1 /* 2 * Copyright (c) 2011 The Chromium OS Authors. 3 * SPDX-License-Identifier: GPL-2.0+ 4 */ 5 6 #ifndef USE_HOSTCC 7 #include <common.h> 8 #include <errno.h> 9 #include <serial.h> 10 #include <libfdt.h> 11 #include <fdtdec.h> 12 #include <linux/ctype.h> 13 14 #include <asm/gpio.h> 15 16 DECLARE_GLOBAL_DATA_PTR; 17 18 /* 19 * Here are the type we know about. One day we might allow drivers to 20 * register. For now we just put them here. The COMPAT macro allows us to 21 * turn this into a sparse list later, and keeps the ID with the name. 22 */ 23 #define COMPAT(id, name) name 24 static const char * const compat_names[COMPAT_COUNT] = { 25 COMPAT(UNKNOWN, "<none>"), 26 COMPAT(NVIDIA_TEGRA20_USB, "nvidia,tegra20-ehci"), 27 COMPAT(NVIDIA_TEGRA30_USB, "nvidia,tegra30-ehci"), 28 COMPAT(NVIDIA_TEGRA114_USB, "nvidia,tegra114-ehci"), 29 COMPAT(NVIDIA_TEGRA114_I2C, "nvidia,tegra114-i2c"), 30 COMPAT(NVIDIA_TEGRA20_I2C, "nvidia,tegra20-i2c"), 31 COMPAT(NVIDIA_TEGRA20_DVC, "nvidia,tegra20-i2c-dvc"), 32 COMPAT(NVIDIA_TEGRA20_EMC, "nvidia,tegra20-emc"), 33 COMPAT(NVIDIA_TEGRA20_EMC_TABLE, "nvidia,tegra20-emc-table"), 34 COMPAT(NVIDIA_TEGRA20_KBC, "nvidia,tegra20-kbc"), 35 COMPAT(NVIDIA_TEGRA20_NAND, "nvidia,tegra20-nand"), 36 COMPAT(NVIDIA_TEGRA20_PWM, "nvidia,tegra20-pwm"), 37 COMPAT(NVIDIA_TEGRA20_DC, "nvidia,tegra20-dc"), 38 COMPAT(NVIDIA_TEGRA124_SDMMC, "nvidia,tegra124-sdhci"), 39 COMPAT(NVIDIA_TEGRA30_SDMMC, "nvidia,tegra30-sdhci"), 40 COMPAT(NVIDIA_TEGRA20_SDMMC, "nvidia,tegra20-sdhci"), 41 COMPAT(NVIDIA_TEGRA20_SFLASH, "nvidia,tegra20-sflash"), 42 COMPAT(NVIDIA_TEGRA20_SLINK, "nvidia,tegra20-slink"), 43 COMPAT(NVIDIA_TEGRA114_SPI, "nvidia,tegra114-spi"), 44 COMPAT(NVIDIA_TEGRA124_PCIE, "nvidia,tegra124-pcie"), 45 COMPAT(NVIDIA_TEGRA30_PCIE, "nvidia,tegra30-pcie"), 46 COMPAT(NVIDIA_TEGRA20_PCIE, "nvidia,tegra20-pcie"), 47 COMPAT(NVIDIA_TEGRA124_XUSB_PADCTL, "nvidia,tegra124-xusb-padctl"), 48 COMPAT(SMSC_LAN9215, "smsc,lan9215"), 49 COMPAT(SAMSUNG_EXYNOS5_SROMC, "samsung,exynos-sromc"), 50 COMPAT(SAMSUNG_S3C2440_I2C, "samsung,s3c2440-i2c"), 51 COMPAT(SAMSUNG_EXYNOS5_SOUND, "samsung,exynos-sound"), 52 COMPAT(WOLFSON_WM8994_CODEC, "wolfson,wm8994-codec"), 53 COMPAT(SAMSUNG_EXYNOS_SPI, "samsung,exynos-spi"), 54 COMPAT(GOOGLE_CROS_EC, "google,cros-ec"), 55 COMPAT(GOOGLE_CROS_EC_KEYB, "google,cros-ec-keyb"), 56 COMPAT(SAMSUNG_EXYNOS_EHCI, "samsung,exynos-ehci"), 57 COMPAT(SAMSUNG_EXYNOS5_XHCI, "samsung,exynos5250-xhci"), 58 COMPAT(SAMSUNG_EXYNOS_USB_PHY, "samsung,exynos-usb-phy"), 59 COMPAT(SAMSUNG_EXYNOS5_USB3_PHY, "samsung,exynos5250-usb3-phy"), 60 COMPAT(SAMSUNG_EXYNOS_TMU, "samsung,exynos-tmu"), 61 COMPAT(SAMSUNG_EXYNOS_FIMD, "samsung,exynos-fimd"), 62 COMPAT(SAMSUNG_EXYNOS_MIPI_DSI, "samsung,exynos-mipi-dsi"), 63 COMPAT(SAMSUNG_EXYNOS5_DP, "samsung,exynos5-dp"), 64 COMPAT(SAMSUNG_EXYNOS_DWMMC, "samsung,exynos-dwmmc"), 65 COMPAT(SAMSUNG_EXYNOS_MMC, "samsung,exynos-mmc"), 66 COMPAT(SAMSUNG_EXYNOS_SERIAL, "samsung,exynos4210-uart"), 67 COMPAT(MAXIM_MAX77686_PMIC, "maxim,max77686_pmic"), 68 COMPAT(GENERIC_SPI_FLASH, "spi-flash"), 69 COMPAT(MAXIM_98095_CODEC, "maxim,max98095-codec"), 70 COMPAT(INFINEON_SLB9635_TPM, "infineon,slb9635-tpm"), 71 COMPAT(INFINEON_SLB9645_TPM, "infineon,slb9645-tpm"), 72 COMPAT(SAMSUNG_EXYNOS5_I2C, "samsung,exynos5-hsi2c"), 73 COMPAT(SANDBOX_HOST_EMULATION, "sandbox,host-emulation"), 74 COMPAT(SANDBOX_LCD_SDL, "sandbox,lcd-sdl"), 75 COMPAT(TI_TPS65090, "ti,tps65090"), 76 COMPAT(COMPAT_NXP_PTN3460, "nxp,ptn3460"), 77 COMPAT(SAMSUNG_EXYNOS_SYSMMU, "samsung,sysmmu-v3.3"), 78 COMPAT(PARADE_PS8625, "parade,ps8625"), 79 COMPAT(COMPAT_INTEL_LPC, "intel,lpc"), 80 