xref: /openbmc/u-boot/lib/fdtdec.c (revision 9bbd2132e3af95ac225f3641b69bd129da11457f)
1 /*
2  * Copyright (c) 2011 The Chromium OS Authors.
3  * SPDX-License-Identifier:	GPL-2.0+
4  */
5 
6 #ifndef USE_HOSTCC
7 #include <common.h>
8 #include <errno.h>
9 #include <serial.h>
10 #include <libfdt.h>
11 #include <fdtdec.h>
12 #include <asm/sections.h>
13 #include <linux/ctype.h>
14 
15 DECLARE_GLOBAL_DATA_PTR;
16 
17 /*
18  * Here are the type we know about. One day we might allow drivers to
19  * register. For now we just put them here. The COMPAT macro allows us to
20  * turn this into a sparse list later, and keeps the ID with the name.
21  */
22 #define COMPAT(id, name) name
23 static const char * const compat_names[COMPAT_COUNT] = {
24 	COMPAT(UNKNOWN, "<none>"),
25 	COMPAT(NVIDIA_TEGRA20_EMC, "nvidia,tegra20-emc"),
26 	COMPAT(NVIDIA_TEGRA20_EMC_TABLE, "nvidia,tegra20-emc-table"),
27 	COMPAT(NVIDIA_TEGRA20_KBC, "nvidia,tegra20-kbc"),
28 	COMPAT(NVIDIA_TEGRA20_NAND, "nvidia,tegra20-nand"),
29 	COMPAT(NVIDIA_TEGRA20_PWM, "nvidia,tegra20-pwm"),
30 	COMPAT(NVIDIA_TEGRA124_DC, "nvidia,tegra124-dc"),
31 	COMPAT(NVIDIA_TEGRA124_SOR, "nvidia,tegra124-sor"),
32 	COMPAT(NVIDIA_TEGRA124_PMC, "nvidia,tegra124-pmc"),
33 	COMPAT(NVIDIA_TEGRA20_DC, "nvidia,tegra20-dc"),
34 	COMPAT(NVIDIA_TEGRA210_SDMMC, "nvidia,tegra210-sdhci"),
35 	COMPAT(NVIDIA_TEGRA124_SDMMC, "nvidia,tegra124-sdhci"),
36 	COMPAT(NVIDIA_TEGRA30_SDMMC, "nvidia,tegra30-sdhci"),
37 	COMPAT(NVIDIA_TEGRA20_SDMMC, "nvidia,tegra20-sdhci"),
38 	COMPAT(NVIDIA_TEGRA124_PCIE, "nvidia,tegra124-pcie"),
39 	COMPAT(NVIDIA_TEGRA30_PCIE, "nvidia,tegra30-pcie"),
40 	COMPAT(NVIDIA_TEGRA20_PCIE, "nvidia,tegra20-pcie"),
41 	COMPAT(NVIDIA_TEGRA124_XUSB_PADCTL, "nvidia,tegra124-xusb-padctl"),
42 	COMPAT(NVIDIA_TEGRA210_XUSB_PADCTL, "nvidia,tegra210-xusb-padctl"),
43 	COMPAT(SMSC_LAN9215, "smsc,lan9215"),
44 	COMPAT(SAMSUNG_EXYNOS5_SROMC, "samsung,exynos-sromc"),
45 	COMPAT(SAMSUNG_S3C2440_I2C, "samsung,s3c2440-i2c"),
46 	COMPAT(SAMSUNG_EXYNOS5_SOUND, "samsung,exynos-sound"),
47 	COMPAT(WOLFSON_WM8994_CODEC, "wolfson,wm8994-codec"),
48 	COMPAT(GOOGLE_CROS_EC_KEYB, "google,cros-ec-keyb"),
49 	COMPAT(SAMSUNG_EXYNOS_USB_PHY, "samsung,exynos-usb-phy"),
50 	COMPAT(SAMSUNG_EXYNOS5_USB3_PHY, "samsung,exynos5250-usb3-phy"),
51 	COMPAT(SAMSUNG_EXYNOS_TMU, "samsung,exynos-tmu"),
52 	COMPAT(SAMSUNG_EXYNOS_FIMD, "samsung,exynos-fimd"),
53 	COMPAT(SAMSUNG_EXYNOS_MIPI_DSI, "samsung,exynos-mipi-dsi"),
54 	COMPAT(SAMSUNG_EXYNOS5_DP, "samsung,exynos5-dp"),
55 	COMPAT(SAMSUNG_EXYNOS_DWMMC, "samsung,exynos-dwmmc"),
56 	COMPAT(SAMSUNG_EXYNOS_MMC, "samsung,exynos-mmc"),
57 	COMPAT(SAMSUNG_EXYNOS_SERIAL, "samsung,exynos4210-uart"),
58 	COMPAT(MAXIM_MAX77686_PMIC, "maxim,max77686"),
59 	COMPAT(GENERIC_SPI_FLASH, "spi-flash"),
60 	COMPAT(MAXIM_98095_CODEC, "maxim,max98095-codec"),
61 	COMPAT(INFINEON_SLB9635_TPM, "infineon,slb9635-tpm"),
62 	COMPAT(INFINEON_SLB9645_TPM, "infineon,slb9645tt"),
63 	COMPAT(SAMSUNG_EXYNOS5_I2C, "samsung,exynos5-hsi2c"),
64 	COMPAT(SANDBOX_LCD_SDL, "sandbox,lcd-sdl"),
65 	COMPAT(SAMSUNG_EXYNOS_SYSMMU, "samsung,sysmmu-v3.3"),
66 	COMPAT(INTEL_MICROCODE, "intel,microcode"),
67 	COMPAT(MEMORY_SPD, "memory-spd"),
68 	COMPAT(INTEL_PANTHERPOINT_AHCI, "intel,pantherpoint-ahci"),
69 	COMPAT(INTEL_MODEL_206AX, "intel,model-206ax"),
70 	COMPAT(INTEL_GMA, "intel,gma"),
71 	COMPAT(AMS_AS3722, "ams,as3722"),
72 	COMPAT(INTEL_ICH_SPI, "intel,ich-spi"),
73 	COMPAT(INTEL_QRK_MRC, "intel,quark-mrc"),
74 	COMPAT(INTEL_X86_PINCTRL, "intel,x86-pinctrl"),
75 	COMPAT(SOCIONEXT_XHCI, "socionext,uniphier-xhci"),
76 	COMPAT(COMPAT_INTEL_PCH, "intel,bd82x6x"),
77 	COMPAT(COMPAT_INTEL_IRQ_ROUTER, "intel,irq-router"),
78 };
79 
80 const char *fdtdec_get_compatible(enum fdt_compat_id id)
81 {
82 	/* We allow reading of the 'unknown' ID for testing purposes */
83 	assert(id >= 0 && id < COMPAT_COUNT);
84 	return compat_names[id];
85 }
86 
87 fdt_addr_t fdtdec_get_addr_size(const void *blob, int node,
88 		const char *prop_name, fdt_size_t *sizep)
89 {
90 	const fdt32_t *ptr, *end;
91 	int parent, na, ns, len;
92 	fdt_addr_t addr;
93 
94 	debug("%s: %s: ", __func__, prop_name);
95 
96 	parent = fdt_parent_offset(blob, node);
97 	if (parent < 0) {
98 		debug("(no parent found)\n");
99 		return FDT_ADDR_T_NONE;
100 	}
101 
102 	na = fdt_address_cells(blob, parent);
103 	ns = fdt_size_cells(blob, parent);
104 
105 	ptr = fdt_getprop(blob, node, prop_name, &len);
106 	if (!ptr) {
107 		debug("(not found)\n");
