1 /* 2 * This implementation is based on code from uClibc-0.9.30.3 but was 3 * modified and extended for use within U-Boot. 4 * 5 * Copyright (C) 2010 Wolfgang Denk <wd@denx.de> 6 * 7 * Original license header: 8 * 9 * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc. 10 * This file is part of the GNU C Library. 11 * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993. 12 * 13 * The GNU C Library is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU Lesser General Public 15 * License as published by the Free Software Foundation; either 16 * version 2.1 of the License, or (at your option) any later version. 17 * 18 * The GNU C Library is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 * Lesser General Public License for more details. 22 * 23 * You should have received a copy of the GNU Lesser General Public 24 * License along with the GNU C Library; if not, write to the Free 25 * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 26 * 02111-1307 USA. 27 */ 28 29 #include <errno.h> 30 #include <malloc.h> 31 32 #ifdef USE_HOSTCC /* HOST build */ 33 # include <string.h> 34 # include <assert.h> 35 36 # ifndef debug 37 # ifdef DEBUG 38 # define debug(fmt,args...) printf(fmt ,##args) 39 # else 40 # define debug(fmt,args...) 41 # endif 42 # endif 43 #else /* U-Boot build */ 44 # include <common.h> 45 # include <linux/string.h> 46 #endif 47 48 #ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */ 49 #define CONFIG_ENV_MIN_ENTRIES 64 50 #endif 51 #ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */ 52 #define CONFIG_ENV_MAX_ENTRIES 512 53 #endif 54 55 #include "search.h" 56 57 /* 58 * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986 59 * [Knuth] The Art of Computer Programming, part 3 (6.4) 60 */ 61 62 /* 63 * The reentrant version has no static variables to maintain the state. 64 * Instead the interface of all functions is extended to take an argument 65 * which describes the current status. 66 */ 67 typedef struct _ENTRY { 68 unsigned int used; 69 ENTRY entry; 70 } _ENTRY; 71 72 73 /* 74 * hcreate() 75 */ 76 77 /* 78 * For the used double hash method the table size has to be a prime. To 79 * correct the user given table size we need a prime test. This trivial 80 * algorithm is adequate because 81 * a) the code is (most probably) called a few times per program run and 82 * b) the number is small because the table must fit in the core 83 * */ 84 static int isprime(unsigned int number) 85 { 86 /* no even number will be passed */ 87 unsigned int div = 3; 88 89 while (div * div < number && number % div != 0) 90 div += 2; 91 92 return number % div != 0; 93 } 94 95 /* 96 * Before using the hash table we must allocate memory for it. 97 * Test for an existing table are done. We allocate one element 98 * more as the found prime number says. This is done for more effective 99 * indexing as explained in the comment for the hsearch function. 100 * The contents of the table is zeroed, especially the field used 101 * becomes zero. 102 */ 103 104 int hcreate_r(size_t nel, struct hsearch_data *htab) 105 { 106 /* Test for correct arguments. */ 107 if (htab == NULL) { 108 __set_errno(EINVAL); 109 return 0; 110 } 111 112 /* There is still another table active. Return with error. */ 113 if (htab->table != NULL) 114 return 0; 115 116 /* Change nel to the first prime number not smaller as nel. */ 117 nel |= 1; /* make odd */ 118 while (!isprime(nel)) 119 nel += 2; 120 121 htab->size = nel; 122 htab->filled = 0; 123 124 /* allocate memory and zero out */ 125 htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY)); 126 if (htab->table == NULL) 127 return 0; 128 129 /* everything went alright */ 130 return 1; 131 } 132 133 134 /* 135 * hdestroy() 136 */ 137 138 /* 139 * After using the hash table it has to be destroyed. The used memory can 140 * be freed and the local static variable can be marked as not used. 141 */ 142 143 void hdestroy_r(struct hsearch_data *htab) 144 { 145 int i; 146 147 /* Test for correct arguments. */ 148 if (htab == NULL) { 149 __set_errno(EINVAL); 150 return; 151 } 152 153 /* free used memory */ 154 for (i = 1; i <= htab->size; ++i) { 155 if (htab->table[i].used) { 156 ENTRY *ep = &htab->table[i].entry; 157 158 free(ep->key); 159 free(ep->data); 160 } 161 } 162 free(htab->table); 163 164 /* the sign for an existing table is an value != NULL in htable */ 165 htab->table = NULL; 166 } 167 168 /* 169 * hsearch() 170 */ 171 172 /* 173 * This is the search function. It uses double hashing with open addressing. 