COMPAT(INTEL_MICROCODE, "intel,microcode"), 81 COMPAT(MEMORY_SPD, "memory-spd"), 82 COMPAT(INTEL_PANTHERPOINT_AHCI, "intel,pantherpoint-ahci"), 83 COMPAT(INTEL_MODEL_206AX, "intel,model-206ax"), 84 COMPAT(INTEL_GMA, "intel,gma"), 85 COMPAT(AMS_AS3722, "ams,as3722"), 86 }; 87 88 const char *fdtdec_get_compatible(enum fdt_compat_id id) 89 { 90 /* We allow reading of the 'unknown' ID for testing purposes */ 91 assert(id >= 0 && id < COMPAT_COUNT); 92 return compat_names[id]; 93 } 94 95 fdt_addr_t fdtdec_get_addr_size(const void *blob, int node, 96 const char *prop_name, fdt_size_t *sizep) 97 { 98 const fdt_addr_t *cell; 99 int len; 100 101 debug("%s: %s: ", __func__, prop_name); 102 cell = fdt_getprop(blob, node, prop_name, &len); 103 if (cell && ((!sizep && len == sizeof(fdt_addr_t)) || 104 len == sizeof(fdt_addr_t) * 2)) { 105 fdt_addr_t addr = fdt_addr_to_cpu(*cell); 106 if (sizep) { 107 const fdt_size_t *size; 108 109 size = (fdt_size_t *)((char *)cell + 110 sizeof(fdt_addr_t)); 111 *sizep = fdt_size_to_cpu(*size); 112 debug("addr=%08lx, size=%08x\n", 113 (ulong)addr, *sizep); 114 } else { 115 debug("%08lx\n", (ulong)addr); 116 } 117 return addr; 118 } 119 debug("(not found)\n"); 120 return FDT_ADDR_T_NONE; 121 } 122 123 fdt_addr_t fdtdec_get_addr(const void *blob, int node, 124 const char *prop_name) 125 { 126 return fdtdec_get_addr_size(blob, node, prop_name, NULL); 127 } 128 129 #ifdef CONFIG_PCI 130 int fdtdec_get_pci_addr(const void *blob, int node, enum fdt_pci_space type, 131 const char *prop_name, struct fdt_pci_addr *addr) 132 { 133 const u32 *cell; 134 int len; 135 int ret = -ENOENT; 136 137 debug("%s: %s: ", __func__, prop_name); 138 139 /* 140 * If we follow the pci bus bindings strictly, we should check 141 * the value of the node's parent node's #address-cells and 142 * #size-cells. They need to be 3 and 2 accordingly. However, 143 * for simplicity we skip the check here. 144 */ 145 cell = fdt_getprop(blob, node, prop_name, &len); 146 if (!cell) 147 goto fail; 148 149 if ((len % FDT_PCI_REG_SIZE) == 0) { 150 int num = len / FDT_PCI_REG_SIZE; 151 int i; 152 153 for (i = 0; i < num; i++) { 154 debug("pci address #%d: %08lx %08lx %08lx\n", i, 155 (ulong)fdt_addr_to_cpu(cell[0]), 156 (ulong)fdt_addr_to_cpu(cell[1]), 157 (ulong)fdt_addr_to_cpu(cell[2])); 158 if ((fdt_addr_to_cpu(*cell) & type) == type) { 159 addr->phys_hi = fdt_addr_to_cpu(cell[0]); 160 addr->phys_mid = fdt_addr_to_cpu(cell[1]); 161 addr->phys_lo = fdt_addr_to_cpu(cell[2]); 162 break; 163 } else { 164 cell += (FDT_PCI_ADDR_CELLS + 165 FDT_PCI_SIZE_CELLS); 166 } 167 } 168 169 if (i == num) 170 goto fail; 171 172 return 0; 173 } else { 174 ret = -EINVAL; 175 } 176 177 fail: 178 debug("(not found)\n"); 179 return ret; 180 } 181 182 int fdtdec_get_pci_vendev(const void *blob, int node, u16 *vendor, u16 *device) 183 { 184 const char *list, *end; 185 int len; 186 187 list = fdt_getprop(blob, node, "compatible", &len); 188 if (!list) 189 return -ENOENT; 190 191 end = list + len; 192 while (list < end) { 193 char *s; 194 195 len = strlen(list); 196 if (len >= strlen("pciVVVV,DDDD")) { 197 s = strstr(list, "pci"); 198 199 /* 200 * check if the string is something like pciVVVV,DDDD.RR 201 * or just pciVVVV,DDDD 202 */ 203 if (s && s[7] == ',' && 204 (s[12] == '.' || s[12] == 0)) { 205 s += 3; 206 *vendor = simple_strtol(s, NULL, 16); 207 208 s += 5; 209 *device = simple_strtol(s, NULL, 16); 210 211 return 0; 212 } 213 } else { 214 list += (len + 1); 215 } 216 } 217 218 return -ENOENT; 219 } 220 221 int fdtdec_get_pci_bdf(const void *blob, int node, 222 struct fdt_pci_addr *addr, pci_dev_t *bdf) 223 { 224 u16 dt_vendor, dt_device, vendor, device; 