108 		return FDT_ADDR_T_NONE;
109 	}
110 
111 	end = ptr + len / sizeof(*ptr);
112 
113 	if (ptr + na + ns > end) {
114 		debug("(not enough data: expected %d bytes, got %d bytes)\n",
115 		      (na + ns) * 4, len);
116 		return FDT_ADDR_T_NONE;
117 	}
118 
119 	addr = fdtdec_get_number(ptr, na);
120 
121 	if (sizep) {
122 		*sizep = fdtdec_get_number(ptr + na, ns);
123 		debug("addr=%pa, size=%pa\n", &addr, sizep);
124 	} else {
125 		debug("%pa\n", &addr);
126 	}
127 
128 	return addr;
129 }
130 
131 fdt_addr_t fdtdec_get_addr(const void *blob, int node,
132 		const char *prop_name)
133 {
134 	return fdtdec_get_addr_size(blob, node, prop_name, NULL);
135 }
136 
137 #ifdef CONFIG_PCI
138 int fdtdec_get_pci_addr(const void *blob, int node, enum fdt_pci_space type,
139 		const char *prop_name, struct fdt_pci_addr *addr)
140 {
141 	const u32 *cell;
142 	int len;
143 	int ret = -ENOENT;
144 
145 	debug("%s: %s: ", __func__, prop_name);
146 
147 	/*
148 	 * If we follow the pci bus bindings strictly, we should check
149 	 * the value of the node's parent node's #address-cells and
150 	 * #size-cells. They need to be 3 and 2 accordingly. However,
151 	 * for simplicity we skip the check here.
152 	 */
153 	cell = fdt_getprop(blob, node, prop_name, &len);
154 	if (!cell)
155 		goto fail;
156 
157 	if ((len % FDT_PCI_REG_SIZE) == 0) {
158 		int num = len / FDT_PCI_REG_SIZE;
159 		int i;
160 
161 		for (i = 0; i < num; i++) {
162 			debug("pci address #%d: %08lx %08lx %08lx\n", i,
163 			      (ulong)fdt_addr_to_cpu(cell[0]),
164 			      (ulong)fdt_addr_to_cpu(cell[1]),
165 			      (ulong)fdt_addr_to_cpu(cell[2]));
166 			if ((fdt_addr_to_cpu(*cell) & type) == type) {
167 				addr->phys_hi = fdt_addr_to_cpu(cell[0]);
168 				addr->phys_mid = fdt_addr_to_cpu(cell[1]);
169 				addr->phys_lo = fdt_addr_to_cpu(cell[2]);
170 				break;
171 			} else {
172 				cell += (FDT_PCI_ADDR_CELLS +
173 					 FDT_PCI_SIZE_CELLS);
174 			}
175 		}
176 
177 		if (i == num) {
178 			ret = -ENXIO;
179 			goto fail;
180 		}
181 
182 		return 0;
183 	} else {
184 		ret = -EINVAL;
185 	}
186 
187 fail:
188 	debug("(not found)\n");
189 	return ret;
190 }
191 
192 int fdtdec_get_pci_vendev(const void *blob, int node, u16 *vendor, u16 *device)
193 {
194 	const char *list, *end;
195 	int len;
196 
197 	list = fdt_getprop(blob, node, "compatible", &len);
198 	if (!list)
199 		return -ENOENT;
200 
201 	end = list + len;
202 	while (list < end) {
203 		char *s;
204 
205 		len = strlen(list);
206 		if (len >= strlen("pciVVVV,DDDD")) {
207 			s = strstr(list, "pci");
208 
209 			/*
210 			 * check if the string is something like pciVVVV,DDDD.RR
211 			 * or just pciVVVV,DDDD
212 			 */
213 			if (s && s[7] == ',' &&
214 			    (s[12] == '.' || s[12] == 0)) {
215 				s += 3;
216 				*vendor = simple_strtol(s, NULL, 16);
217 
218 				s += 5;
219 				*device = simple_strtol(s, NULL, 16);
220 
221 				return 0;
222 			}
223 		} else {
224 			list += (len + 1);
225 		}
226 	}
227 
228 	return -ENOENT;
229 }
230 
231 int fdtdec_get_pci_bdf(const void *blob, int node,
232 		struct fdt_pci_addr *addr, pci_dev_t *bdf)
233 {
234 	u16 dt_vendor, dt_device, vendor, device;
235 	int ret;
236 
237 	/* get vendor id & device id from the compatible string */
238 	ret = fdtdec_get_pci_vendev(blob, node, &dt_vendor, &dt_device);
239 	if (ret)
240 		return ret;
241 
242 	/* extract the bdf from fdt_pci_addr */
243 	*bdf = addr->phys_hi & 0xffff00;
244 
245 	/* read vendor id & device id based on bdf */
246 	pci_read_config_word(*bdf, PCI_VENDOR_ID, &vendor);
247 	pci_read_config_word(*bdf, PCI_DEVICE_ID, &device);
248 
249 	/*
250 	 * Note there are two places in the device tree to fully describe
251 	 * a pci device: one is via compatible string with a format of
252 	 * "pciVVVV,DDDD" and the other one is the bdf numbers encoded in
253 	 * the device node's reg address property. We read the vendor id
254 	 * and device id based on bdf and compare the values with the
255 	 * "VVVV,DDDD". If they are the same, then we are good to use bdf
256 	 * to read device's bar. But if they are different, we have to rely
257 	 * on the vendor id and device id extracted from the compatible
258 	 * string and locate the real bdf by pci_find_device(). This is
259 	 * because normally we may only know device's device number and
260 	 * function number when writing device tree. The bus number is
261 	 * dynamically assigned during the pci enumeration process.
