * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993. 12 * 13 * The GNU C Library is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU Lesser General Public 15 * License as published by the Free Software Foundation; either 16 * version 2.1 of the License, or (at your option) any later version. 17 * 18 * The GNU C Library is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * Lesser General Public License for more details. 22 * 23 * You should have received a copy of the GNU Lesser General Public 24 * License along with the GNU C Library; if not, write to the Free 25 * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 26 * 02111-1307 USA. 27 */ 28 29 #include <errno.h> 30 #include <malloc.h> 31 32 #ifdef USE_HOSTCC /* HOST build */ 33 # include <string.h> 34 # include <assert.h> 35 36 # ifndef debug 37 # ifdef DEBUG 38 # define debug(fmt,args...) printf(fmt ,##args) 39 # else 40 # define debug(fmt,args...) 41 # endif 42 # endif 43 #else /* U-Boot build */ 44 # include <common.h> 45 # include <linux/string.h> 46 #endif 47 48 #ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */ 49 #define CONFIG_ENV_MIN_ENTRIES 64 50 #endif 51 #ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */ 52 #define CONFIG_ENV_MAX_ENTRIES 512 53 #endif 54 55 #include "search.h" 56 57 /* 58 * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986 59 * [Knuth] The Art of Computer Programming, part 3 (6.4) 60 */ 61 62 /* 63 * The reentrant version has no static variables to maintain the state. 64 * Instead the interface of all functions is extended to take an argument 65 * which describes the current status. 66 */ 67 typedef struct _ENTRY { 68 int used; 69 ENTRY entry; 70 } _ENTRY; 71 72 73 /* 74 * hcreate() 75 */ 76 77 /* 78 * For the used double hash method the table size has to be a prime. To 79 * correct the user given table size we need a prime test. This trivial 80 * algorithm is adequate because 81 * a) the code is (most probably) called a few times per program run and 82 * b) the number is small because the table must fit in the core 83 * */ 84 static int isprime(unsigned int number) 85 { 86 /* no even number will be passed */ 87 unsigned int div = 3; 88 89 while (div * div < number && number % div != 0) 90 div += 2; 91 92 return number % div != 0; 93 } 94 95 /* 96 * Before using the hash table we must allocate memory for it. 97 * Test for an existing table are done. We allocate one element 98 * more as the found prime number says. This is done for more effective 99 * indexing as explained in the comment for the hsearch function. 100 * The contents of the table is zeroed, especially the field used 101 * becomes zero. 102 */ 103 104 int hcreate_r(size_t nel, struct hsearch_data *htab) 105 { 106 /* Test for correct arguments. */ 107 if (htab == NULL) { 108 __set_errno(EINVAL); 109 return 0; 110 } 111 112 /* There is still another table active. Return with error. */ 113 if (htab->table != NULL) 114 return 0; 115 116 /* Change nel to the first prime number not smaller as nel. */ 117 nel |= 1; /* make odd */ 118 while (!isprime(nel)) 119 nel += 2; 120 121 htab->size = nel; 122 htab->filled = 0; 123 124 /* allocate memory and zero out */ 125 htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY)); 126 if (htab->table == NULL) 127 return 0; 128 129 /* everything went alright */ 130 return 1; 131 } 132 133 134 /* 135 * hdestroy() 136 */ 137 138 /* 139 * After using the hash table it has to be destroyed. The used memory can 140 * be freed and the local static variable can be marked as not used. 141 */ 142 143 void hdestroy_r(struct hsearch_data *htab) 144 { 145 int i; 146 147 /* Test for correct arguments. */ 148 if (htab == NULL) { 149 __set_errno(EINVAL); 150 return; 151 } 152 153 /* free used memory */ 154 for (i = 1; i <= htab->size; ++i) { 155 if (htab->table[i].used > 0) { 156 ENTRY *ep = &htab->table[i].entry; 157 158 free(ep->key); 159 free(ep->data); 160 } 161 } 162 free(htab->table); 163 164 /* the sign for an existing table is an value != NULL in htable */ 165 htab->table = NULL; 166 } 167 168 /* 169 * hsearch() 170 */ 171 172 /* 173 * This is the search function. It uses double hashing with open addressing. 