225 int ret; 226 227 /* get vendor id & device id from the compatible string */ 228 ret = fdtdec_get_pci_vendev(blob, node, &dt_vendor, &dt_device); 229 if (ret) 230 return ret; 231 232 /* extract the bdf from fdt_pci_addr */ 233 *bdf = addr->phys_hi & 0xffff00; 234 235 /* read vendor id & device id based on bdf */ 236 pci_read_config_word(*bdf, PCI_VENDOR_ID, &vendor); 237 pci_read_config_word(*bdf, PCI_DEVICE_ID, &device); 238 239 /* 240 * Note there are two places in the device tree to fully describe 241 * a pci device: one is via compatible string with a format of 242 * "pciVVVV,DDDD" and the other one is the bdf numbers encoded in 243 * the device node's reg address property. We read the vendor id 244 * and device id based on bdf and compare the values with the 245 * "VVVV,DDDD". If they are the same, then we are good to use bdf 246 * to read device's bar. But if they are different, we have to rely 247 * on the vendor id and device id extracted from the compatible 248 * string and locate the real bdf by pci_find_device(). This is 249 * because normally we may only know device's device number and 250 * function number when writing device tree. The bus number is 251 * dynamically assigned during the pci enumeration process. 252 */ 253 if ((dt_vendor != vendor) || (dt_device != device)) { 254 *bdf = pci_find_device(dt_vendor, dt_device, 0); 255 if (*bdf == -1) 256 return -ENODEV; 257 } 258 259 return 0; 260 } 261 262 int fdtdec_get_pci_bar32(const void *blob, int node, 263 struct fdt_pci_addr *addr, u32 *bar) 264 { 265 pci_dev_t bdf; 266 int barnum; 267 int ret; 268 269 /* get pci devices's bdf */ 270 ret = fdtdec_get_pci_bdf(blob, node, addr, &bdf); 271 if (ret) 272 return ret; 273 274 /* extract the bar number from fdt_pci_addr */ 275 barnum = addr->phys_hi & 0xff; 276 if ((barnum < PCI_BASE_ADDRESS_0) || (barnum > PCI_CARDBUS_CIS)) 277 return -EINVAL; 278 279 barnum = (barnum - PCI_BASE_ADDRESS_0) / 4; 280 *bar = pci_read_bar32(pci_bus_to_hose(PCI_BUS(bdf)), bdf, barnum); 281 282 return 0; 283 } 284 #endif 285 286 uint64_t fdtdec_get_uint64(const void *blob, int node, const char *prop_name, 287 uint64_t default_val) 288 { 289 const uint64_t *cell64; 290 int length; 291 292 cell64 = fdt_getprop(blob, node, prop_name, &length); 293 if (!cell64 || length < sizeof(*cell64)) 294 return default_val; 295 296 return fdt64_to_cpu(*cell64); 297 } 298 299 int fdtdec_get_is_enabled(const void *blob, int node) 300 { 301 const char *cell; 302 303 /* 304 * It should say "okay", so only allow that. Some fdts use "ok" but 305 * this is a bug. Please fix your device tree source file. See here 306 * for discussion: 307 * 308 * http://www.mail-archive.com/u-boot@lists.denx.de/msg71598.html 309 */ 310 cell = fdt_getprop(blob, node, "status", NULL); 311 if (cell) 312 return 0 == strcmp(cell, "okay"); 313 return 1; 314 } 315 316 enum fdt_compat_id fdtdec_lookup(const void *blob, int node) 317 { 318 enum fdt_compat_id id; 319 320 /* Search our drivers */ 321 for (id = COMPAT_UNKNOWN; id < COMPAT_COUNT; id++) 322 if (0 == fdt_node_check_compatible(blob, node, 323 compat_names[id])) 324 return id; 325 return COMPAT_UNKNOWN; 326 } 327 328 int fdtdec_next_compatible(const void *blob, int node, 329 enum fdt_compat_id id) 330 { 331 return fdt_node_offset_by_compatible(blob, node, compat_names[id]); 332 } 333 334 int fdtdec_next_compatible_subnode(const void *blob, int node, 335 enum fdt_compat_id id, int *depthp) 336 { 337 do { 338 node = fdt_next_node(blob, node, depthp); 339 } while (*depthp > 1); 340 341 /* If this is a direct subnode, and compatible, return it */ 342 if (*depthp == 1 && 0 == fdt_node_check_compatible( 343 blob, node, compat_names[id])) 344 return node; 345 346 return -FDT_ERR_NOTFOUND; 347 } 348 349 int fdtdec_next_alias(const void *blob, const char *name, 350 enum fdt_compat_id id, int *upto) 351 { 352 #define MAX_STR_LEN 20 353 char str[MAX_STR_LEN + 20]; 354 int node, err; 355 356 /* snprintf() is not available */ 357 assert(strlen(name) < MAX_STR_LEN); 358 sprintf(str, "%.