262 	 */
263 	if ((dt_vendor != vendor) || (dt_device != device)) {
264 		*bdf = pci_find_device(dt_vendor, dt_device, 0);
265 		if (*bdf == -1)
266 			return -ENODEV;
267 	}
268 
269 	return 0;
270 }
271 
272 int fdtdec_get_pci_bar32(const void *blob, int node,
273 		struct fdt_pci_addr *addr, u32 *bar)
274 {
275 	pci_dev_t bdf;
276 	int barnum;
277 	int ret;
278 
279 	/* get pci devices's bdf */
280 	ret = fdtdec_get_pci_bdf(blob, node, addr, &bdf);
281 	if (ret)
282 		return ret;
283 
284 	/* extract the bar number from fdt_pci_addr */
285 	barnum = addr->phys_hi & 0xff;
286 	if ((barnum < PCI_BASE_ADDRESS_0) || (barnum > PCI_CARDBUS_CIS))
287 		return -EINVAL;
288 
289 	barnum = (barnum - PCI_BASE_ADDRESS_0) / 4;
290 	*bar = pci_read_bar32(pci_bus_to_hose(PCI_BUS(bdf)), bdf, barnum);
291 
292 	return 0;
293 }
294 #endif
295 
296 uint64_t fdtdec_get_uint64(const void *blob, int node, const char *prop_name,
297 		uint64_t default_val)
298 {
299 	const uint64_t *cell64;
300 	int length;
301 
302 	cell64 = fdt_getprop(blob, node, prop_name, &length);
303 	if (!cell64 || length < sizeof(*cell64))
304 		return default_val;
305 
306 	return fdt64_to_cpu(*cell64);
307 }
308 
309 int fdtdec_get_is_enabled(const void *blob, int node)
310 {
311 	const char *cell;
312 
313 	/*
314 	 * It should say "okay", so only allow that. Some fdts use "ok" but
315 	 * this is a bug. Please fix your device tree source file. See here
316 	 * for discussion:
317 	 *
318 	 * http://www.mail-archive.com/u-boot@lists.denx.de/msg71598.html
319 	 */
320 	cell = fdt_getprop(blob, node, "status", NULL);
321 	if (cell)
322 		return 0 == strcmp(cell, "okay");
323 	return 1;
324 }
325 
326 enum fdt_compat_id fdtdec_lookup(const void *blob, int node)
327 {
328 	enum fdt_compat_id id;
329 
330 	/* Search our drivers */
331 	for (id = COMPAT_UNKNOWN; id < COMPAT_COUNT; id++)
332 		if (0 == fdt_node_check_compatible(blob, node,
333 				compat_names[id]))
334 			return id;
335 	return COMPAT_UNKNOWN;
336 }
337 
338 int fdtdec_next_compatible(const void *blob, int node,
339 		enum fdt_compat_id id)
340 {
341 	return fdt_node_offset_by_compatible(blob, node, compat_names[id]);
342 }
343 
344 int fdtdec_next_compatible_subnode(const void *blob, int node,
345 		enum fdt_compat_id id, int *depthp)
346 {
347 	do {
348 		node = fdt_next_node(blob, node, depthp);
349 	} while (*depthp > 1);
350 
351 	/* If this is a direct subnode, and compatible, return it */
352 	if (*depthp == 1 && 0 == fdt_node_check_compatible(
353 						blob, node, compat_names[id]))
354 		return node;
355 
356 	return -FDT_ERR_NOTFOUND;
357 }
358 
359 int fdtdec_next_alias(const void *blob, const char *name,
360 		enum fdt_compat_id id, int *upto)
361 {
362 #define MAX_STR_LEN 20
363 	char str[MAX_STR_LEN + 20];
364 	int node, err;
365 
366 	/* snprintf() is not available */
367 	assert(strlen(name) < MAX_STR_LEN);
368 	sprintf(str, "%.*s%d", MAX_STR_LEN, name, *upto);
369 	node = fdt_path_offset(blob, str);
370 	if (node < 0)
371 		return node;
372 	err = fdt_node_check_compatible(blob, node, compat_names[id]);
373 	if (err < 0)
374 		return err;
375 	if (err)
376 		return -FDT_ERR_NOTFOUND;
377 	(*upto)++;
378 	return node;
379 }
380 
381 int fdtdec_find_aliases_for_id(const void *blob, const char *name,
382 			enum fdt_compat_id id, int *node_list, int maxcount)
383 {
384 	memset(node_list, '\0', sizeof(*node_list) * maxcount);
385 
386 	return fdtdec_add_aliases_for_id(blob, name, id, node_list, maxcount);
387 }
388 
389 /* TODO: Can we tighten this code up a little? */
390 int fdtdec_add_aliases_for_id(const void *blob, const char *name,
391 			enum fdt_compat_id id, int *node_list, int maxcount)
392 {
393 	int name_len = strlen(name);
394 	int nodes[maxcount];
395 	int num_found = 0;
396 	int offset, node;
397 	int alias_node;
398 	int count;
399 	int i, j;
400 
401 	/* find the alias node if present */
402 	alias_node = fdt_path_offset(blob, "/aliases");
403 
404 	/*
405 	 * start with nothing, and we can assume that the root node can't
406 	 * match
407 	 */
408 	memset(nodes, '\0', sizeof(nodes));
409 
410 	/* First find all the compatible nodes */
411 	for (node = count = 0; node >= 0 && count < maxcount;) {
412 		node = fdtdec_next_compatible(blob, node, id);
413 		if (node >= 0)
414 			nodes[count++] = node;
415 	}
416 	if (node >= 0)
417 		debug("%s: warning: maxcount exceeded with alias '%s'\n",