174 * The argument item.key has to be a pointer to an zero terminated, most 175 * probably strings of chars. The function for generating a number of the 176 * strings is simple but fast. It can be replaced by a more complex function 177 * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown. 178 * 179 * We use an trick to speed up the lookup. The table is created by hcreate 180 * with one more element available. This enables us to use the index zero 181 * special. This index will never be used because we store the first hash 182 * index in the field used where zero means not used. Every other value 183 * means used. The used field can be used as a first fast comparison for 184 * equality of the stored and the parameter value. This helps to prevent 185 * unnecessary expensive calls of strcmp. 186 * 187 * This implementation differs from the standard library version of 188 * this function in a number of ways: 189 * 190 * - While the standard version does not make any assumptions about 191 * the type of the stored data objects at all, this implementation 192 * works with NUL terminated strings only. 193 * - Instead of storing just pointers to the original objects, we 194 * create local copies so the caller does not need to care about the 195 * data any more. 196 * - The standard implementation does not provide a way to update an 197 * existing entry. This version will create a new entry or update an 198 * existing one when both "action == ENTER" and "item.data != NULL". 199 * - Instead of returning 1 on success, we return the index into the 200 * internal hash table, which is also guaranteed to be positive. 201 * This allows us direct access to the found hash table slot for 202 * example for functions like hdelete(). 203 */ 204 205 /* 206 * hstrstr_r - return index to entry whose key and/or data contains match 207 */ 208 int hstrstr_r(const char *match, int last_idx, ENTRY ** retval, 209 struct hsearch_data *htab) 210 { 211 unsigned int idx; 212 213 for (idx = last_idx + 1; idx < htab->size; ++idx) { 214 if (htab->table[idx].used <= 0) 215 continue; 216 if (strstr(htab->table[idx].entry.key, match) || 217 strstr(htab->table[idx].entry.data, match)) { 218 *retval = &htab->table[idx].entry; 219 return idx; 220 } 221 } 222 223 __set_errno(ESRCH); 224 *retval = NULL; 225 return 0; 226 } 227 228 int hmatch_r(const char *match, int last_idx, ENTRY ** retval, 229 struct hsearch_data *htab) 230 { 231 unsigned int idx; 232 size_t key_len = strlen(match); 233 234 for (idx = last_idx + 1; idx < htab->size; ++idx) { 235 if (htab->table[idx].used <= 0) 236 continue; 237 if (!strncmp(match, htab->table[idx].entry.key, key_len)) { 238 *retval = &htab->table[idx].entry; 239 return idx; 240 } 241 } 242 243 __set_errno(ESRCH); 244 *retval = NULL; 245 return 0; 246 } 247 248 int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval, 249 struct hsearch_data *htab) 250 { 251 unsigned int hval; 252 unsigned int count; 253 unsigned int len = strlen(item.key); 254 unsigned int idx; 255 unsigned int first_deleted = 0; 256 257 /* Compute an value for the given string. Perhaps use a better method. */ 258 hval = len; 259 count = len; 260 while (count-- > 0) { 261 hval <<= 4; 262 hval += item.key[count]; 263 } 264 265 /* 266 * First hash function: 267 * simply take the modul but prevent zero. 268 */ 269 hval %= htab->size; 270 if (hval == 0) 271 ++hval; 272 273 /* The first index tried. */ 274 idx = hval; 275 276 if (htab->table[idx].used) { 277 /* 278 * Further action might be required according to the 279 * action value. 280 */ 281 unsigned hval2; 282 283 if (htab->table[idx].used == -1 284 && !first_deleted) 285 first_deleted = idx; 286 287 if (htab->table[idx].used == hval 288 && strcmp(item.key, htab->table[idx].entry.key) == 0) { 289 /* Overwrite existing value? */ 290 if ((action == ENTER) && (item.data != NULL)) { 291 free(htab->table[idx].entry.data); 292 htab->table[idx].entry.data = 293 strdup(item.data); 294 if (!htab->table[idx].entry.data) { 295 __set_errno(ENOMEM); 296 *retval = NULL; 297 return 0; 298 } 299 } 300 /* return found entry */ 301 *retval = &htab->table[idx].entry; 302 return idx; 303 } 304 305 /* 306 * Second hash function: 307 * as suggested in [Knuth] 308 */ 309 hval2 = 1 + hval % (htab->size - 2); 310 311 do { 312 /* 313 * Because SIZE is prime this guarantees to 314 * step through all available indices. 