*s%d", MAX_STR_LEN, name, *upto); 359 node = fdt_path_offset(blob, str); 360 if (node < 0) 361 return node; 362 err = fdt_node_check_compatible(blob, node, compat_names[id]); 363 if (err < 0) 364 return err; 365 if (err) 366 return -FDT_ERR_NOTFOUND; 367 (*upto)++; 368 return node; 369 } 370 371 int fdtdec_find_aliases_for_id(const void *blob, const char *name, 372 enum fdt_compat_id id, int *node_list, int maxcount) 373 { 374 memset(node_list, '\0', sizeof(*node_list) * maxcount); 375 376 return fdtdec_add_aliases_for_id(blob, name, id, node_list, maxcount); 377 } 378 379 /* TODO: Can we tighten this code up a little? */ 380 int fdtdec_add_aliases_for_id(const void *blob, const char *name, 381 enum fdt_compat_id id, int *node_list, int maxcount) 382 { 383 int name_len = strlen(name); 384 int nodes[maxcount]; 385 int num_found = 0; 386 int offset, node; 387 int alias_node; 388 int count; 389 int i, j; 390 391 /* find the alias node if present */ 392 alias_node = fdt_path_offset(blob, "/aliases"); 393 394 /* 395 * start with nothing, and we can assume that the root node can't 396 * match 397 */ 398 memset(nodes, '\0', sizeof(nodes)); 399 400 /* First find all the compatible nodes */ 401 for (node = count = 0; node >= 0 && count < maxcount;) { 402 node = fdtdec_next_compatible(blob, node, id); 403 if (node >= 0) 404 nodes[count++] = node; 405 } 406 if (node >= 0) 407 debug("%s: warning: maxcount exceeded with alias '%s'\n", 408 __func__, name); 409 410 /* Now find all the aliases */ 411 for (offset = fdt_first_property_offset(blob, alias_node); 412 offset > 0; 413 offset = fdt_next_property_offset(blob, offset)) { 414 const struct fdt_property *prop; 415 const char *path; 416 int number; 417 int found; 418 419 node = 0; 420 prop = fdt_get_property_by_offset(blob, offset, NULL); 421 path = fdt_string(blob, fdt32_to_cpu(prop->nameoff)); 422 if (prop->len && 0 == strncmp(path, name, name_len)) 423 node = fdt_path_offset(blob, prop->data); 424 if (node <= 0) 425 continue; 426 427 /* Get the alias number */ 428 number = simple_strtoul(path + name_len, NULL, 10); 429 if (number < 0 || number >= maxcount) { 430 debug("%s: warning: alias '%s' is out of range\n", 431 __func__, path); 432 continue; 433 } 434 435 /* Make sure the node we found is actually in our list! */ 436 found = -1; 437 for (j = 0; j < count; j++) 438 if (nodes[j] == node) { 439 found = j; 440 break; 441 } 442 443 if (found == -1) { 444 debug("%s: warning: alias '%s' points to a node " 445 "'%s' that is missing or is not compatible " 446 " with '%s'\n", __func__, path, 447 fdt_get_name(blob, node, NULL), 448 compat_names[id]); 449 continue; 450 } 451 452 /* 453 * Add this node to our list in the right place, and mark 454 * it as done. 455 */ 456 if (fdtdec_get_is_enabled(blob, node)) { 457 if (node_list[number]) { 458 debug("%s: warning: alias '%s' requires that " 459 "a node be placed in the list in a " 460 "position which is already filled by " 461 "node '%s'\n", __func__, path, 462 fdt_get_name(blob, node, NULL)); 463 continue; 464 } 465 node_list[number] = node; 466 if (number >= num_found) 467 num_found = number + 1; 468 } 469 nodes[found] = 0; 470 } 471 472 /* Add any nodes not mentioned by an alias */ 473 for (i = j = 0; i < maxcount; i++) { 