418 		       __func__, name);
419 
420 	/* Now find all the aliases */
421 	for (offset = fdt_first_property_offset(blob, alias_node);
422 			offset > 0;
423 			offset = fdt_next_property_offset(blob, offset)) {
424 		const struct fdt_property *prop;
425 		const char *path;
426 		int number;
427 		int found;
428 
429 		node = 0;
430 		prop = fdt_get_property_by_offset(blob, offset, NULL);
431 		path = fdt_string(blob, fdt32_to_cpu(prop->nameoff));
432 		if (prop->len && 0 == strncmp(path, name, name_len))
433 			node = fdt_path_offset(blob, prop->data);
434 		if (node <= 0)
435 			continue;
436 
437 		/* Get the alias number */
438 		number = simple_strtoul(path + name_len, NULL, 10);
439 		if (number < 0 || number >= maxcount) {
440 			debug("%s: warning: alias '%s' is out of range\n",
441 			       __func__, path);
442 			continue;
443 		}
444 
445 		/* Make sure the node we found is actually in our list! */
446 		found = -1;
447 		for (j = 0; j < count; j++)
448 			if (nodes[j] == node) {
449 				found = j;
450 				break;
451 			}
452 
453 		if (found == -1) {
454 			debug("%s: warning: alias '%s' points to a node "
455 				"'%s' that is missing or is not compatible "
456 				" with '%s'\n", __func__, path,
457 				fdt_get_name(blob, node, NULL),
458 			       compat_names[id]);
459 			continue;
460 		}
461 
462 		/*
463 		 * Add this node to our list in the right place, and mark
464 		 * it as done.
465 		 */
466 		if (fdtdec_get_is_enabled(blob, node)) {
467 			if (node_list[number]) {
468 				debug("%s: warning: alias '%s' requires that "
469 				      "a node be placed in the list in a "
470 				      "position which is already filled by "
471 				      "node '%s'\n", __func__, path,
472 				      fdt_get_name(blob, node, NULL));
473 				continue;
474 			}
475 			node_list[number] = node;
476 			if (number >= num_found)
477 				num_found = number + 1;
478 		}
479 		nodes[found] = 0;
480 	}
481 
482 	/* Add any nodes not mentioned by an alias */
483 	for (i = j = 0; i < maxcount; i++) {
484 		if (!node_list[i]) {
485 			for (; j < maxcount; j++)
486 				if (nodes[j] &&
487 					fdtdec_get_is_enabled(blob, nodes[j]))
488 					break;
489 
490 			/* Have we run out of nodes to add? */
491 			if (j == maxcount)
492 				break;
493 
494 			assert(!node_list[i]);
495 			node_list[i] = nodes[j++];
496 			if (i >= num_found)
497 				num_found = i + 1;
498 		}
499 	}
500 
501 	return num_found;
502 }
503 
504 int fdtdec_get_alias_seq(const void *blob, const char *base, int offset,
505 			 int *seqp)
506 {
507 	int base_len = strlen(base);
508 	const char *find_name;
509 	int find_namelen;
510 	int prop_offset;
511 	int aliases;
512 
513 	find_name = fdt_get_name(blob, offset, &find_namelen);
514 	debug("Looking for '%s' at %d, name %s\n", base, offset, find_name);
515 
516 	aliases = fdt_path_offset(blob, "/aliases");
517 	for (prop_offset = fdt_first_property_offset(blob, aliases);
518 	     prop_offset > 0;
519 	     prop_offset = fdt_next_property_offset(blob, prop_offset)) {
520 		const char *prop;
521 		const char *name;
522 		const char *slash;
523 		int len, val;
524 
525 		prop = fdt_getprop_by_offset(blob, prop_offset, &name, &len);
526 		debug("   - %s, %s\n", name, prop);
527 		if (len < find_namelen || *prop != '/' || prop[len - 1] ||
528 		    strncmp(name, base, base_len))
529 			continue;
530 
531 		slash = strrchr(prop, '/');
532 		if (strcmp(slash + 1, find_name))
533 			continue;
534 		val = trailing_strtol(name);
535 		if (val != -1) {
536 			*seqp = val;
537 			debug("Found seq %d\n", *seqp);
538 			return 0;
539 		}
540 	}
541 
542 	debug("Not found\n");
543 	return -ENOENT;
544 }
545 
546 int fdtdec_get_chosen_node(const void *blob, const char *name)
547 {
548 	const char *prop;
549 	int chosen_node;
550 	int len;
551 
552 	if (!blob)
553 		return -FDT_ERR_NOTFOUND;
554 	chosen_node = fdt_path_offset(blob, "/chosen");
555 	prop = fdt_getprop(blob, chosen_node, name, &len);
556 	if (!prop)
557 		return -FDT_ERR_NOTFOUND;
558 	return fdt_path_offset(blob, prop);
559 }
560 
561 int fdtdec_check_fdt(void)
562 {
563 	/*
564 	 * We must have an FDT, but we cannot panic() yet since the console
565 	 * is not ready. So for now, just assert(). Boards which need an early
566 	 * FDT (prior to console ready) will need to make their own
567 	 * arrangements and do their own checks.