315 */ 316 if (idx <= hval2) 317 idx = htab->size + idx - hval2; 318 else 319 idx -= hval2; 320 321 /* 322 * If we visited all entries leave the loop 323 * unsuccessfully. 324 */ 325 if (idx == hval) 326 break; 327 328 /* If entry is found use it. */ 329 if ((htab->table[idx].used == hval) 330 && strcmp(item.key, htab->table[idx].entry.key) == 0) { 331 /* Overwrite existing value? */ 332 if ((action == ENTER) && (item.data != NULL)) { 333 free(htab->table[idx].entry.data); 334 htab->table[idx].entry.data = 335 strdup(item.data); 336 if (!htab->table[idx].entry.data) { 337 __set_errno(ENOMEM); 338 *retval = NULL; 339 return 0; 340 } 341 } 342 /* return found entry */ 343 *retval = &htab->table[idx].entry; 344 return idx; 345 } 346 } 347 while (htab->table[idx].used); 348 } 349 350 /* An empty bucket has been found. */ 351 if (action == ENTER) { 352 /* 353 * If table is full and another entry should be 354 * entered return with error. 355 */ 356 if (htab->filled == htab->size) { 357 __set_errno(ENOMEM); 358 *retval = NULL; 359 return 0; 360 } 361 362 /* 363 * Create new entry; 364 * create copies of item.key and item.data 365 */ 366 if (first_deleted) 367 idx = first_deleted; 368 369 htab->table[idx].used = hval; 370 htab->table[idx].entry.key = strdup(item.key); 371 htab->table[idx].entry.data = strdup(item.data); 372 if (!htab->table[idx].entry.key || 373 !htab->table[idx].entry.data) { 374 __set_errno(ENOMEM); 375 *retval = NULL; 376 return 0; 377 } 378 379 ++htab->filled; 380 381 /* return new entry */ 382 *retval = &htab->table[idx].entry; 383 return 1; 384 } 385 386 __set_errno(ESRCH); 387 *retval = NULL; 388 return 0; 389 } 390 391 392 /* 393 * hdelete() 394 */ 395 396 /* 397 * The standard implementation of hsearch(3) does not provide any way 398 * to delete any entries from the hash table. We extend the code to 399 * do that. 400 */ 401 402 int hdelete_r(const char *key, struct hsearch_data *htab) 403 { 404 ENTRY e, *ep; 405 int idx; 406 407 debug("hdelete: DELETE key \"%s\"\n", key); 408 409 e.key = (char *)key; 410 411 if ((idx = hsearch_r(e, FIND, &ep, htab)) == 0) { 412 __set_errno(ESRCH); 413 return 0; /* not found */ 414 } 415 416 /* free used ENTRY */ 417 debug("hdelete: DELETING key \"%s\"\n", key); 418 419 free(ep->key); 420 free(ep->data); 421 htab->table[idx].used = -1; 422 423 --htab->filled; 424 425 return 1; 426 } 427 428 /* 429 * hexport() 430 */ 431 432 /* 433 * Export the data stored in the hash table in linearized form. 434 * 435 * Entries are exported as "name=value" strings, separated by an 436 * arbitrary (non-NUL, of course) separator character. This allows to 437 * use this function both when formatting the U-Boot environment for 438 * external storage (using '\0' as separator), but also when using it 439 * for the "printenv" command to print all variables, simply by using 440 * as '\n" as separator. This can also be used for new features like 441 * exporting the environment data as text file, including the option 442 * for later re-import. 443 * 444 * The entries in the result list will be sorted by ascending key 445 * values. 446 * 447 * If the separator character is different from NUL, then any 448 * separator characters and backslash characters in the values will 449 * be escaped by a preceeding backslash in output. This is needed for 450 * example to enable multi-line values, especially when the output 451 * shall later be parsed (for example, for re-import). 452 * 453 * There are several options how the result buffer is handled: 454 * 455 * *resp size 456 * ----------- 457 * NULL 0 A string of sufficient length will be allocated. 458 * NULL >0 A string of the size given will be 459 * allocated. An error will be returned if the size is 460 * not sufficient. Any unused bytes in the string will 461 * be '\0'-padded. 