1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (c) 2011 The Chromium OS Authors. 4 */ 5 6 #ifndef USE_HOSTCC 7 #include <common.h> 8 #include <boot_fit.h> 9 #include <dm.h> 10 #include <dm/of_extra.h> 11 #include <errno.h> 12 #include <fdtdec.h> 13 #include <fdt_support.h> 14 #include <linux/libfdt.h> 15 #include <serial.h> 16 #include <asm/sections.h> 17 #include <linux/ctype.h> 18 #include <linux/lzo.h> 19 20 DECLARE_GLOBAL_DATA_PTR; 21 22 /* 23 * Here are the type we know about. One day we might allow drivers to 24 * register. For now we just put them here. The COMPAT macro allows us to 25 * turn this into a sparse list later, and keeps the ID with the name. 26 * 27 * NOTE: This list is basically a TODO list for things that need to be 28 * converted to driver model. So don't add new things here unless there is a 29 * good reason why driver-model conversion is infeasible. Examples include 30 * things which are used before driver model is available. 31 */ 32 #define COMPAT(id, name) name 33 static const char * const compat_names[COMPAT_COUNT] = { 34 COMPAT(UNKNOWN, "<none>"), 35 COMPAT(NVIDIA_TEGRA20_EMC, "nvidia,tegra20-emc"), 36 COMPAT(NVIDIA_TEGRA20_EMC_TABLE, "nvidia,tegra20-emc-table"), 37 COMPAT(NVIDIA_TEGRA20_NAND, "nvidia,tegra20-nand"), 38 COMPAT(NVIDIA_TEGRA124_XUSB_PADCTL, "nvidia,tegra124-xusb-padctl"), 39 COMPAT(NVIDIA_TEGRA210_XUSB_PADCTL, "nvidia,tegra210-xusb-padctl"), 40 COMPAT(SMSC_LAN9215, "smsc,lan9215"), 41 COMPAT(SAMSUNG_EXYNOS5_SROMC, "samsung,exynos-sromc"), 42 COMPAT(SAMSUNG_S3C2440_I2C, "samsung,s3c2440-i2c"), 43 COMPAT(SAMSUNG_EXYNOS5_SOUND, "samsung,exynos-sound"), 44 COMPAT(WOLFSON_WM8994_CODEC, "wolfson,wm8994-codec"), 45 COMPAT(SAMSUNG_EXYNOS_USB_PHY, "samsung,exynos-usb-phy"), 46 COMPAT(SAMSUNG_EXYNOS5_USB3_PHY, "samsung,exynos5250-usb3-phy"), 47 COMPAT(SAMSUNG_EXYNOS_TMU, "samsung,exynos-tmu"), 48 COMPAT(SAMSUNG_EXYNOS_MIPI_DSI, "samsung,exynos-mipi-dsi"), 49 COMPAT(SAMSUNG_EXYNOS_DWMMC, "samsung,exynos-dwmmc"), 50 COMPAT(SAMSUNG_EXYNOS_MMC, "samsung,exynos-mmc"), 51 COMPAT(GENERIC_SPI_FLASH, "spi-flash"), 52 COMPAT(MAXIM_98095_CODEC, "maxim,max98095-codec"), 53 COMPAT(SAMSUNG_EXYNOS5_I2C, "samsung,exynos5-hsi2c"), 54 COMPAT(SAMSUNG_EXYNOS_SYSMMU, "samsung,sysmmu-v3.3"), 55 COMPAT(INTEL_MICROCODE, "intel,microcode"), 56 COMPAT(AMS_AS3722, "ams,as3722"), 57 COMPAT(INTEL_QRK_MRC, "intel,quark-mrc"), 58 COMPAT(ALTERA_SOCFPGA_DWMAC, "altr,socfpga-stmmac"), 59 COMPAT(ALTERA_SOCFPGA_DWMMC, "altr,socfpga-dw-mshc"), 60 COMPAT(ALTERA_SOCFPGA_DWC2USB, "snps,dwc2"), 61 COMPAT(INTEL_BAYTRAIL_FSP, "intel,baytrail-fsp"), 62 COMPAT(INTEL_BAYTRAIL_FSP_MDP, "intel,baytrail-fsp-mdp"), 63 COMPAT(INTEL_IVYBRIDGE_FSP, "intel,ivybridge-fsp"), 64 COMPAT(COMPAT_SUNXI_NAND, "allwinner,sun4i-a10-nand"), 65 COMPAT(ALTERA_SOCFPGA_CLK, "altr,clk-mgr"), 66 COMPAT(ALTERA_SOCFPGA_PINCTRL_SINGLE, "pinctrl-single"), 67 COMPAT(ALTERA_SOCFPGA_H2F_BRG, "altr,socfpga-hps2fpga-bridge"), 68 COMPAT(ALTERA_SOCFPGA_LWH2F_BRG, "altr,socfpga-lwhps2fpga-bridge"), 69 COMPAT(ALTERA_SOCFPGA_F2H_BRG, "altr,socfpga-fpga2hps-bridge"), 70 COMPAT(ALTERA_SOCFPGA_F2SDR0, "altr,socfpga-fpga2sdram0-bridge"), 71 COMPAT(ALTERA_SOCFPGA_F2SDR1, "altr,socfpga-fpga2sdram1-bridge"), 72 COMPAT(ALTERA_SOCFPGA_F2SDR2, "altr,socfpga-fpga2sdram2-bridge"), 73 COMPAT(ALTERA_SOCFPGA_FPGA0, "altr,socfpga-a10-fpga-mgr"), 74 COMPAT(ALTERA_SOCFPGA_NOC, "altr,socfpga-a10-noc"), 75 }; 76 77 const char *fdtdec_get_compatible(enum fdt_compat_id id) 78 { 79 /* We allow reading of the 'unknown' ID for testing purposes */ 80 assert(id >= 0 && id < COMPAT_COUNT); 81 return compat_names[id]; 82 } 83 84 fdt_addr_t fdtdec_get_addr_size_fixed(const void *blob, int node, 85 const char *prop_name, int index, int na, 86 int ns, fdt_size_t *sizep, 87 bool translate) 88 { 89 const fdt32_t *prop, *prop_end; 90 const fdt32_t *prop_addr, *prop_size, *prop_after_size; 91 int len; 92 fdt_addr_t addr; 93 94 debug("%s: %s: ", __func__, prop_name); 95 96 if (na > (sizeof(fdt_addr_t) / sizeof(fdt32_t))) { 97 debug("(na too large for fdt_addr_t type)\n"); 98 return FDT_ADDR_T_NONE; 99 } 100 101 if (ns > (sizeof(fdt_size_t) / sizeof(fdt32_t))) { 102 debug("(ns too large for fdt_size_t type)\n"); 103 return FDT_ADDR_T_NONE; 104 } 105 106 prop = fdt_getprop(blob, node, prop_name, &len); 107 if (!prop) { 108 debug("(not found)\n"); 109 return FDT_ADDR_T_NONE; 110 } 111 prop_end = prop + (len / sizeof(*prop)); 112 113 prop_addr = prop + (index * (na + ns)); 114 prop_size = prop_addr + na; 115 prop_after_size = prop_size + ns; 116 if (prop_after_size > prop_end) { 117 debug("(not enough data: expected >= %d cells, got %d cells)\n", 118 (u32)(prop_after_size - prop), ((u32)(prop_end - prop))); 119 return FDT_ADDR_T_NONE; 120 } 121 122 #if CONFIG_IS_ENABLED(OF_TRANSLATE) 123 if (translate) 124 addr = fdt_translate_address(blob, node, prop_addr); 125 else 126 #endif 127 addr = fdtdec_get_number(prop_addr, na); 128 129 if (sizep) { 130 *sizep = fdtdec_get_number(prop_size, ns); 131 debug("addr=%08llx, size=%llx\n", (unsigned long long)addr, 132 (unsigned long long)*sizep); 133 } else { 134 debug("addr=%08llx\n", (unsigned long long)addr); 135 } 136 137 return addr; 138 } 139 140 fdt_addr_t fdtdec_get_addr_size_auto_parent(const void *blob, int parent, 141 int node, const char *prop_name, 142 int index, fdt_size_t *sizep, 143 bool translate) 144 { 145 int na, ns; 146 147 debug("%s: ", __func__); 148 149 na = fdt_address_cells(blob, parent); 150 if (na < 1) { 151 debug("(bad #address-cells)\n"); 152 return FDT_ADDR_T_NONE; 153 } 154 155 ns = fdt_size_cells(blob, parent); 156 if (ns < 0) { 157 debug("(bad #size-cells)\n"); 158 return FDT_ADDR_T_NONE; 159 } 160 161 debug("na=%d, ns=%d, ", na, ns); 162 163 return fdtdec_get_addr_size_fixed(blob, node, prop_name, index, na, 164 ns, sizep, translate); 165 } 166 167 fdt_addr_t fdtdec_get_addr_size_auto_noparent(const void *blob, int node, 168 const char *prop_name, int index, 169 fdt_size_t *sizep, 170 bool translate) 171 { 172 int parent; 173 174 debug("%s: ", __func__); 175 176 parent = fdt_parent_offset(blob, node); 177 if (parent < 0) { 178 debug("(no parent found)\n"); 179 return FDT_ADDR_T_NONE; 180 } 181 182 return fdtdec_get_addr_size_auto_parent(blob, parent, node, prop_name, 183 index, sizep, translate); 184 } 185 186 fdt_addr_t fdtdec_get_addr_size(const void *blob, int node, 187 const char *prop_name, fdt_size_t *sizep) 188 { 189 int ns = sizep ? (sizeof(fdt_size_t) / sizeof(fdt32_t)) : 0; 190 191 return fdtdec_get_addr_size_fixed(blob, node, prop_name, 0, 192 sizeof(fdt_addr_t) / sizeof(fdt32_t), 193 ns, sizep, false); 194 } 195 196 fdt_addr_t fdtdec_get_addr(const void *blob, int node, const char *prop_name) 197 { 198 return fdtdec_get_addr_size(blob, node, prop_name, NULL); 199 } 200 201 #if defined(CONFIG_PCI) && defined(CONFIG_DM_PCI) 202 int fdtdec_get_pci_addr(const void *blob, int node, enum fdt_pci_space type, 203 const char *prop_name, struct fdt_pci_addr *addr) 204 { 205 const u32 *cell; 206 int len; 207 int ret = -ENOENT; 208 209 debug("%s: %s: ", __func__, prop_name); 210 211 /* 212 * If we follow the pci bus bindings strictly, we should check 213 * the value of the node's parent node's #address-cells and 214 * #size-cells. They need to be 3 and 2 accordingly. However, 215 * for simplicity we skip the check here. 216 */ 217 cell = fdt_getprop(blob, node, prop_name, &len); 218 if (!cell) 219 goto fail; 220 221 if ((len % FDT_PCI_REG_SIZE) == 0) { 222 int num = len / FDT_PCI_REG_SIZE; 223 int i; 224 225 for (i = 0; i < num; i++) { 226 debug("pci address #%d: %08lx %08lx %08lx\n", i, 227 (ulong)fdt32_to_cpu(cell[0]), 228 (ulong)fdt32_to_cpu(cell[1]), 229 (ulong)fdt32_to_cpu(cell[2])); 230 if ((fdt32_to_cpu(*cell) & type) == type) { 231 addr->phys_hi = fdt32_to_cpu(cell[0]); 232 addr->phys_mid = fdt32_to_cpu(cell[1]); 233 addr->phys_lo = fdt32_to_cpu(cell[1]); 234 break; 235 } 236 237 cell += (FDT_PCI_ADDR_CELLS + 238 FDT_PCI_SIZE_CELLS); 239 } 240 241 if (i == num) { 242 ret = -ENXIO; 243 goto fail; 244 } 245 246 return 0; 247 } 248 249 ret = -EINVAL; 250 251 fail: 252 debug("(not found)\n"); 253 return ret; 254 } 255 256 int fdtdec_get_pci_vendev(const void *blob, int node, u16 *vendor, u16 *device) 257 { 258 const char *list, *end; 259 int len; 260 261 list = fdt_getprop(blob, node, "compatible", &len); 262 if (!list) 263 return -ENOENT; 264 265 end = list + len; 266 while (list < end) { 267 len = strlen(list); 268 if (len >= strlen("pciVVVV,DDDD")) { 269 char *s = strstr(list, "pci"); 270 271 /* 272 * check if the string is something like pciVVVV,DDDD.RR 273 * or just pciVVVV,DDDD 274 */ 275 if (s && s[7] == ',' && 276 (s[12] == '.' || s[12] == 0)) { 277 s += 3; 278 *vendor = simple_strtol(s, NULL, 16); 279 280 s += 5; 281 *device = simple_strtol(s, NULL, 16); 282 283 return 0; 284 } 285 } 286 list += (len + 1); 287 } 288 289 return -ENOENT; 290 } 291 292 int fdtdec_get_pci_bar32(struct udevice *dev, struct fdt_pci_addr *addr, 293 u32 *bar) 294 { 295 int barnum; 296 297 /* extract the bar number from fdt_pci_addr */ 298 barnum = addr->phys_hi & 0xff; 299 if (barnum < PCI_BASE_ADDRESS_0 || barnum > PCI_CARDBUS_CIS) 300 return -EINVAL; 301 302 barnum = (barnum - PCI_BASE_ADDRESS_0) / 4; 303 *bar = dm_pci_read_bar32(dev, barnum); 304 305 return 0; 306 } 307 #endif 308 309 uint64_t fdtdec_get_uint64(const void *blob, int node, const