568 	 */
569 	assert(!fdtdec_prepare_fdt());
570 	return 0;
571 }
572 
573 /*
574  * This function is a little odd in that it accesses global data. At some
575  * point if the architecture board.c files merge this will make more sense.
576  * Even now, it is common code.
577  */
578 int fdtdec_prepare_fdt(void)
579 {
580 	if (!gd->fdt_blob || ((uintptr_t)gd->fdt_blob & 3) ||
581 	    fdt_check_header(gd->fdt_blob)) {
582 #ifdef CONFIG_SPL_BUILD
583 		puts("Missing DTB\n");
584 #else
585 		puts("No valid device tree binary found - please append one to U-Boot binary, use u-boot-dtb.bin or define CONFIG_OF_EMBED. For sandbox, use -d <file.dtb>\n");
586 # ifdef DEBUG
587 		if (gd->fdt_blob) {
588 			printf("fdt_blob=%p\n", gd->fdt_blob);
589 			print_buffer((ulong)gd->fdt_blob, gd->fdt_blob, 4,
590 				     32, 0);
591 		}
592 # endif
593 #endif
594 		return -1;
595 	}
596 	return 0;
597 }
598 
599 int fdtdec_lookup_phandle(const void *blob, int node, const char *prop_name)
600 {
601 	const u32 *phandle;
602 	int lookup;
603 
604 	debug("%s: %s\n", __func__, prop_name);
605 	phandle = fdt_getprop(blob, node, prop_name, NULL);
606 	if (!phandle)
607 		return -FDT_ERR_NOTFOUND;
608 
609 	lookup = fdt_node_offset_by_phandle(blob, fdt32_to_cpu(*phandle));
610 	return lookup;
611 }
612 
613 /**
614  * Look up a property in a node and check that it has a minimum length.
615  *
616  * @param blob		FDT blob
617  * @param node		node to examine
618  * @param prop_name	name of property to find
619  * @param min_len	minimum property length in bytes
620  * @param err		0 if ok, or -FDT_ERR_NOTFOUND if the property is not
621 			found, or -FDT_ERR_BADLAYOUT if not enough data
622  * @return pointer to cell, which is only valid if err == 0
623  */
624 static const void *get_prop_check_min_len(const void *blob, int node,
625 		const char *prop_name, int min_len, int *err)
626 {
627 	const void *cell;
628 	int len;
629 
630 	debug("%s: %s\n", __func__, prop_name);
631 	cell = fdt_getprop(blob, node, prop_name, &len);
632 	if (!cell)
633 		*err = -FDT_ERR_NOTFOUND;
634 	else if (len < min_len)
635 		*err = -FDT_ERR_BADLAYOUT;
636 	else
637 		*err = 0;
638 	return cell;
639 }
640 
641 int fdtdec_get_int_array(const void *blob, int node, const char *prop_name,
642 		u32 *array, int count)
643 {
644 	const u32 *cell;
645 	int i, err = 0;
646 
647 	debug("%s: %s\n", __func__, prop_name);
648 	cell = get_prop_check_min_len(blob, node, prop_name,
649 				      sizeof(u32) * count, &err);
650 	if (!err) {
651 		for (i = 0; i < count; i++)
652 			array[i] = fdt32_to_cpu(cell[i]);
653 	}
654 	return err;
655 }
656 
657 int fdtdec_get_int_array_count(const void *blob, int node,
658 			       const char *prop_name, u32 *array, int count)
659 {
660 	const u32 *cell;
661 	int len, elems;
662 	int i;
663 
664 	debug("%s: %s\n", __func__, prop_name);
665 	cell = fdt_getprop(blob, node, prop_name, &len);
666 	if (!cell)
667 		return -FDT_ERR_NOTFOUND;
668 	elems = len / sizeof(u32);
669 	if (count > elems)
670 		count = elems;
671 	for (i = 0; i < count; i++)
672 		array[i] = fdt32_to_cpu(cell[i]);
673 
674 	return count;
675 }
676 
677 const u32 *fdtdec_locate_array(const void *blob, int node,
678 			       const char *prop_name, int count)
679 {
680 	const u32 *cell;
681 	int err;
682 
683 	cell = get_prop_check_min_len(blob, node, prop_name,
684 				      sizeof(u32) * count, &err);
685 	return err ? NULL : cell;
686 }
687 
688 int fdtdec_get_bool(const void *blob, int node, const char *prop_name)
689 {
690 	const s32 *cell;
691 	int len;
692 
693 	debug("%s: %s\n", __func__, prop_name);
694 	cell = fdt_getprop(blob, node, prop_name, &len);
695 	return cell != NULL;
696 }
697 
698 int fdtdec_parse_phandle_with_args(const void *blob, int src_node,
699 				   const char *list_name,
700 				   const char *cells_name,
701 				   int cell_count, int index,
702 				   struct fdtdec_phandle_args *out_args)
703 {
704 	const __be32 *list, *list_end;
705 	int rc = 0, size, cur_index = 0;
706 	uint32_t count = 0;
707 	int node = -1;
708 	int phandle;
709 
710 	/* Retrieve the phandle list property */
711 	list = fdt_getprop(blob, src_node, list_name, &size);
712 	if (!list)
713 		return -ENOENT;
714 	list_end = list + size / sizeof(*list);
715 
716 	/* Loop over the phandles until all the requested entry is found */
717 	while (list < list_end) {
718 		rc = -EINVAL;
719 		count = 0;
720 
721 		/*
722 		 * If phandle is 0, then it is an empty entry with no
723 		 * arguments.  Skip forward to the next entry.