462 * !NULL 0 The user-supplied buffer will be used. No length 463 * checking will be performed, i. e. it is assumed that 464 * the buffer size will always be big enough. DANGEROUS. 465 * !NULL >0 The user-supplied buffer will be used. An error will 466 * be returned if the size is not sufficient. Any unused 467 * bytes in the string will be '\0'-padded. 468 */ 469 470 static int cmpkey(const void *p1, const void *p2) 471 { 472 ENTRY *e1 = *(ENTRY **) p1; 473 ENTRY *e2 = *(ENTRY **) p2; 474 475 return (strcmp(e1->key, e2->key)); 476 } 477 478 ssize_t hexport_r(struct hsearch_data *htab, const char sep, 479 char **resp, size_t size) 480 { 481 ENTRY *list[htab->size]; 482 char *res, *p; 483 size_t totlen; 484 int i, n; 485 486 /* Test for correct arguments. */ 487 if ((resp == NULL) || (htab == NULL)) { 488 __set_errno(EINVAL); 489 return (-1); 490 } 491 492 debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, size = %d\n", 493 htab, htab->size, htab->filled, size); 494 /* 495 * Pass 1: 496 * search used entries, 497 * save addresses and compute total length 498 */ 499 for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) { 500 501 if (htab->table[i].used > 0) { 502 ENTRY *ep = &htab->table[i].entry; 503 504 list[n++] = ep; 505 506 totlen += strlen(ep->key) + 2; 507 508 if (sep == '\0') { 509 totlen += strlen(ep->data); 510 } else { /* check if escapes are needed */ 511 char *s = ep->data; 512 513 while (*s) { 514 ++totlen; 515 /* add room for needed escape chars */ 516 if ((*s == sep) || (*s == '\\')) 517 ++totlen; 518 ++s; 519 } 520 } 521 totlen += 2; /* for '=' and 'sep' char */ 522 } 523 } 524 525 #ifdef DEBUG 526 /* Pass 1a: print unsorted list */ 527 printf("Unsorted: n=%d\n", n); 528 for (i = 0; i < n; ++i) { 529 printf("\t%3d: %p ==> %-10s => %s\n", 530 i, list[i], list[i]->key, list[i]->data); 531 } 532 #endif 533 534 /* Sort list by keys */ 535 qsort(list, n, sizeof(ENTRY *), cmpkey); 536 537 /* Check if the user supplied buffer size is sufficient */ 538 if (size) { 539 if (size < totlen + 1) { /* provided buffer too small */ 540 debug("### buffer too small: %d, but need %d\n", 541 size, totlen + 1); 542 __set_errno(ENOMEM); 543 return (-1); 544 } 545 } else { 546 size = totlen + 1; 547 } 548 549 /* Check if the user provided a buffer */ 550 if (*resp) { 551 /* yes; clear it */ 552 res = *resp; 553 memset(res, '\0', size); 554 } else { 555 /* no, allocate and clear one */ 556 *resp = res = calloc(1, size); 557 if (res == NULL) { 558 __set_errno(ENOMEM); 559 return (-1); 560 } 561 } 562 /* 563 * Pass 2: 564 * export sorted list of result data 565 */ 566 for (i = 0, p = res; i < n; ++i) { 567 char *s; 568 569 s = list[i]->key; 570 while (*s) 571 *p++ = *s++; 572 *p++ = '='; 573 574 s = list[i]->data; 575 576 while (*s) { 577 if ((*s == sep) || (*s == '\\')) 578 *p++ = '\\'; /* escape */ 579 *p++ = *s++; 580 } 581 *p++ = sep; 582 } 583 *p = '\0'; /* terminate result */ 584 585 return size; 586 } 587 588 589 /* 590 * himport() 591 */ 592 593 /* 594 * Import linearized data into hash table. 595 * 596 * This is the inverse function to hexport(): it takes a linear list 597 * of "name=value" pairs and creates hash table entries from it. 598 * 599 * Entries without "value", i. e. consisting of only "name" or 600 * "name=", will cause this entry to be deleted from the hash table. 601 * 602 * The "flag" argument can be used to control the behaviour: when the 603 * H_NOCLEAR bit is set, then an existing hash table will kept, i. e. 604 * new data will be added to an existing hash table; otherwise, old 605 * data will be discarded and a new hash table will be created. 606 * 607 * The separator character for the "name=value" pairs can be selected, 608 * so we both support importing from externally stored environment 609 * data (separated by NUL characters) and from plain text files 610 * (entries separated by newline characters). 611 * 612 * To allow for nicely formatted text input, leading white space 613 * (sequences of SPACE and TAB chars) is ignored, and entries starting 614 * (after removal of any leading white space) with a '#' character are 615 * considered comments and ignored. 