char *prop_name, 310 uint64_t default_val) 311 { 312 const uint64_t *cell64; 313 int length; 314 315 cell64 = fdt_getprop(blob, node, prop_name, &length); 316 if (!cell64 || length < sizeof(*cell64)) 317 return default_val; 318 319 return fdt64_to_cpu(*cell64); 320 } 321 322 int fdtdec_get_is_enabled(const void *blob, int node) 323 { 324 const char *cell; 325 326 /* 327 * It should say "okay", so only allow that. Some fdts use "ok" but 328 * this is a bug. Please fix your device tree source file. See here 329 * for discussion: 330 * 331 * http://www.mail-archive.com/u-boot@lists.denx.de/msg71598.html 332 */ 333 cell = fdt_getprop(blob, node, "status", NULL); 334 if (cell) 335 return strcmp(cell, "okay") == 0; 336 return 1; 337 } 338 339 enum fdt_compat_id fdtdec_lookup(const void *blob, int node) 340 { 341 enum fdt_compat_id id; 342 343 /* Search our drivers */ 344 for (id = COMPAT_UNKNOWN; id < COMPAT_COUNT; id++) 345 if (fdt_node_check_compatible(blob, node, 346 compat_names[id]) == 0) 347 return id; 348 return COMPAT_UNKNOWN; 349 } 350 351 int fdtdec_next_compatible(const void *blob, int node, enum fdt_compat_id id) 352 { 353 return fdt_node_offset_by_compatible(blob, node, compat_names[id]); 354 } 355 356 int fdtdec_next_compatible_subnode(const void *blob, int node, 357 enum fdt_compat_id id, int *depthp) 358 { 359 do { 360 node = fdt_next_node(blob, node, depthp); 361 } while (*depthp > 1); 362 363 /* If this is a direct subnode, and compatible, return it */ 364 if (*depthp == 1 && 0 == fdt_node_check_compatible( 365 blob, node, compat_names[id])) 366 return node; 367 368 return -FDT_ERR_NOTFOUND; 369 } 370 371 int fdtdec_next_alias(const void *blob, const char *name, enum fdt_compat_id id, 372 int *upto) 373 { 374 #define MAX_STR_LEN 20 375 char str[MAX_STR_LEN + 20]; 376 int node, err; 377 378 /* snprintf() is not available */ 379 assert(strlen(name) < MAX_STR_LEN); 380 sprintf(str, "%.*s%d", MAX_STR_LEN, name, *upto); 381 node = fdt_path_offset(blob, str); 382 if (node < 0) 383 return node; 384 err = fdt_node_check_compatible(blob, node, compat_names[id]); 385 if (err < 0) 386 return err; 387 if (err) 388 return -FDT_ERR_NOTFOUND; 389 (*upto)++; 390 return node; 391 } 392 393 int fdtdec_find_aliases_for_id(const void *blob, const char *name, 394 enum fdt_compat_id id, int *node_list, 395 int maxcount) 396 { 397 memset(node_list, '\0', sizeof(*node_list) * maxcount); 398 399 return fdtdec_add_aliases_for_id(blob, name, id, node_list, maxcount); 400 } 401 402 /* TODO: Can we tighten this code up a little? */ 403 int fdtdec_add_aliases_for_id(const void *blob, const char *name, 404 enum fdt_compat_id id, int *node_list, 405 int maxcount) 406 { 407 int name_len = strlen(name); 408 int nodes[maxcount]; 409 int num_found = 0; 410 int offset, node; 411 int alias_node; 412 int count; 413 int i, j; 414 415 /* find the alias node if present */ 416 alias_node = fdt_path_offset(blob, "/aliases"); 417 418 /* 419 * start with nothing, and we can assume that the root node can't 420 * match 421 */ 422 memset(nodes, '\0', sizeof(nodes)); 423 424 /* First find all the compatible nodes */ 425 for (node = count = 0; node >= 0 && count < maxcount;) { 426 node = fdtdec_next_compatible(blob, node, id); 427 if (node >= 0) 428 nodes[count++] = node; 429 } 430 if (node >= 0) 431 debug("%s: warning: maxcount exceeded with alias '%s'\n", 432 __func__, name); 433 434 /* Now find all the aliases */ 435 for (offset = fdt_first_property_offset(blob, alias_node); 436 offset > 0; 437 offset = fdt_next_property_offset(blob, offset)) { 438 const struct fdt_property *prop; 439 const char *path; 440 int number; 441 int found; 442 443 node = 0; 444 prop = fdt_get_property_by_offset(blob, offset, NULL); 445 path = fdt_string(blob, fdt32_to_cpu(prop->nameoff)); 446 if (prop->len && 0 == strncmp(path, name, name_len)) 447 node = fdt_path_offset(blob, prop->data); 448 if (node <= 0) 449 continue; 450 451 /* Get the alias number */ 452 number = simple_strtoul(path + name_len, NULL, 10); 453 if (number < 0 || number >= maxcount) { 454 debug("%s: warning: alias '%s' is out of range\n", 455 __func__, path); 456 continue; 457 } 458 459 /* Make sure the node we found is actually in our list! */ 460 found = -1; 461 for (j = 0; j < count; j++) 462 if (nodes[j] == node) { 463 found = j; 464 break; 465 } 466 467 if (found == -1) { 468 debug("%s: warning: alias '%s' points to a node " 469 "'%s' that is missing or is not compatible " 470 " with '%s'\n", __func__, path, 471 fdt_get_name(blob, node, NULL), 472 compat_names[id]); 473 continue; 474 } 475 476 /* 477 * Add this node to our list in the right place, and mark 478 * it as done. 479 */ 480 if (fdtdec_get_is_enabled(blob, node)) { 481 if (node_list[number]) { 482 debug("%s: warning: alias '%s' requires that " 483 "a node be placed in the list in a " 484 "position which is already filled by " 485 "node '%s'\n", __func__, path, 486 fdt_get_name(blob, node, NULL)); 487 continue; 488 } 489 node_list[number] = node; 490 if (number >= num_found) 491 num_found = number + 1; 492 } 493 nodes[found] = 0; 494 } 495 496 /* Add any nodes not mentioned by an alias */ 497 for (i = j = 0; i < maxcount; i++) { 498 if (!node_list[i]) { 499 for (; j < maxcount; j++) 500 if (nodes[j] && 501 fdtdec_get_is_enabled(blob, nodes[j])) 502 break; 503 504 /* Have we run out of nodes to add? */ 505 if (j == maxcount) 506 break; 507 508 assert(!node_list[i]); 509 node_list[i] = nodes[j++]; 510 if (i >= num_found) 511 num_found = i + 1; 512 } 513 } 514 515 return num_found; 516 } 517 518 int fdtdec_get_alias_seq(const void *blob, const char *base, int offset, 519 int *seqp) 520 { 521 int base_len = strlen(base); 522 const char *find_name; 523 int find_namelen; 524 int prop_offset; 525 int aliases; 526 527 find_name = fdt_get_name(blob, offset, &find_namelen); 528 debug("Looking for '%s' at %d, name %s\n", base, offset, find_name); 529 530 aliases = fdt_path_offset(blob, "/aliases"); 531 for (prop_offset = fdt_first_property_offset(blob, aliases); 532 prop_offset > 0; 533 prop_offset = fdt_next_property_offset(blob, prop_offset)) { 534 const char *prop; 535 const char *name; 536 const char *slash; 537 int len, val; 538 539 prop = fdt_getprop_by_offset(blob, prop_offset, &name, &len); 540 debug(" - %s, %s\n", name, prop); 541 if (len < find_namelen || *prop != '/' || prop[len - 1] || 542 strncmp(name, base, base_len)) 543 continue; 544 545 slash = strrchr(prop, '/'); 546 if (strcmp(slash + 1, find_name)) 547 continue; 548 val = trailing_strtol(name); 549 if (val != -1) { 550 *seqp = val; 551 debug("Found seq %d\n", *seqp); 552 return 0; 553 } 554 } 555 556 debug("Not found\n"); 557 return -ENOENT; 558 } 559 560 const char *fdtdec_get_chosen_prop(const void *blob, const char *name) 561 { 562 int chosen_node; 563 564 if (!blob) 565 return NULL; 566 chosen_node = fdt_path_offset(blob, "/chosen"); 567 return fdt_getprop(blob, chosen_node, name, NULL); 568 } 569 570 int fdtdec_get_chosen_node(const void *blob, const char *name) 571 { 572 const char *prop; 573 574 prop = fdtdec_get_chosen_prop(blob, name); 575 if (!prop) 576 return -FDT_ERR_NOTFOUND; 577 return fdt_path_offset(blob, prop); 578 } 579 580 int fdtdec_check_fdt(void) 581 { 582 /* 583 * We must have an FDT, but we cannot panic() yet since the console 584 * is not ready. So for now, just assert(). Boards which need an early 585 * FDT (prior to console ready) will need to make their own 586 * arrangements and do their own checks. 587 */ 588 assert(!fdtdec_prepare_fdt()); 589 return 0; 590 } 591 592 /* 593 * This function is a little odd in that it accesses global data. At some 594 * point if the architecture board.c files merge this will make more sense. 595 * Even now, it is common code. 596 */ 597 int fdtdec_prepare_fdt(void) 598 { 599 if (!gd->fdt_blob || ((uintptr_t)gd->fdt_blob & 3) || 600 fdt_check_header(gd->fdt_blob)) { 601 #ifdef CONFIG_SPL_BUILD 602 puts("Missing DTB\n"); 603 #else 604 puts("No valid device tree binary found - please append one to U-Boot binary, use u-boot-dtb.bin or define CONFIG_OF_EMBED. For sandbox, use -d <file.dtb>\n"); 605 # ifdef DEBUG 606 if (gd->fdt_blob) { 607 printf("fdt_blob=%p\n", gd->fdt_blob); 608 print_buffer((ulong)gd->fdt_blob, gd->fdt_blob, 4, 609 32, 0); 610 } 611 # endif 612 #endif 613 return -1; 614 } 615 return 0; 616 } 617 618 int fdtdec_lookup_phandle(const void *blob, int node, const char *prop_name) 619 { 620 const u32 *phandle; 621 int lookup; 622 623 debug("%s: %s\n", __func__, prop_name); 624 phandle = fdt_getprop(blob, node, prop_name, NULL); 625 if (!phandle) 626 return -FDT_ERR_NOTFOUND; 627 628 lookup = fdt_node_offset_by_phandle(blob, fdt32_to_cpu(*phandle)); 629 return lookup; 630 } 631 632 /** 633 * Look up a property in a node and check that it has a minimum length. 