474 if (!node_list[i]) { 475 for (; j < maxcount; j++) 476 if (nodes[j] && 477 fdtdec_get_is_enabled(blob, nodes[j])) 478 break; 479 480 /* Have we run out of nodes to add? */ 481 if (j == maxcount) 482 break; 483 484 assert(!node_list[i]); 485 node_list[i] = nodes[j++]; 486 if (i >= num_found) 487 num_found = i + 1; 488 } 489 } 490 491 return num_found; 492 } 493 494 int fdtdec_get_alias_seq(const void *blob, const char *base, int offset, 495 int *seqp) 496 { 497 int base_len = strlen(base); 498 const char *find_name; 499 int find_namelen; 500 int prop_offset; 501 int aliases; 502 503 find_name = fdt_get_name(blob, offset, &find_namelen); 504 debug("Looking for '%s' at %d, name %s\n", base, offset, find_name); 505 506 aliases = fdt_path_offset(blob, "/aliases"); 507 for (prop_offset = fdt_first_property_offset(blob, aliases); 508 prop_offset > 0; 509 prop_offset = fdt_next_property_offset(blob, prop_offset)) { 510 const char *prop; 511 const char *name; 512 const char *slash; 513 const char *p; 514 int len; 515 516 prop = fdt_getprop_by_offset(blob, prop_offset, &name, &len); 517 debug(" - %s, %s\n", name, prop); 518 if (len < find_namelen || *prop != '/' || prop[len - 1] || 519 strncmp(name, base, base_len)) 520 continue; 521 522 slash = strrchr(prop, '/'); 523 if (strcmp(slash + 1, find_name)) 524 continue; 525 for (p = name + strlen(name) - 1; p > name; p--) { 526 if (!isdigit(*p)) { 527 *seqp = simple_strtoul(p + 1, NULL, 10); 528 debug("Found seq %d\n", *seqp); 529 return 0; 530 } 531 } 532 } 533 534 debug("Not found\n"); 535 return -ENOENT; 536 } 537 538 int fdtdec_get_chosen_node(const void *blob, const char *name) 539 { 540 const char *prop; 541 int chosen_node; 542 int len; 543 544 if (!blob) 545 return -FDT_ERR_NOTFOUND; 546 chosen_node = fdt_path_offset(blob, "/chosen"); 547 prop = fdt_getprop(blob, chosen_node, name, &len); 548 if (!prop) 549 return -FDT_ERR_NOTFOUND; 550 return fdt_path_offset(blob, prop); 551 } 552 553 int fdtdec_check_fdt(void) 554 { 555 /* 556 * We must have an FDT, but we cannot panic() yet since the console 557 * is not ready. So for now, just assert(). Boards which need an early 558 * FDT (prior to console ready) will need to make their own 559 * arrangements and do their own checks. 560 */ 561 assert(!fdtdec_prepare_fdt()); 562 return 0; 563 } 564 565 /* 566 * This function is a little odd in that it accesses global data. At some 567 * point if the architecture board.c files merge this will make more sense. 568 * Even now, it is common code. 569 */ 570 int fdtdec_prepare_fdt(void) 571 { 572 if (!gd->fdt_blob || ((uintptr_t)gd->fdt_blob & 3) || 573 fdt_check_header(gd->fdt_blob)) { 574 printf("No valid FDT found - please append one to U-Boot " 575 "binary, use u-boot-dtb.bin or define " 576 "CONFIG_OF_EMBED. For sandbox, use -d <file.dtb>\n"); 577 return -1; 578 } 579 return 0; 580 } 581 582 int fdtdec_lookup_phandle(const void *blob, int node, const char *prop_name) 583 { 584 const u32 *phandle; 585 int lookup; 586 587 debug("%s: %s\n", __func__, prop_name); 588 phandle = fdt_getprop(blob, node, prop_name, NULL); 589 if (!phandle) 590 return -FDT_ERR_NOTFOUND; 591 592 lookup = fdt_node_offset_by_phandle(blob, fdt32_to_cpu(*phandle)); 593 return lookup; 594 } 595 596 /** 597 * Look up a property in a node and check that it has a minimum length. 