616 * 617 * [NOTE: this means that a variable name cannot start with a '#' 618 * character.] 619 * 620 * When using a non-NUL separator character, backslash is used as 621 * escape character in the value part, allowing for example for 622 * multi-line values. 623 * 624 * In theory, arbitrary separator characters can be used, but only 625 * '\0' and '\n' have really been tested. 626 */ 627 628 int himport_r(struct hsearch_data *htab, 629 const char *env, size_t size, const char sep, int flag) 630 { 631 char *data, *sp, *dp, *name, *value; 632 633 /* Test for correct arguments. */ 634 if (htab == NULL) { 635 __set_errno(EINVAL); 636 return 0; 637 } 638 639 /* we allocate new space to make sure we can write to the array */ 640 if ((data = malloc(size)) == NULL) { 641 debug("himport_r: can't malloc %d bytes\n", size); 642 __set_errno(ENOMEM); 643 return 0; 644 } 645 memcpy(data, env, size); 646 dp = data; 647 648 if ((flag & H_NOCLEAR) == 0) { 649 /* Destroy old hash table if one exists */ 650 debug("Destroy Hash Table: %p table = %p\n", htab, 651 htab->table); 652 if (htab->table) 653 hdestroy_r(htab); 654 } 655 656 /* 657 * Create new hash table (if needed). The computation of the hash 658 * table size is based on heuristics: in a sample of some 70+ 659 * existing systems we found an average size of 39+ bytes per entry 660 * in the environment (for the whole key=value pair). Assuming a 661 * size of 8 per entry (= safety factor of ~5) should provide enough 662 * safety margin for any existing environment definitions and still 663 * allow for more than enough dynamic additions. Note that the 664 * "size" argument is supposed to give the maximum enviroment size 665 * (CONFIG_ENV_SIZE). This heuristics will result in 666 * unreasonably large numbers (and thus memory footprint) for 667 * big flash environments (>8,000 entries for 64 KB 668 * envrionment size), so we clip it to a reasonable value. 669 * On the other hand we need to add some more entries for free 670 * space when importing very small buffers. Both boundaries can 671 * be overwritten in the board config file if needed. 672 */ 673 674 if (!htab->table) { 675 int nent = CONFIG_ENV_MIN_ENTRIES + size / 8; 676 677 if (nent > CONFIG_ENV_MAX_ENTRIES) 678 nent = CONFIG_ENV_MAX_ENTRIES; 679 680 debug("Create Hash Table: N=%d\n", nent); 681 682 if (hcreate_r(nent, htab) == 0) { 683 free(data); 684 return 0; 685 } 686 } 687 688 /* Parse environment; allow for '\0' and 'sep' as separators */ 689 do { 690 ENTRY e, *rv; 691 692 /* skip leading white space */ 693 while ((*dp == ' ') || (*dp == '\t')) 694 ++dp; 695 696 /* skip comment lines */ 697 if (*dp == '#') { 698 while (*dp && (*dp != sep)) 699 ++dp; 700 ++dp; 701 continue; 702 } 703 704 /* parse name */ 705 for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp) 706 ; 707 708 /* deal with "name" and "name=" entries (delete var) */ 709 if (*dp == '\0' || *(dp + 1) == '\0' || 710 *dp == sep || *(dp + 1) == sep) { 711 if (*dp == '=') 712 *dp++ = '\0'; 713 *dp++ = '\0'; /* terminate name */ 714 715 debug("DELETE CANDIDATE: \"%s\"\n", name); 716 717 if (hdelete_r(name, htab) == 0) 718 debug("DELETE ERROR ##############################\n"); 719 720 continue; 721 } 722 *dp++ = '\0'; /* terminate name */ 723 724 /* parse value; deal with escapes */ 725 for (value = sp = dp; *dp && (*dp != sep); ++dp) { 726 if ((*dp == '\\') && *(dp + 1)) 727 ++dp; 728 *sp++ = *dp; 729 } 730 *sp++ = '\0'; /* terminate value */ 731 ++dp; 732 733 /* enter into hash table */ 734 e.key = name; 735 e.data = value; 736 737 hsearch_r(e, ENTER, &rv, htab); 738 if (rv == NULL) { 739 printf("himport_r: can't insert \"%s=%s\" into hash table\n", 740 name, value); 741 return 0; 742 } 743 744 debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n", 745 htab, htab->filled, htab->size, 746 rv, name, value); 747 } while ((dp < data + size) && *dp); /* size check needed for text */ 748 /* without '\0' termination */ 749 debug("INSERT: free(data = %p)\n", data); 750 free(data); 751 752 debug("INSERT: done\n"); 753 return 1; /* everything OK */ 754 } 755