634 * 635 * @param blob FDT blob 636 * @param node node to examine 637 * @param prop_name name of property to find 638 * @param min_len minimum property length in bytes 639 * @param err 0 if ok, or -FDT_ERR_NOTFOUND if the property is not 640 found, or -FDT_ERR_BADLAYOUT if not enough data 641 * @return pointer to cell, which is only valid if err == 0 642 */ 643 static const void *get_prop_check_min_len(const void *blob, int node, 644 const char *prop_name, int min_len, 645 int *err) 646 { 647 const void *cell; 648 int len; 649 650 debug("%s: %s\n", __func__, prop_name); 651 cell = fdt_getprop(blob, node, prop_name, &len); 652 if (!cell) 653 *err = -FDT_ERR_NOTFOUND; 654 else if (len < min_len) 655 *err = -FDT_ERR_BADLAYOUT; 656 else 657 *err = 0; 658 return cell; 659 } 660 661 int fdtdec_get_int_array(const void *blob, int node, const char *prop_name, 662 u32 *array, int count) 663 { 664 const u32 *cell; 665 int err = 0; 666 667 debug("%s: %s\n", __func__, prop_name); 668 cell = get_prop_check_min_len(blob, node, prop_name, 669 sizeof(u32) * count, &err); 670 if (!err) { 671 int i; 672 673 for (i = 0; i < count; i++) 674 array[i] = fdt32_to_cpu(cell[i]); 675 } 676 return err; 677 } 678 679 int fdtdec_get_int_array_count(const void *blob, int node, 680 const char *prop_name, u32 *array, int count) 681 { 682 const u32 *cell; 683 int len, elems; 684 int i; 685 686 debug("%s: %s\n", __func__, prop_name); 687 cell = fdt_getprop(blob, node, prop_name, &len); 688 if (!cell) 689 return -FDT_ERR_NOTFOUND; 690 elems = len / sizeof(u32); 691 if (count > elems) 692 count = elems; 693 for (i = 0; i < count; i++) 694 array[i] = fdt32_to_cpu(cell[i]); 695 696 return count; 697 } 698 699 const u32 *fdtdec_locate_array(const void *blob, int node, 700 const char *prop_name, int count) 701 { 702 const u32 *cell; 703 int err; 704 705 cell = get_prop_check_min_len(blob, node, prop_name, 706 sizeof(u32) * count, &err); 707 return err ? NULL : cell; 708 } 709 710 int fdtdec_get_bool(const void *blob, int node, const char *prop_name) 711 { 712 const s32 *cell; 713 int len; 714 715 debug("%s: %s\n", __func__, prop_name); 716 cell = fdt_getprop(blob, node, prop_name, &len); 717 return cell != NULL; 718 } 719 720 int fdtdec_parse_phandle_with_args(const void *blob, int src_node, 721 const char *list_name, 722 const char *cells_name, 723 int cell_count, int index, 724 struct fdtdec_phandle_args *out_args) 725 { 726 const __be32 *list, *list_end; 727 int rc = 0, size, cur_index = 0; 728 uint32_t count = 0; 729 int node = -1; 730 int phandle; 731 732 /* Retrieve the phandle list property */ 733 list = fdt_getprop(blob, src_node, list_name, &size); 734 if (!list) 735 return -ENOENT; 736 list_end = list + size / sizeof(*list); 737 738 /* Loop over the phandles until all the requested entry is found */ 739 while (list < list_end) { 740 rc = -EINVAL; 741 count = 0; 742 743 /* 744 * If phandle is 0, then it is an empty entry with no 745 * arguments. Skip forward to the next entry. 746 */ 747 phandle = be32_to_cpup(list++); 748 if (phandle) { 749 /* 750 * Find the provider node and parse the #*-cells 751 * property to determine the argument length. 752 * 753 * This is not needed if the cell count is hard-coded 754 * (i.e. cells_name not set, but cell_count is set), 755 * except when we're going to return the found node 756 * below. 757 */ 758 if (cells_name || cur_index == index) { 759 node = fdt_node_offset_by_phandle(blob, 760 phandle); 761 if (!node) { 762 debug("%s: could not find phandle\n", 763 fdt_get_name(blob, src_node, 764 NULL)); 765 goto err; 766 } 767 } 768 769 if (cells_name) { 770 count = fdtdec_get_int(blob, node, cells_name, 771 -1); 772 if (count == -1) { 773 debug("%s: could not get %s for %s\n", 774 fdt_get_name(blob, src_node, 775 NULL), 776 cells_name, 777 fdt_get_name(blob, node, 778 NULL)); 779 goto err; 780 } 781 } else { 782 count = cell_count; 783 } 784 785 /* 786 * Make sure that the arguments actually fit in the 787 * remaining property data length 788 */ 789 if (list + count > list_end) { 790 debug("%s: arguments longer than property\n", 791 fdt_get_name(blob, src_node, NULL)); 792 goto err; 793 } 794 } 795 796 /* 797 * All of the error cases above bail out of the loop, so at 798 * this point, the parsing is successful. If the requested 799 * index matches, then fill the out_args structure and return, 800 * or return -ENOENT for an empty entry. 801 */ 802 rc = -ENOENT; 803 if (cur_index == index) { 804 if (!phandle) 805 goto err; 806 807 if (out_args) { 808 int i; 809 810 if (count > MAX_PHANDLE_ARGS) { 811 debug("%s: too many arguments %d\n", 812 fdt_get_name(blob, src_node, 813 NULL), count); 814 count = MAX_PHANDLE_ARGS; 815 } 816 out_args->node = node; 817 out_args->args_count = count; 818 for (i = 0; i < count; i++) { 819 out_args->args[i] = 820 be32_to_cpup(list++); 821 } 822 } 823 824 /* Found it! return success */ 825 return 0; 826 } 827 828 node = -1; 829 list += count; 830 cur_index++; 831 } 832 833 /* 834 * Result will be one of: 835 * -ENOENT : index is for empty phandle 836 * -EINVAL : parsing error on data 837 * [1..n] : Number of phandle (count mode; when index = -1) 838 */ 839 rc = index < 0 ? cur_index : -ENOENT; 840 err: 841 return rc; 842 } 843 844 int