724 		 */
725 		phandle = be32_to_cpup(list++);
726 		if (phandle) {
727 			/*
728 			 * Find the provider node and parse the #*-cells
729 			 * property to determine the argument length.
730 			 *
731 			 * This is not needed if the cell count is hard-coded
732 			 * (i.e. cells_name not set, but cell_count is set),
733 			 * except when we're going to return the found node
734 			 * below.
735 			 */
736 			if (cells_name || cur_index == index) {
737 				node = fdt_node_offset_by_phandle(blob,
738 								  phandle);
739 				if (!node) {
740 					debug("%s: could not find phandle\n",
741 					      fdt_get_name(blob, src_node,
742 							   NULL));
743 					goto err;
744 				}
745 			}
746 
747 			if (cells_name) {
748 				count = fdtdec_get_int(blob, node, cells_name,
749 						       -1);
750 				if (count == -1) {
751 					debug("%s: could not get %s for %s\n",
752 					      fdt_get_name(blob, src_node,
753 							   NULL),
754 					      cells_name,
755 					      fdt_get_name(blob, node,
756 							   NULL));
757 					goto err;
758 				}
759 			} else {
760 				count = cell_count;
761 			}
762 
763 			/*
764 			 * Make sure that the arguments actually fit in the
765 			 * remaining property data length
766 			 */
767 			if (list + count > list_end) {
768 				debug("%s: arguments longer than property\n",
769 				      fdt_get_name(blob, src_node, NULL));
770 				goto err;
771 			}
772 		}
773 
774 		/*
775 		 * All of the error cases above bail out of the loop, so at
776 		 * this point, the parsing is successful. If the requested
777 		 * index matches, then fill the out_args structure and return,
778 		 * or return -ENOENT for an empty entry.
779 		 */
780 		rc = -ENOENT;
781 		if (cur_index == index) {
782 			if (!phandle)
783 				goto err;
784 
785 			if (out_args) {
786 				int i;
787 
788 				if (count > MAX_PHANDLE_ARGS) {
789 					debug("%s: too many arguments %d\n",
790 					      fdt_get_name(blob, src_node,
791 							   NULL), count);
792 					count = MAX_PHANDLE_ARGS;
793 				}
794 				out_args->node = node;
795 				out_args->args_count = count;
796 				for (i = 0; i < count; i++) {
797 					out_args->args[i] =
798 							be32_to_cpup(list++);
799 				}
800 			}
801 
802 			/* Found it! return success */
803 			return 0;
804 		}
805 
806 		node = -1;
807 		list += count;
808 		cur_index++;
809 	}
810 
811 	/*
812 	 * Result will be one of:
813 	 * -ENOENT : index is for empty phandle
814 	 * -EINVAL : parsing error on data
815 	 * [1..n]  : Number of phandle (count mode; when index = -1)
816 	 */
817 	rc = index < 0 ? cur_index : -ENOENT;
818  err:
819 	return rc;
820 }
821 
822 int fdtdec_get_byte_array(const void *blob, int node, const char *prop_name,
823 		u8 *array, int count)
824 {
825 	const u8 *cell;
826 	int err;
827 
828 	cell = get_prop_check_min_len(blob, node, prop_name, count, &err);
829 	if (!err)
830 		memcpy(array, cell, count);
831 	return err;
832 }
833 
834 const u8 *fdtdec_locate_byte_array(const void *blob, int node,
835 			     const char *prop_name, int count)
836 {
837 	const u8 *cell;
838 	int err;
839 
840 	cell = get_prop_check_min_len(blob, node, prop_name, count, &err);
841 	if (err)
842 		return NULL;
843 	return cell;
844 }
845 
846 int fdtdec_get_config_int(const void *blob, const char *prop_name,
847 		int default_val)
848 {
849 	int config_node;
850 
851 	debug("%s: %s\n", __func__, prop_name);
852 	config_node = fdt_path_offset(blob, "/config");
853 	if (config_node < 0)
854 		return default_val;
855 	return fdtdec_get_int(blob, config_node, prop_name, default_val);
856 }
857 
858 int fdtdec_get_config_bool(const void *blob, const char *prop_name)
859 {
860 	int config_node;
861 	const void *prop;
862 
863 	debug("%s: %s\n", __func__, prop_name);
864 	config_node = fdt_path_offset(blob, "/config");
865 	if (config_node < 0)
866 		return 0;
867 	prop = fdt_get_property(blob, config_node, prop_name, NULL);
868 
869 	return prop != NULL;
870 }
871 
872 char *fdtdec_get_config_string(const void *blob, const char *prop_name)
873 {
874 	const char *nodep;
875 	int nodeoffset;
876 	int len;
877 
878 	debug("%s: %s\n", __func__, prop_name);
879 	nodeoffset = fdt_path_offset(blob, "/config");
880 	if (nodeoffset < 0)
881 		return NULL;
882 
883 	nodep = fdt_getprop(blob, nodeoffset, prop_name, &len);
884 	if (!nodep)
885 		return NULL;
886 
887 	return (char *)nodep;
888 }
889 
890 int fdtdec_decode_region(const void *blob, int node, const char *prop_name,
891 			 fdt_addr_t *basep, fdt_size_t *sizep)
892 {
893 	const fdt_addr_t *cell;
894 	int len;
895 
896 	debug("%s: %s: %s\n", __func__, fdt_get_name(blob, node, NULL),
897 	      prop_name);
898 	cell = fdt_getprop(blob, node, prop_name, &len);
899 	if (!cell || (len < sizeof(fdt_addr_t) * 2)) {
900 		debug("cell=%p, len=%d\n", cell, len);
901 		return -1;
902 	}
903 
904 	*basep = fdt_addr_to_cpu(*cell);
905 	*sizep = fdt_size_to_cpu(cell[1]);
906 	debug("%s: base=%08lx, size=%lx\n", __func__, (ulong)*basep,
907 	      (ulong)*sizep);
908 
909 	return 0;
910 }
911 
912 /**
913  * Read a flash entry from the fdt
914  *
915  * @param blob		FDT blob
916  * @param node		Offset of node to read
917  * @param name		Name of node being read
918  * @param entry		Place to put offset and size of this node
919  * @return 0 if ok, -ve on error
920  */
921 int fdtdec_read_fmap_entry(const void *blob, int node, const char *name,
922 			   struct fmap_entry *entry)
923 {
924 	const char *prop;
925 	u32 reg[2];
926 
927 	if (fdtdec_get_int_array(blob, node, "reg", reg, 2)) {
928 		debug("Node '%s' has bad/missing 'reg' property\n", name);
929 		return -FDT_ERR_NOTFOUND;
930 	}
931 	entry->offset = reg[0];
932 	entry->length = reg[1];
933 	entry->used = fdtdec_get_int(blob, node, "used", entry->length);
934 	prop = fdt_getprop(blob, node, "compress", NULL);
935 	entry->compress_algo = prop && !strcmp(prop, "lzo") ?