174 * The argument item.key has to be a pointer to an zero terminated, most 175 * probably strings of chars. The function for generating a number of the 176 * strings is simple but fast. It can be replaced by a more complex function 177 * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown. 178 * 179 * We use an trick to speed up the lookup. The table is created by hcreate 180 * with one more element available. This enables us to use the index zero 181 * special. This index will never be used because we store the first hash 182 * index in the field used where zero means not used. Every other value 183 * means used. The used field can be used as a first fast comparison for 184 * equality of the stored and the parameter value. This helps to prevent 185 * unnecessary expensive calls of strcmp. 186 * 187 * This implementation differs from the standard library version of 188 * this function in a number of ways: 189 * 190 * - While the standard version does not make any assumptions about 191 * the type of the stored data objects at all, this implementation 192 * works with NUL terminated strings only. 193 * - Instead of storing just pointers to the original objects, we 194 * create local copies so the caller does not need to care about the 195 * data any more. 196 * - The standard implementation does not provide a way to update an 197 * existing entry. This version will create a new entry or update an 198 * existing one when both "action == ENTER" and "item.data != NULL". 199 * - Instead of returning 1 on success, we return the index into the 200 * internal hash table, which is also guaranteed to be positive. 201 * This allows us direct access to the found hash table slot for 202 * example for functions like hdelete(). 203 */ 204 205 int hmatch_r(const char *match, int last_idx, ENTRY ** retval, 206 struct hsearch_data *htab) 207 { 208 unsigned int idx; 209 size_t key_len = strlen(match); 210 211 for (idx = last_idx + 1; idx < htab->size; ++idx) { 212 if (!htab->table[idx].used) 213 continue; 214 if (!strncmp(match, htab->table[idx].entry.key, key_len)) { 215 *retval = &htab->table[idx].entry; 216 return idx; 217 } 218 } 219 220 __set_errno(ESRCH); 221 *retval = NULL; 222 return 0; 223 } 224 225 int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval, 226 struct hsearch_data *htab) 227 { 228 unsigned int hval; 229 unsigned int count; 230 unsigned int len = strlen(item.key); 231 unsigned int idx; 232 233 /* Compute an value for the given string. Perhaps use a better method. */ 234 hval = len; 235 count = len; 236 while (count-- > 0) { 237 hval <<= 4; 238 hval += item.key[count]; 239 } 240 241 /* 242 * First hash function: 243 * simply take the modul but prevent zero. 244 */ 245 hval %= htab->size; 246 if (hval == 0) 247 ++hval; 248 249 /* The first index tried. */ 250 idx = hval; 251 252 if (htab->table[idx].used) { 253 /* 254 * Further action might be required according to the 255 * action value. 256 */ 257 unsigned hval2; 258 259 if (htab->table[idx].used == hval 260 && strcmp(item.key, htab->table[idx].entry.key) == 0) { 261 /* Overwrite existing value? */ 262 if ((action == ENTER) && (item.data != NULL)) { 263 free(htab->table[idx].entry.data); 264 htab->table[idx].entry.data = 265 strdup(item.data); 266 if (!htab->table[idx].entry.data) { 267 __set_errno(ENOMEM); 268 *retval = NULL; 269 return 0; 270 } 271 } 272 /* return found entry */ 273 *retval = &htab->table[idx].entry; 274 return idx; 275 } 276 277 /* 278 * Second hash function: 279 * as suggested in [Knuth] 280 */ 281 hval2 = 1 + hval % (htab->size - 2); 282 283 do { 284 /* 285 * Because SIZE is prime this guarantees to 286 * step through all available indices. 