fdtdec_get_child_count(const void *blob, int node) 845 { 846 int subnode; 847 int num = 0; 848 849 fdt_for_each_subnode(subnode, blob, node) 850 num++; 851 852 return num; 853 } 854 855 int fdtdec_get_byte_array(const void *blob, int node, const char *prop_name, 856 u8 *array, int count) 857 { 858 const u8 *cell; 859 int err; 860 861 cell = get_prop_check_min_len(blob, node, prop_name, count, &err); 862 if (!err) 863 memcpy(array, cell, count); 864 return err; 865 } 866 867 const u8 *fdtdec_locate_byte_array(const void *blob, int node, 868 const char *prop_name, int count) 869 { 870 const u8 *cell; 871 int err; 872 873 cell = get_prop_check_min_len(blob, node, prop_name, count, &err); 874 if (err) 875 return NULL; 876 return cell; 877 } 878 879 int fdtdec_get_config_int(const void *blob, const char *prop_name, 880 int default_val) 881 { 882 int config_node; 883 884 debug("%s: %s\n", __func__, prop_name); 885 config_node = fdt_path_offset(blob, "/config"); 886 if (config_node < 0) 887 return default_val; 888 return fdtdec_get_int(blob, config_node, prop_name, default_val); 889 } 890 891 int fdtdec_get_config_bool(const void *blob, const char *prop_name) 892 { 893 int config_node; 894 const void *prop; 895 896 debug("%s: %s\n", __func__, prop_name); 897 config_node = fdt_path_offset(blob, "/config"); 898 if (config_node < 0) 899 return 0; 900 prop = fdt_get_property(blob, config_node, prop_name, NULL); 901 902 return prop != NULL; 903 } 904 905 char *fdtdec_get_config_string(const void *blob, const char *prop_name) 906 { 907 const char *nodep; 908 int nodeoffset; 909 int len; 910 911 debug("%s: %s\n", __func__, prop_name); 912 nodeoffset = fdt_path_offset(blob, "/config"); 913 if (nodeoffset < 0) 914 return NULL; 915 916 nodep = fdt_getprop(blob, nodeoffset, prop_name, &len); 917 if (!nodep) 918 return NULL; 919 920 return (char *)nodep; 921 } 922 923 int fdtdec_decode_region(const void *blob, int node, const char *prop_name, 924 fdt_addr_t *basep, fdt_size_t *sizep) 925 { 926 const fdt_addr_t *cell; 927 int len; 928 929 debug("%s: %s: %s\n", __func__, fdt_get_name(blob, node, NULL), 930 prop_name); 931 cell = fdt_getprop(blob, node, prop_name, &len); 932 if (!cell || (len < sizeof(fdt_addr_t) * 2)) { 933 debug("cell=%p, len=%d\n", cell, len); 934 return -1; 935 } 936 937 *basep = fdt_addr_to_cpu(*cell); 938 *sizep = fdt_size_to_cpu(cell[1]); 939 debug("%s: base=%08lx, size=%lx\n", __func__, (ulong)*basep, 940 (ulong)*sizep); 941 942 return 0; 943 } 944 945 u64 fdtdec_get_number(const fdt32_t *ptr, unsigned int cells) 946 { 947 u64 number = 0; 948 949 while (cells--) 950 number = (number << 32) | fdt32_to_cpu(*ptr++); 951 952 return number; 953 } 954 955 int fdt_get_resource(const void *fdt, int node, const char *property, 956 unsigned int index, struct fdt_resource *res) 957 { 958 const fdt32_t *ptr, *end; 959 int na, ns, len, parent; 960 unsigned int i = 0; 961 962 parent = fdt_parent_offset(fdt, node); 963 if (parent < 0) 964 return parent; 965 966 na = fdt_address_cells(fdt, parent); 967 ns = fdt_size_cells(fdt, parent); 968 969 ptr = fdt_getprop(fdt, node, property, &len); 970 if (!ptr) 971 return len; 972 973 end = ptr + len / sizeof(*ptr); 974 975 while (ptr + na + ns <= end) { 976 if (i == index) { 977 res->start = fdtdec_get_number(ptr, na); 978 res->end = res->start; 979 res->end += fdtdec_get_number(&ptr[na], ns) - 1; 980 return 0; 981 } 982 983 ptr += na + ns; 984 i++; 985 } 986 987 return -FDT_ERR_NOTFOUND; 988 } 989 990 int fdt_get_named_resource(const void *fdt, int node, const char *property, 991 const char *prop_names, const char *name, 992 struct fdt_resource *res) 993 { 994 int index; 995 996 index = fdt_stringlist_search(fdt, node, prop_names, name); 997 if (index < 0) 998 return index; 999 1000 return fdt_get_resource(fdt, node, property, index, res); 1001 } 1002 1003 int fdtdec_decode_memory_region(const void *blob, int config_node, 1004 const char *mem_type, const char *suffix, 1005 fdt_addr_t *basep, fdt_size_t *sizep) 1006 { 1007 char prop_name[50]; 1008 const char *mem; 1009 fdt_size_t size, offset_size; 1010 fdt_addr_t base, offset; 1011 int node; 1012 1013 if (config_node == -1) { 1014 config_node = fdt_path_offset(blob, "/config"); 1015 if (config_node < 0) { 1016 debug("%s: Cannot find /config node\n", __func__); 1017 return -ENOENT; 1018 } 1019 } 1020 if (!suffix) 1021 suffix = ""; 1022 1023 snprintf(prop_name, sizeof(prop_name), "%s-memory%s", mem_type, 1024 suffix); 1025 mem = fdt_getprop(blob, config_node, prop_name, NULL); 1026 if (!mem) { 1027 debug("%s: No memory type for '%s', using /memory\n", __func__, 1028 prop_name); 1029 mem = "/memory"; 1030 } 1031 1032 node = fdt_path_offset(blob, mem); 