598 * 599 * @param blob FDT blob 600 * @param node node to examine 601 * @param prop_name name of property to find 602 * @param min_len minimum property length in bytes 603 * @param err 0 if ok, or -FDT_ERR_NOTFOUND if the property is not 604 found, or -FDT_ERR_BADLAYOUT if not enough data 605 * @return pointer to cell, which is only valid if err == 0 606 */ 607 static const void *get_prop_check_min_len(const void *blob, int node, 608 const char *prop_name, int min_len, int *err) 609 { 610 const void *cell; 611 int len; 612 613 debug("%s: %s\n", __func__, prop_name); 614 cell = fdt_getprop(blob, node, prop_name, &len); 615 if (!cell) 616 *err = -FDT_ERR_NOTFOUND; 617 else if (len < min_len) 618 *err = -FDT_ERR_BADLAYOUT; 619 else 620 *err = 0; 621 return cell; 622 } 623 624 int fdtdec_get_int_array(const void *blob, int node, const char *prop_name, 625 u32 *array, int count) 626 { 627 const u32 *cell; 628 int i, err = 0; 629 630 debug("%s: %s\n", __func__, prop_name); 631 cell = get_prop_check_min_len(blob, node, prop_name, 632 sizeof(u32) * count, &err); 633 if (!err) { 634 for (i = 0; i < count; i++) 635 array[i] = fdt32_to_cpu(cell[i]); 636 } 637 return err; 638 } 639 640 int fdtdec_get_int_array_count(const void *blob, int node, 641 const char *prop_name, u32 *array, int count) 642 { 643 const u32 *cell; 644 int len, elems; 645 int i; 646 647 debug("%s: %s\n", __func__, prop_name); 648 cell = fdt_getprop(blob, node, prop_name, &len); 649 if (!cell) 650 return -FDT_ERR_NOTFOUND; 651 elems = len / sizeof(u32); 652 if (count > elems) 653 count = elems; 654 for (i = 0; i < count; i++) 655 array[i] = fdt32_to_cpu(cell[i]); 656 657 return count; 658 } 659 660 const u32 *fdtdec_locate_array(const void *blob, int node, 661 const char *prop_name, int count) 662 { 663 const u32 *cell; 664 int err; 665 666 cell = get_prop_check_min_len(blob, node, prop_name, 667 sizeof(u32) * count, &err); 668 return err ? NULL : cell; 669 } 670 671 int fdtdec_get_bool(const void *blob, int node, const char *prop_name) 672 { 673 const s32 *cell; 674 int len; 675 676 debug("%s: %s\n", __func__, prop_name); 677 cell = fdt_getprop(blob, node, prop_name, &len); 678 return cell != NULL; 679 } 680 681 /** 682 * Decode a list of GPIOs from an FDT. This creates a list of GPIOs with no 683 * terminating item. 684 * 685 * @param blob FDT blob to use 686 * @param node Node to look at 687 * @param prop_name Node property name 688 * @param gpio Array of gpio elements to fill from FDT. This will be 689 * untouched if either 0 or an error is returned 690 * @param max_count Maximum number of elements allowed 691 * @return number of GPIOs read if ok, -FDT_ERR_BADLAYOUT if max_count would 692 * be exceeded, or -FDT_ERR_NOTFOUND if the property is missing. 693 */ 694 int fdtdec_decode_gpios(const void *blob, int node, const char *prop_name, 695 struct fdt_gpio_state *gpio, int max_count) 696 { 697 const struct fdt_property *prop; 698 const u32 *cell; 699 const char *name; 700 int len, i; 701 702 debug("%s: %s\n", __func__, prop_name); 703 assert(max_count > 0); 704 prop = fdt_get_property(blob, node, prop_name, &len); 705 if (!prop) { 706 debug("%s: property '%s' missing\n", __func__, prop_name); 707 return -FDT_ERR_NOTFOUND; 708 } 709 710 /* We will use the name to tag the GPIO */ 711 name = fdt_string(blob, fdt32_to_cpu(prop->nameoff)); 712 cell = (u32 *)prop->data; 713 len /= sizeof(u32) * 3; /* 3 cells per GPIO record */ 714 if (len > max_count) { 715 debug(" %s: too many GPIOs / cells for " 716 "property '%s'\n", __func__, prop_name); 717 return -FDT_ERR_BADLAYOUT; 718 } 719 720 /* Read out the GPIO data from the cells */ 721 for (i = 0; i < len; i++, cell += 3) { 722 gpio[i].gpio = fdt32_to_cpu(cell[1]); 723 gpio[i].flags = fdt32_to_cpu(cell[2]); 724 gpio[i].name = name; 725 } 726 727 return len; 728 } 729 730 int fdtdec_decode_gpio(const void *blob, int node, const char *prop_name, 731 struct fdt_gpio_state *gpio) 732 { 733 int err; 734 735 debug("%s: %s\n", __func__, prop_name); 736 gpio->gpio = FDT_GPIO_NONE; 737 gpio->name = NULL; 738 err = fdtdec_decode_gpios(blob, node, prop_name, gpio, 1); 739 return err == 1 ? 