936 		FMAP_COMPRESS_LZO : FMAP_COMPRESS_NONE;
937 	prop = fdt_getprop(blob, node, "hash", &entry->hash_size);
938 	entry->hash_algo = prop ? FMAP_HASH_SHA256 : FMAP_HASH_NONE;
939 	entry->hash = (uint8_t *)prop;
940 
941 	return 0;
942 }
943 
944 u64 fdtdec_get_number(const fdt32_t *ptr, unsigned int cells)
945 {
946 	u64 number = 0;
947 
948 	while (cells--)
949 		number = (number << 32) | fdt32_to_cpu(*ptr++);
950 
951 	return number;
952 }
953 
954 int fdt_get_resource(const void *fdt, int node, const char *property,
955 		     unsigned int index, struct fdt_resource *res)
956 {
957 	const fdt32_t *ptr, *end;
958 	int na, ns, len, parent;
959 	unsigned int i = 0;
960 
961 	parent = fdt_parent_offset(fdt, node);
962 	if (parent < 0)
963 		return parent;
964 
965 	na = fdt_address_cells(fdt, parent);
966 	ns = fdt_size_cells(fdt, parent);
967 
968 	ptr = fdt_getprop(fdt, node, property, &len);
969 	if (!ptr)
970 		return len;
971 
972 	end = ptr + len / sizeof(*ptr);
973 
974 	while (ptr + na + ns <= end) {
975 		if (i == index) {
976 			res->start = res->end = fdtdec_get_number(ptr, na);
977 			res->end += fdtdec_get_number(&ptr[na], ns) - 1;
978 			return 0;
979 		}
980 
981 		ptr += na + ns;
982 		i++;
983 	}
984 
985 	return -FDT_ERR_NOTFOUND;
986 }
987 
988 int fdt_get_named_resource(const void *fdt, int node, const char *property,
989 			   const char *prop_names, const char *name,
990 			   struct fdt_resource *res)
991 {
992 	int index;
993 
994 	index = fdt_find_string(fdt, node, prop_names, name);
995 	if (index < 0)
996 		return index;
997 
998 	return fdt_get_resource(fdt, node, property, index, res);
999 }
1000 
1001 int fdtdec_decode_memory_region(const void *blob, int config_node,
1002 				const char *mem_type, const char *suffix,
1003 				fdt_addr_t *basep, fdt_size_t *sizep)
1004 {
1005 	char prop_name[50];
1006 	const char *mem;
1007 	fdt_size_t size, offset_size;
1008 	fdt_addr_t base, offset;
1009 	int node;
1010 
1011 	if (config_node == -1) {
1012 		config_node = fdt_path_offset(blob, "/config");
1013 		if (config_node < 0) {
1014 			debug("%s: Cannot find /config node\n", __func__);
1015 			return -ENOENT;
1016 		}
1017 	}
1018 	if (!suffix)
1019 		suffix = "";
1020 
1021 	snprintf(prop_name, sizeof(prop_name), "%s-memory%s", mem_type,
1022 		 suffix);
1023 	mem = fdt_getprop(blob, config_node, prop_name, NULL);
1024 	if (!mem) {
1025 		debug("%s: No memory type for '%s', using /memory\n", __func__,
1026 		      prop_name);
1027 		mem = "/memory";
1028 	}
1029 
1030 	node = fdt_path_offset(blob, mem);
1031 	if (node < 0) {
1032 		debug("%s: Failed to find node '%s': %s\n", __func__, mem,
1033 		      fdt_strerror(node));
1034 		return -ENOENT;
1035 	}
1036 
1037 	/*
1038 	 * Not strictly correct - the memory may have multiple banks. We just
1039 	 * use the first
1040 	 */
1041 	if (fdtdec_decode_region(blob, node, "reg", &base, &size)) {
1042 		debug("%s: Failed to decode memory region %s\n", __func__,
1043 		      mem);
1044 		return -EINVAL;
1045 	}
1046 
1047 	snprintf(prop_name, sizeof(prop_name), "%s-offset%s", mem_type,
1048 		 suffix);
1049 	if (fdtdec_decode_region(blob, config_node, prop_name, &offset,
1050 				 &offset_size)) {
1051 		debug("%s: Failed to decode memory region '%s'\n", __func__,
1052 		      prop_name);
1053 		return -EINVAL;
1054 	}
1055 
1056 	*basep = base + offset;
1057 	*sizep = offset_size;
1058 
1059 	return 0;
1060 }
1061 
1062 static int decode_timing_property(const void *blob, int node, const char *name,
1063 				  struct timing_entry *result)
1064 {
1065 	int length, ret = 0;
1066 	const u32 *prop;
1067 
1068 	prop = fdt_getprop(blob, node, name, &length);
1069 	if (!prop) {
1070 		debug("%s: could not find property %s\n",