287 */ 288 if (idx <= hval2) 289 idx = htab->size + idx - hval2; 290 else 291 idx -= hval2; 292 293 /* 294 * If we visited all entries leave the loop 295 * unsuccessfully. 296 */ 297 if (idx == hval) 298 break; 299 300 /* If entry is found use it. */ 301 if ((htab->table[idx].used == hval) 302 && strcmp(item.key, htab->table[idx].entry.key) == 0) { 303 /* Overwrite existing value? */ 304 if ((action == ENTER) && (item.data != NULL)) { 305 free(htab->table[idx].entry.data); 306 htab->table[idx].entry.data = 307 strdup(item.data); 308 if (!htab->table[idx].entry.data) { 309 __set_errno(ENOMEM); 310 *retval = NULL; 311 return 0; 312 } 313 } 314 /* return found entry */ 315 *retval = &htab->table[idx].entry; 316 return idx; 317 } 318 } 319 while (htab->table[idx].used); 320 } 321 322 /* An empty bucket has been found. */ 323 if (action == ENTER) { 324 /* 325 * If table is full and another entry should be 326 * entered return with error. 327 */ 328 if (htab->filled == htab->size) { 329 __set_errno(ENOMEM); 330 *retval = NULL; 331 return 0; 332 } 333 334 /* 335 * Create new entry; 336 * create copies of item.key and item.data 337 */ 338 htab->table[idx].used = hval; 339 htab->table[idx].entry.key = strdup(item.key); 340 htab->table[idx].entry.data = strdup(item.data); 341 if (!htab->table[idx].entry.key || 342 !htab->table[idx].entry.data) { 343 __set_errno(ENOMEM); 344 *retval = NULL; 345 return 0; 346 } 347 348 ++htab->filled; 349 350 /* return new entry */ 351 *retval = &htab->table[idx].entry; 352 return 1; 353 } 354 355 __set_errno(ESRCH); 356 *retval = NULL; 357 return 0; 358 } 359 360 361 /* 362 * hdelete() 363 */ 364 365 /* 366 * The standard implementation of hsearch(3) does not provide any way 367 * to delete any entries from the hash table. We extend the code to 368 * do that. 369 */ 370 371 int hdelete_r(const char *key, struct hsearch_data *htab) 372 { 373 ENTRY e, *ep; 374 int idx; 375 376 debug("hdelete: DELETE key \"%s\"\n", key); 377 378 e.key = (char *)key; 379 380 if ((idx = hsearch_r(e, FIND, &ep, htab)) == 0) { 381 __set_errno(ESRCH); 382 return 0; /* not found */ 383 } 384 385 /* free used ENTRY */ 386 debug("hdelete: DELETING key \"%s\"\n", key); 387 388 free(ep->key); 389 free(ep->data); 390 htab->table[idx].used = 0; 391 392 --htab->filled; 393 394 return 1; 395 } 396 397 /* 398 * hexport() 399 */ 400 401 /* 402 * Export the data stored in the hash table in linearized form. 403 * 404 * Entries are exported as "name=value" strings, separated by an 405 * arbitrary (non-NUL, of course) separator character. This allows to 406 * use this function both when formatting the U-Boot environment for 407 * external storage (using '\0' as separator), but also when using it 408 * for the "printenv" command to print all variables, simply by using 409 * as '\n" as separator. This can also be used for new features like 410 * exporting the environment data as text file, including the option 411 * for later re-import. 412 * 413 * The entries in the result list will be sorted by ascending key 414 * values. 415 * 416 * If the separator character is different from NUL, then any 417 * separator characters and backslash characters in the values will 418 * be escaped by a preceeding backslash in output. This is needed for 419 * example to enable multi-line values, especially when the output 420 * shall later be parsed (for example, for re-import). 421 * 422 * There are several options how the result buffer is handled: 423 * 424 * *resp size 425 * ----------- 426 * NULL 0 A string of sufficient length will be allocated. 427 * NULL >0 A string of the size given will be 428 * allocated. An error will be returned if the size is 429 * not sufficient. Any unused bytes in the string will 430 * be '\0'-padded. 431 * !NULL 0 The user-supplied buffer will be used. No length 432 * checking will be performed, i. e. it is assumed that 433 * the buffer size will always be big enough. DANGEROUS. 