0 : err; 740 } 741 742 int fdtdec_get_gpio(struct fdt_gpio_state *gpio) 743 { 744 int val; 745 746 if (!fdt_gpio_isvalid(gpio)) 747 return -1; 748 749 val = gpio_get_value(gpio->gpio); 750 return gpio->flags & FDT_GPIO_ACTIVE_LOW ? val ^ 1 : val; 751 } 752 753 int fdtdec_set_gpio(struct fdt_gpio_state *gpio, int val) 754 { 755 if (!fdt_gpio_isvalid(gpio)) 756 return -1; 757 758 val = gpio->flags & FDT_GPIO_ACTIVE_LOW ? val ^ 1 : val; 759 return gpio_set_value(gpio->gpio, val); 760 } 761 762 int fdtdec_setup_gpio(struct fdt_gpio_state *gpio) 763 { 764 /* 765 * Return success if there is no GPIO defined. This is used for 766 * optional GPIOs) 767 */ 768 if (!fdt_gpio_isvalid(gpio)) 769 return 0; 770 771 if (gpio_request(gpio->gpio, gpio->name)) 772 return -1; 773 return 0; 774 } 775 776 int fdtdec_get_byte_array(const void *blob, int node, const char *prop_name, 777 u8 *array, int count) 778 { 779 const u8 *cell; 780 int err; 781 782 cell = get_prop_check_min_len(blob, node, prop_name, count, &err); 783 if (!err) 784 memcpy(array, cell, count); 785 return err; 786 } 787 788 const u8 *fdtdec_locate_byte_array(const void *blob, int node, 789 const char *prop_name, int count) 790 { 791 const u8 *cell; 792 int err; 793 794 cell = get_prop_check_min_len(blob, node, prop_name, count, &err); 795 if (err) 796 return NULL; 797 return cell; 798 } 799 800 int fdtdec_get_config_int(const void *blob, const char *prop_name, 801 int default_val) 802 { 803 int config_node; 804 805 debug("%s: %s\n", __func__, prop_name); 806 config_node = fdt_path_offset(blob, "/config"); 807 if (config_node < 0) 808 return default_val; 809 return fdtdec_get_int(blob, config_node, prop_name, default_val); 810 } 811 812 int fdtdec_get_config_bool(const void *blob, const char *prop_name) 813 { 814 int config_node; 815 const void *prop; 816 817 debug("%s: %s\n", __func__, prop_name); 818 config_node = fdt_path_offset(blob, "/config"); 819 if (config_node < 0) 820 return 0; 821 prop = fdt_get_property(blob, config_node, prop_name, NULL); 822 823 return prop != NULL; 824 } 825 826 char *fdtdec_get_config_string(const void *blob, const char *prop_name) 827 { 828 const char *nodep; 829 int nodeoffset; 830 int len; 831 832 debug("%s: %s\n", __func__, prop_name); 833 nodeoffset = fdt_path_offset(blob, "/config"); 834 if (nodeoffset < 0) 835 return NULL; 836 837 nodep = fdt_getprop(blob, nodeoffset, prop_name, &len); 838 if (!nodep) 839 return NULL; 840 841 return (char *)nodep; 842 } 843 844 int fdtdec_decode_region(const void *blob, int node, const char *prop_name, 845 fdt_addr_t *basep, fdt_size_t *sizep) 846 { 847 const fdt_addr_t *cell; 848 int len; 849 850 debug("%s: %s: %s\n", __func__, fdt_get_name(blob, node, NULL), 851 prop_name); 852 cell = fdt_getprop(blob, node, prop_name, &len); 853 if (!cell || (len < sizeof(fdt_addr_t) * 2)) { 854 debug("cell=%p, len=%d\n", cell, len); 855 return -1; 856 } 857 858 *basep = fdt_addr_to_cpu(*cell); 859 *sizep = fdt_size_to_cpu(cell[1]); 860 debug("%s: base=%08lx, size=%lx\n", __func__, (ulong)*basep, 861 (ulong)*sizep); 862 863 return 0; 864 } 865 866 /** 867 * Read a flash entry from the fdt 868 * 869 * @param blob FDT blob 870 * @param node Offset of node to read 871 * @param name Name of node being read 872 * @param entry Place to put offset and size of this node 873 * @return 0 if ok, -ve on error 874 */ 875 int fdtdec_read_fmap_entry(const void *blob, int node, const char *name, 876 struct fmap_entry *entry) 877 { 878 const char *prop; 879 u32 reg[2]; 880 881 if (fdtdec_get_int_array(blob, node, "reg", reg, 2)) { 882 debug("Node '%s' has bad/missing 'reg' property\n", name); 883 return -FDT_ERR_NOTFOUND; 884 } 885 entry->offset = reg[0]; 886 entry->length = reg[1]; 887 entry->used = fdtdec_get_int(blob, node, "used", entry->length); 888 prop = fdt_getprop(blob, node, "compress", NULL); 889 entry->compress_algo = prop && !strcmp(prop, "lzo") ? 