1033 if (node < 0) { 1034 debug("%s: Failed to find node '%s': %s\n", __func__, mem, 1035 fdt_strerror(node)); 1036 return -ENOENT; 1037 } 1038 1039 /* 1040 * Not strictly correct - the memory may have multiple banks. We just 1041 * use the first 1042 */ 1043 if (fdtdec_decode_region(blob, node, "reg", &base, &size)) { 1044 debug("%s: Failed to decode memory region %s\n", __func__, 1045 mem); 1046 return -EINVAL; 1047 } 1048 1049 snprintf(prop_name, sizeof(prop_name), "%s-offset%s", mem_type, 1050 suffix); 1051 if (fdtdec_decode_region(blob, config_node, prop_name, &offset, 1052 &offset_size)) { 1053 debug("%s: Failed to decode memory region '%s'\n", __func__, 1054 prop_name); 1055 return -EINVAL; 1056 } 1057 1058 *basep = base + offset; 1059 *sizep = offset_size; 1060 1061 return 0; 1062 } 1063 1064 static int decode_timing_property(const void *blob, int node, const char *name, 1065 struct timing_entry *result) 1066 { 1067 int length, ret = 0; 1068 const u32 *prop; 1069 1070 prop = fdt_getprop(blob, node, name, &length); 1071 if (!prop) { 1072 debug("%s: could not find property %s\n", 1073 fdt_get_name(blob, node, NULL), name); 1074 return length; 1075 } 1076 1077 if (length == sizeof(u32)) { 1078 result->typ = fdtdec_get_int(blob, node, name, 0); 1079 result->min = result->typ; 1080 result->max = result->typ; 1081 } else { 1082 ret = fdtdec_get_int_array(blob, node, name, &result->min, 3); 1083 } 1084 1085 return ret; 1086 } 1087 1088 int fdtdec_decode_display_timing(const void *blob, int parent, int index, 1089 struct display_timing *dt) 1090 { 1091 int i, node, timings_node; 1092 u32 val = 0; 1093 int ret = 0; 1094 1095 timings_node = fdt_subnode_offset(blob, parent, "display-timings"); 1096 if (timings_node < 0) 1097 return timings_node; 1098 1099 for (i = 0, node = fdt_first_subnode(blob, timings_node); 1100 node > 0 && i != index; 1101 node = fdt_next_subnode(blob, node)) 1102 i++; 1103 1104 if (node < 0) 1105 return node; 1106 1107 memset(dt, 0, sizeof(*dt)); 1108 1109 ret |= decode_timing_property(blob, node, "hback-porch", 1110 &dt->hback_porch); 1111 ret |= decode_timing_property(blob, node, "hfront-porch", 1112 &dt->hfront_porch); 1113 ret |= decode_timing_property(blob, node, "hactive", &dt->hactive); 1114 ret |= decode_timing_property(blob, node, "hsync-len", &dt->hsync_len); 1115 ret |= decode_timing_property(blob, node, "vback-porch", 1116 &dt->vback_porch); 1117 ret |= decode_timing_property(blob, node, "vfront-porch", 1118 &dt->vfront_porch); 1119 ret |= decode_timing_property(blob, node, "vactive", &dt->vactive); 1120 ret |= decode_timing_property(blob, node, "vsync-len", &dt->vsync_len); 1121 ret |= decode_timing_property(blob, node, "clock-frequency", 1122 &dt->pixelclock); 1123 1124 dt->flags = 0; 1125 val = fdtdec_get_int(blob, node, "vsync-active", -1); 1126 if (val != -1) { 1127 dt->flags |= val ? DISPLAY_FLAGS_VSYNC_HIGH : 1128 DISPLAY_FLAGS_VSYNC_LOW; 1129 } 1130 val = fdtdec_get_int(blob, node, "hsync-active", -1); 1131 if (val != -1) { 1132 dt->flags |= val ? DISPLAY_FLAGS_HSYNC_HIGH : 1133 DISPLAY_FLAGS_HSYNC_LOW; 1134 } 1135 val = fdtdec_get_int(blob, node, "de-active", -1); 1136 if (val != -1) { 1137 dt->flags |= val ? DISPLAY_FLAGS_DE_HIGH : 1138 DISPLAY_FLAGS_DE_LOW; 1139 } 1140 val = fdtdec_get_int(blob, node, "pixelclk-active", -1); 1141 if (val != -1) { 1142 dt->flags |= val ? DISPLAY_FLAGS_PIXDATA_POSEDGE : 1143 DISPLAY_FLAGS_PIXDATA_NEGEDGE; 1144 } 1145 1146 if (fdtdec_get_bool(blob, node, "interlaced")) 1147 dt->flags |= DISPLAY_FLAGS_INTERLACED; 1148 if (fdtdec_get_bool(blob, node, "doublescan")) 1149 dt->flags |= DISPLAY_FLAGS_DOUBLESCAN; 1150 if (fdtdec_get_bool(blob, node, "doubleclk")) 1151 dt->flags |= DISPLAY_FLAGS_DOUBLECLK; 1152 1153 return ret; 1154 } 1155 1156 int fdtdec_setup_memory_size(void) 1157 { 1158 int ret, mem; 1159 struct fdt_resource res; 1160 1161 mem = fdt_path_offset(gd->fdt_blob, "/memory"); 1162 if (mem < 0) { 1163 debug("%s: Missing /memory node\n", __func__); 1164 return -EINVAL; 1165 } 1166 1167 ret = fdt_get_resource(gd->fdt_blob, mem, "reg", 0, &res); 1168 if (ret != 0) { 1169 debug("%s: Unable to decode first memory bank\n", __func__); 1170 return -EINVAL; 1171 } 1172 1173 gd->ram_size = (phys_size_t)(res.end - res.start + 1); 1174 debug("%s: Initial DRAM size %llx\n", __func__, 1175 (unsigned long long)gd->ram_size); 1176 1177 return 0; 1178 } 1179 1180 #if defined(CONFIG_NR_DRAM_BANKS) 1181 int fdtdec_setup_memory_banksize(void) 1182 { 1183 int bank, ret, mem, reg = 0; 1184 struct fdt_resource res; 1185 1186 mem = fdt_node_offset_by_prop_value(gd->fdt_blob, -1, "device_type", 1187 "memory", 7); 1188 if (mem < 0) { 1189 debug("%s: Missing /memory node\n", __func__); 1190 return -EINVAL; 1191 } 1192 1193 for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) { 1194 ret = fdt_get_resource(gd->fdt_blob, mem, "reg", reg++, &res); 1195 if (ret == -FDT_ERR_NOTFOUND) { 1196 reg = 0; 1197 mem = fdt_node_offset_by_prop_value(gd->fdt_blob, mem, 1198 "device_type", 1199 "memory", 7); 1200 if (mem == -FDT_ERR_NOTFOUND) 1201 break; 1202 1203 ret = fdt_get_resource(gd->fdt_blob, mem, "reg", reg++, &res); 1204 if (ret == -FDT_ERR_NOTFOUND) 1205 break; 1206 } 1207 if (ret != 0) { 1208 return -EINVAL; 1209 } 1210 1211 gd->bd->bi_dram[bank].start = (phys_addr_t)res.start; 1212 gd->bd->bi_dram[bank].size = 1213 (phys_size_t)(res.end - res.start + 1); 1214 1215 debug("%s: DRAM Bank #%d: start = 0x%llx, size = 0x%llx\n", 1216 __func__, bank, 1217 (unsigned long long)gd->bd->bi_dram[bank].start, 1218 (unsigned long long)gd->bd->bi_dram[bank].size); 1219 } 1220 1221 return 0; 1222 } 1223 #endif 1224 1225 #if CONFIG_IS_ENABLED(MULTI_DTB_FIT) 1226 # if CONFIG_IS_ENABLED(MULTI_DTB_FIT_GZIP) ||\ 1227 CONFIG_IS_ENABLED(MULTI_DTB_FIT_LZO) 1228 static int uncompress_blob(const void *src, ulong sz_src, void **dstp) 1229 { 1230 size_t sz_out = CONFIG_SPL_MULTI_DTB_FIT_UNCOMPRESS_SZ; 1231 ulong sz_in = sz_src; 1232 void *dst; 1233 int rc; 1234 1235 if (CONFIG_IS_ENABLED(GZIP)) 1236 if (gzip_parse_header(src, sz_in) < 0) 1237 return -1; 1238 if (CONFIG_IS_ENABLED(LZO)) 1239 if (!lzop_is_valid_header(src)) 1240 return -EBADMSG; 1241 1242 if (CONFIG_IS_ENABLED(MULTI_DTB_FIT_DYN_ALLOC)) { 1243 dst = malloc(sz_out); 1244 if (!dst) { 1245 puts("uncompress_blob: Unable to allocate memory\n"); 1246 return -ENOMEM; 1247 } 1248 } else { 1249 # if CONFIG_IS_ENABLED(MULTI_DTB_FIT_USER_DEFINED_AREA) 1250 dst = (void *)CONFIG_VAL(MULTI_DTB_FIT_USER_DEF_ADDR); 1251 # else 1252 return -ENOTSUPP; 1253 # endif 1254 } 1255 1256 if (CONFIG_IS_ENABLED(GZIP)) 1257 rc = gunzip(dst, sz_out, (u8 *)src, &sz_in); 1258 else if (CONFIG_IS_ENABLED(LZO)) 1259 rc = lzop_decompress(src, sz_in, dst, &sz_out); 1260 1261 if (rc < 0) { 1262 /* not a valid compressed blob */ 1263 puts("uncompress_blob: Unable to uncompress\n"); 1264 if (CONFIG_IS_ENABLED(MULTI_DTB_FIT_DYN_ALLOC)) 1265 free(dst); 1266 return -EBADMSG; 1267 } 1268 *dstp = dst; 1269 return 0; 1270 } 1271 # else 1272 static int uncompress_blob(const void *src, ulong sz_src, void **dstp) 1273 { 1274 return -ENOTSUPP; 1275 } 1276 # endif 1277 #endif 1278 1279 #if defined(CONFIG_OF_BOARD) || defined(CONFIG_OF_SEPARATE) 1280 /* 1281 * For CONFIG_OF_SEPARATE, the board may optionally implement this to 1282 * provide and/or fixup the fdt. 1283 */ 1284 __weak void *board_fdt_blob_setup(void) 1285 { 1286 void *fdt_blob = NULL; 1287 #ifdef CONFIG_SPL_BUILD 1288 /* FDT is at end of BSS unless it is in a different memory region */ 1289 if (IS_ENABLED(CONFIG_SPL_SEPARATE_BSS)) 1290 fdt_blob = (ulong *)&_image_binary_end; 1291 else 1292 fdt_blob = (ulong *)&__bss_end; 1293 #else 1294 /* FDT is at end of image */ 1295 fdt_blob = (ulong *)&_end; 1296 #endif 1297 return fdt_blob; 1298 } 1299 #endif 1300 1301 int fdtdec_setup(void) 1302 { 1303 #if CONFIG_IS_ENABLED(OF_CONTROL) 1304 # if CONFIG_IS_ENABLED(MULTI_DTB_FIT) 1305 void *fdt_blob; 1306 # endif 1307 # ifdef CONFIG_OF_EMBED 1308 /* Get a pointer to the FDT */ 1309 # ifdef CONFIG_SPL_BUILD 1310 gd->fdt_blob = __dtb_dt_spl_begin; 1311 # else 1312 gd->fdt_blob = __dtb_dt_begin; 1313 # endif 1314 # elif defined(CONFIG_OF_BOARD) || defined(CONFIG_OF_SEPARATE) 1315 /* Allow the board to override the fdt address. */ 1316 gd->fdt_blob = board_fdt_blob_setup(); 1317 # elif defined(CONFIG_OF_HOSTFILE) 1318 if (sandbox_read_fdt_from_file()) { 1319 puts("Failed to read control FDT\n"); 1320 return -1; 1321 } 1322 # endif 1323 # ifndef CONFIG_SPL_BUILD 1324 /* Allow the early environment to override the fdt address */ 1325 gd->fdt_blob = (void *)env_get_ulong("fdtcontroladdr", 16, 1326 (uintptr_t)gd->fdt_blob); 1327 # endif 1328 1329 # if CONFIG_IS_ENABLED(MULTI_DTB_FIT) 1330 /* 1331 * Try and uncompress the blob. 1332 * Unfortunately there is no way to know how big the input blob really 1333 * is. So let us set the maximum input size arbitrarily high. 16MB 1334 * ought to be more than enough for packed DTBs. 1335 */ 1336 if (uncompress_blob(gd->fdt_blob, 0x1000000, &fdt_blob) == 0) 1337 gd->fdt_blob = fdt_blob; 1338 1339 /* 1340 * Check if blob is a FIT images containings DTBs. 1341 * If so, pick the most relevant 1342 */ 1343 fdt_blob = locate_dtb_in_fit(gd->fdt_blob); 1344 if (fdt_blob) 1345 gd->fdt_blob = fdt_blob; 1346 # endif 1347 #endif 1348 1349 return fdtdec_prepare_fdt(); 1350 } 1351 1352 #endif /* !USE_HOSTCC */ 1353