1071 		      fdt_get_name(blob, node, NULL), name);
1072 		return length;
1073 	}
1074 
1075 	if (length == sizeof(u32)) {
1076 		result->typ = fdtdec_get_int(blob, node, name, 0);
1077 		result->min = result->typ;
1078 		result->max = result->typ;
1079 	} else {
1080 		ret = fdtdec_get_int_array(blob, node, name, &result->min, 3);
1081 	}
1082 
1083 	return ret;
1084 }
1085 
1086 int fdtdec_decode_display_timing(const void *blob, int parent, int index,
1087 				 struct display_timing *dt)
1088 {
1089 	int i, node, timings_node;
1090 	u32 val = 0;
1091 	int ret = 0;
1092 
1093 	timings_node = fdt_subnode_offset(blob, parent, "display-timings");
1094 	if (timings_node < 0)
1095 		return timings_node;
1096 
1097 	for (i = 0, node = fdt_first_subnode(blob, timings_node);
1098 	     node > 0 && i != index;
1099 	     node = fdt_next_subnode(blob, node))
1100 		i++;
1101 
1102 	if (node < 0)
1103 		return node;
1104 
1105 	memset(dt, 0, sizeof(*dt));
1106 
1107 	ret |= decode_timing_property(blob, node, "hback-porch",
1108 				      &dt->hback_porch);
1109 	ret |= decode_timing_property(blob, node, "hfront-porch",
1110 				      &dt->hfront_porch);
1111 	ret |= decode_timing_property(blob, node, "hactive", &dt->hactive);
1112 	ret |= decode_timing_property(blob, node, "hsync-len", &dt->hsync_len);
1113 	ret |= decode_timing_property(blob, node, "vback-porch",
1114 				      &dt->vback_porch);
1115 	ret |= decode_timing_property(blob, node, "vfront-porch",
1116 				      &dt->vfront_porch);
1117 	ret |= decode_timing_property(blob, node, "vactive", &dt->vactive);
1118 	ret |= decode_timing_property(blob, node, "vsync-len", &dt->vsync_len);
1119 	ret |= decode_timing_property(blob, node, "clock-frequency",
1120 				      &dt->pixelclock);
1121 
1122 	dt->flags = 0;
1123 	val = fdtdec_get_int(blob, node, "vsync-active", -1);
1124 	if (val != -1) {
1125 		dt->flags |= val ? DISPLAY_FLAGS_VSYNC_HIGH :
1126 				DISPLAY_FLAGS_VSYNC_LOW;
1127 	}
1128 	val = fdtdec_get_int(blob, node, "hsync-active", -1);
1129 	if (val != -1) {
1130 		dt->flags |= val ? DISPLAY_FLAGS_HSYNC_HIGH :
1131 				DISPLAY_FLAGS_HSYNC_LOW;
1132 	}
1133 	val = fdtdec_get_int(blob, node, "de-active", -1);
1134 	if (val != -1) {
1135 		dt->flags |= val ? DISPLAY_FLAGS_DE_HIGH :
1136 				DISPLAY_FLAGS_DE_LOW;
1137 	}
1138 	val = fdtdec_get_int(blob, node, "pixelclk-active", -1);
1139 	if (val != -1) {
1140 		dt->flags |= val ? DISPLAY_FLAGS_PIXDATA_POSEDGE :
1141 				DISPLAY_FLAGS_PIXDATA_NEGEDGE;
1142 	}
1143 
1144 	if (fdtdec_get_bool(blob, node, "interlaced"))
1145 		dt->flags |= DISPLAY_FLAGS_INTERLACED;
1146 	if (fdtdec_get_bool(blob, node, "doublescan"))
1147 		dt->flags |= DISPLAY_FLAGS_DOUBLESCAN;
1148 	if (fdtdec_get_bool(blob, node, "doubleclk"))
1149 		dt->flags |= DISPLAY_FLAGS_DOUBLECLK;
1150 
1151 	return 0;
1152 }
1153 
1154 int fdtdec_setup(void)
1155 {
1156 #ifdef CONFIG_OF_CONTROL
1157 # ifdef CONFIG_OF_EMBED
1158 	/* Get a pointer to the FDT */
1159 	gd->fdt_blob = __dtb_dt_begin;
1160 # elif defined CONFIG_OF_SEPARATE
1161 #  ifdef CONFIG_SPL_BUILD
1162 	/* FDT is at end of BSS */
1163 	gd->fdt_blob = (ulong *)&__bss_end;
1164 #  else
1165 	/* FDT is at end of image */
1166 	gd->fdt_blob = (ulong *)&_end;
1167 #  endif
1168 # elif defined(CONFIG_OF_HOSTFILE)
1169 	if (sandbox_read_fdt_from_file()) {
1170 		puts("Failed to read control FDT\n");
1171 		return -1;
1172 	}
1173 # endif
1174 # ifndef CONFIG_SPL_BUILD
1175 	/* Allow the early environment to override the fdt address */
1176 	gd->fdt_blob = (void *)getenv_ulong("fdtcontroladdr", 16,
1177 						(uintptr_t)gd->fdt_blob);
1178 # endif
1179 #endif
1180 	return fdtdec_prepare_fdt();
1181 }
1182 
1183 #endif /* !USE_HOSTCC */
1184