890 FMAP_COMPRESS_LZO : FMAP_COMPRESS_NONE; 891 prop = fdt_getprop(blob, node, "hash", &entry->hash_size); 892 entry->hash_algo = prop ? FMAP_HASH_SHA256 : FMAP_HASH_NONE; 893 entry->hash = (uint8_t *)prop; 894 895 return 0; 896 } 897 898 static u64 fdtdec_get_number(const fdt32_t *ptr, unsigned int cells) 899 { 900 u64 number = 0; 901 902 while (cells--) 903 number = (number << 32) | fdt32_to_cpu(*ptr++); 904 905 return number; 906 } 907 908 int fdt_get_resource(const void *fdt, int node, const char *property, 909 unsigned int index, struct fdt_resource *res) 910 { 911 const fdt32_t *ptr, *end; 912 int na, ns, len, parent; 913 unsigned int i = 0; 914 915 parent = fdt_parent_offset(fdt, node); 916 if (parent < 0) 917 return parent; 918 919 na = fdt_address_cells(fdt, parent); 920 ns = fdt_size_cells(fdt, parent); 921 922 ptr = fdt_getprop(fdt, node, property, &len); 923 if (!ptr) 924 return len; 925 926 end = ptr + len / sizeof(*ptr); 927 928 while (ptr + na + ns <= end) { 929 if (i == index) { 930 res->start = res->end = fdtdec_get_number(ptr, na); 931 res->end += fdtdec_get_number(&ptr[na], ns) - 1; 932 return 0; 933 } 934 935 ptr += na + ns; 936 i++; 937 } 938 939 return -FDT_ERR_NOTFOUND; 940 } 941 942 int fdt_get_named_resource(const void *fdt, int node, const char *property, 943 const char *prop_names, const char *name, 944 struct fdt_resource *res) 945 { 946 int index; 947 948 index = fdt_find_string(fdt, node, prop_names, name); 949 if (index < 0) 950 return index; 951 952 return fdt_get_resource(fdt, node, property, index, res); 953 } 954 955 int fdtdec_decode_memory_region(const void *blob, int config_node, 956 const char *mem_type, const char *suffix, 957 fdt_addr_t *basep, fdt_size_t *sizep) 958 { 959 char prop_name[50]; 960 const char *mem; 961 fdt_size_t size, offset_size; 962 fdt_addr_t base, offset; 963 int node; 964 965 if (config_node == -1) { 966 config_node = fdt_path_offset(blob, "/config"); 967 if (config_node < 0) { 968 debug("%s: Cannot find /config node\n", __func__); 969 return -ENOENT; 970 } 971 } 972 if (!suffix) 973 suffix = ""; 974 975 snprintf(prop_name, sizeof(prop_name), "%s-memory%s", mem_type, 976 suffix); 977 mem = fdt_getprop(blob, config_node, prop_name, NULL); 978 if (!mem) { 979 debug("%s: No memory type for '%s', using /memory\n", __func__, 980 prop_name); 981 mem = "/memory"; 982 } 983 984 node = fdt_path_offset(blob, mem); 985 if (node < 0) { 986 debug("%s: Failed to find node '%s': %s\n", __func__, mem, 987 fdt_strerror(node)); 988 return -ENOENT; 989 } 990 991 /* 992 * Not strictly correct - the memory may have multiple banks. We just 993 * use the first 994 */ 995 if (fdtdec_decode_region(blob, node, "reg", &base, &size)) { 996 debug("%s: Failed to decode memory region %s\n", __func__, 997 mem); 998 return -EINVAL; 999 } 1000 1001 snprintf(prop_name, sizeof(prop_name), "%s-offset%s", mem_type, 1002 suffix); 1003 if (fdtdec_decode_region(blob, config_node, prop_name, &offset, 1004 &offset_size)) { 1005 debug("%s: Failed to decode memory region '%s'\n", __func__, 1006 prop_name); 1007 return -EINVAL; 1008 } 1009 1010 *basep = base + offset; 1011 *sizep = offset_size; 1012 1013 return 0; 1014 } 1015 #endif 1016