434 * !NULL >0 The user-supplied buffer will be used. An error will 435 * be returned if the size is not sufficient. Any unused 436 * bytes in the string will be '\0'-padded. 437 */ 438 439 static int cmpkey(const void *p1, const void *p2) 440 { 441 ENTRY *e1 = *(ENTRY **) p1; 442 ENTRY *e2 = *(ENTRY **) p2; 443 444 return (strcmp(e1->key, e2->key)); 445 } 446 447 ssize_t hexport_r(struct hsearch_data *htab, const char sep, 448 char **resp, size_t size) 449 { 450 ENTRY *list[htab->size]; 451 char *res, *p; 452 size_t totlen; 453 int i, n; 454 455 /* Test for correct arguments. */ 456 if ((resp == NULL) || (htab == NULL)) { 457 __set_errno(EINVAL); 458 return (-1); 459 } 460 461 debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, size = %d\n", 462 htab, htab->size, htab->filled, size); 463 /* 464 * Pass 1: 465 * search used entries, 466 * save addresses and compute total length 467 */ 468 for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) { 469 470 if (htab->table[i].used) { 471 ENTRY *ep = &htab->table[i].entry; 472 473 list[n++] = ep; 474 475 totlen += strlen(ep->key) + 2; 476 477 if (sep == '\0') { 478 totlen += strlen(ep->data); 479 } else { /* check if escapes are needed */ 480 char *s = ep->data; 481 482 while (*s) { 483 ++totlen; 484 /* add room for needed escape chars */ 485 if ((*s == sep) || (*s == '\\')) 486 ++totlen; 487 ++s; 488 } 489 } 490 totlen += 2; /* for '=' and 'sep' char */ 491 } 492 } 493 494 #ifdef DEBUG 495 /* Pass 1a: print unsorted list */ 496 printf("Unsorted: n=%d\n", n); 497 for (i = 0; i < n; ++i) { 498 printf("\t%3d: %p ==> %-10s => %s\n", 499 i, list[i], list[i]->key, list[i]->data); 500 } 501 #endif 502 503 /* Sort list by keys */ 504 qsort(list, n, sizeof(ENTRY *), cmpkey); 505 506 /* Check if the user supplied buffer size is sufficient */ 507 if (size) { 508 if (size < totlen + 1) { /* provided buffer too small */ 509 debug("### buffer too small: %d, but need %d\n", 510 size, totlen + 1); 511 __set_errno(ENOMEM); 512 return (-1); 513 } 514 } else { 515 size = totlen + 1; 516 } 517 518 /* Check if the user provided a buffer */ 519 if (*resp) { 520 /* yes; clear it */ 521 res = *resp; 522 memset(res, '\0', size); 523 } else { 524 /* no, allocate and clear one */ 525 *resp = res = calloc(1, size); 526 if (res == NULL) { 527 __set_errno(ENOMEM); 528 return (-1); 529 } 530 } 531 /* 532 * Pass 2: 533 * export sorted list of result data 534 */ 535 for (i = 0, p = res; i < n; ++i) { 536 char *s; 537 538 s = list[i]->key; 539 while (*s) 540 *p++ = *s++; 541 *p++ = '='; 542 543 s = list[i]->data; 544 545 while (*s) { 546 if ((*s == sep) || (*s == '\\')) 547 *p++ = '\\'; /* escape */ 548 *p++ = *s++; 549 } 550 *p++ = sep; 551 } 552 *p = '\0'; /* terminate result */ 553 554 return size; 555 } 556 557 558 /* 559 * himport() 560 */ 561 562 /* 563 * Import linearized data into hash table. 564 * 565 * This is the inverse function to hexport(): it takes a linear list 566 * of "name=value" pairs and creates hash table entries from it. 567 * 568 * Entries without "value", i. e. consisting of only "name" or 569 * "name=", will cause this entry to be deleted from the hash table. 570 * 571 * The "flag" argument can be used to control the behaviour: when the 572 * H_NOCLEAR bit is set, then an existing hash table will kept, i. e. 573 * new data will be added to an existing hash table; otherwise, old 574 * data will be discarded and a new hash table will be created. 575 * 576 * The separator character for the "name=value" pairs can be selected, 577 * so we both support importing from externally stored environment 578 * data (separated by NUL characters) and from plain text files 579 * (entries separated by newline characters). 580 * 581 * To allow for nicely formatted text input, leading white space 582 * (sequences of SPACE and TAB chars) is ignored, and entries starting 583 * (after removal of any leading white space) with a '#' character are 584 * considered comments and ignored. 585 * 586 * [NOTE: this means that a variable name cannot start with a '#' 587 * character.] 588 * 589 * When using a non-NUL separator character, backslash is used as 590 * escape character in the value part, allowing for example for 591 * multi-line values. 592 * 593 * In theory, arbitrary separator characters can be used, but only 594 * '\0' and '\n' have really been tested. 595 */ 596 597 int himport_r(struct hsearch_data *htab, 598 const char *env, size_t size, const char sep, int flag) 599 { 600 char *data, *sp, *dp, *name, *value; 601 602 /* Test for correct arguments. */ 603 if (htab == NULL) { 604 __set_errno(EINVAL); 605 return 0; 606 } 607 608 /* we allocate new space to make sure we can write to the array */ 609 if ((data = malloc(size)) == NULL) { 610 debug("himport_r: can't malloc %d bytes\n", size); 611 __set_errno(ENOMEM); 612 return 0; 613 } 614 memcpy(data, env, size); 615 dp = data; 616 617 if ((flag & H_NOCLEAR) == 0) { 618 /* Destroy old hash table if one exists */ 619 debug("Destroy Hash Table: %p table = %p\n", htab, 620 htab->table); 621 if (htab->table) 622 hdestroy_r(htab); 623 } 624 625 /* 626 * Create new hash table (if needed). The computation of the hash 627 * table size is based on heuristics: in a sample of some 70+ 628 * existing systems we found an average size of 39+ bytes per entry 629 * in the environment (for the whole key=value pair). Assuming a 630 * size of 8 per entry (= safety factor of ~5) should provide enough 631 * safety margin for any existing environment definitions and still 632 * allow for more than enough dynamic additions. Note that the 633 * "size" argument is supposed to give the maximum enviroment size 634 * (CONFIG_ENV_SIZE). This heuristics will result in 635 * unreasonably large numbers (and thus memory footprint) for 636 * big flash environments (>8,000 entries for 64 KB 637 * envrionment size), so we clip it to a reasonable value. 638 * On the other hand we need to add some more entries for free 639 * space when importing very small buffers. Both boundaries can 640 * be overwritten in the board config file if needed. 641 */ 642 643 if (!htab->table) { 644 int nent = CONFIG_ENV_MIN_ENTRIES + size / 8; 645 646 if (nent > CONFIG_ENV_MAX_ENTRIES) 647 nent = CONFIG_ENV_MAX_ENTRIES; 648 649 debug("Create Hash Table: N=%d\n", nent); 650 651 if (hcreate_r(nent, htab) == 0) { 652 free(data); 653 return 0; 654 } 655 } 656 657 /* Parse environment; allow for '\0' and 'sep' as separators */ 658 do { 659 ENTRY e, *rv; 660 661 /* skip leading white space */ 662 while ((*dp == ' ') || (*dp == '\t')) 663 ++dp; 664 665 /* skip comment lines */ 666 if (*dp == '#') { 667 while (*dp && (*dp != sep)) 668 ++dp; 669 ++dp; 670 continue; 671 } 672 673 /* parse name */ 674 for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp) 675 ; 676 677 /* deal with "name" and "name=" entries (delete var) */ 678 if (*dp == '\0' || *(dp + 1) == '\0' || 679 *dp == sep || *(dp + 1) == sep) { 680 if (*dp == '=') 681 *dp++ = '\0'; 682 *dp++ = '\0'; /* terminate name */ 683 684 debug("DELETE CANDIDATE: \"%s\"\n", name); 685 686 if (hdelete_r(name, htab) == 0) 687 debug("DELETE ERROR ##############################\n"); 688 689 continue; 690 } 691 *dp++ = '\0'; /* terminate name */ 692 693 /* parse value; deal with escapes */ 694 for (value = sp = dp; *dp && (*dp != sep); ++dp) { 695 if ((*dp == '\\') && *(dp + 1)) 696 ++dp; 697 *sp++ = *dp; 698 } 699 *sp++ = '\0'; /* terminate value */ 700 ++dp; 701 702 /* enter into hash table */ 703 e.key = name; 704 e.data = value; 705 706 hsearch_r(e, ENTER, &rv, htab); 707 if (rv == NULL) { 708 printf("himport_r: can't insert \"%s=%s\" into hash table\n", 709 name, value); 710 return 0; 711 } 712 713 debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n", 714 htab, htab->filled, htab->size, 715 rv, name, value); 716 } while ((dp < data + size) && *dp); /* size check needed for text */ 717 /* without '\0' termination */ 718 debug("INSERT: free(data = %p)\n", data); 719 free(data); 720 721 debug("INSERT: done\n"); 722 return 1; /* everything OK */ 723 } 724