1 /* 2 * Copyright (c) 2011 The Chromium OS Authors. 3 * SPDX-License-Identifier: GPL-2.0+ 4 */ 5 6 #ifndef USE_HOSTCC 7 #include <common.h> 8 #include <errno.h> 9 #include <serial.h> 10 #include <libfdt.h> 11 #include <fdtdec.h> 12 #include <asm/sections.h> 13 #include <linux/ctype.h> 14 15 DECLARE_GLOBAL_DATA_PTR; 16 17 /* 18 * Here are the type we know about. One day we might allow drivers to 19 * register. For now we just put them here. The COMPAT macro allows us to 20 * turn this into a sparse list later, and keeps the ID with the name. 21 */ 22 #define COMPAT(id, name) name 23 static const char * const compat_names[COMPAT_COUNT] = { 24 COMPAT(UNKNOWN, "<none>"), 25 COMPAT(NVIDIA_TEGRA20_EMC, "nvidia,tegra20-emc"), 26 COMPAT(NVIDIA_TEGRA20_EMC_TABLE, "nvidia,tegra20-emc-table"), 27 COMPAT(NVIDIA_TEGRA20_KBC, "nvidia,tegra20-kbc"), 28 COMPAT(NVIDIA_TEGRA20_NAND, "nvidia,tegra20-nand"), 29 COMPAT(NVIDIA_TEGRA20_PWM, "nvidia,tegra20-pwm"), 30 COMPAT(NVIDIA_TEGRA124_DC, "nvidia,tegra124-dc"), 31 COMPAT(NVIDIA_TEGRA124_SOR, "nvidia,tegra124-sor"), 32 COMPAT(NVIDIA_TEGRA124_PMC, "nvidia,tegra124-pmc"), 33 COMPAT(NVIDIA_TEGRA20_DC, "nvidia,tegra20-dc"), 34 COMPAT(NVIDIA_TEGRA210_SDMMC, "nvidia,tegra210-sdhci"), 35 COMPAT(NVIDIA_TEGRA124_SDMMC, "nvidia,tegra124-sdhci"), 36 COMPAT(NVIDIA_TEGRA30_SDMMC, "nvidia,tegra30-sdhci"), 37 COMPAT(NVIDIA_TEGRA20_SDMMC, "nvidia,tegra20-sdhci"), 38 COMPAT(NVIDIA_TEGRA124_PCIE, "nvidia,tegra124-pcie"), 39 COMPAT(NVIDIA_TEGRA30_PCIE, "nvidia,tegra30-pcie"), 40 COMPAT(NVIDIA_TEGRA20_PCIE, "nvidia,tegra20-pcie"), 41 COMPAT(NVIDIA_TEGRA124_XUSB_PADCTL, "nvidia,tegra124-xusb-padctl"), 42 COMPAT(NVIDIA_TEGRA210_XUSB_PADCTL, "nvidia,tegra210-xusb-padctl"), 43 COMPAT(SMSC_LAN9215, "smsc,lan9215"), 44 COMPAT(SAMSUNG_EXYNOS5_SROMC, "samsung,exynos-sromc"), 45 COMPAT(SAMSUNG_S3C2440_I2C, "samsung,s3c2440-i2c"), 46 COMPAT(SAMSUNG_EXYNOS5_SOUND, "samsung,exynos-sound"), 47 COMPAT(WOLFSON_WM8994_CODEC, "wolfson,wm8994-codec"), 48 COMPAT(GOOGLE_CROS_EC_KEYB, "google,cros-ec-keyb"), 49 COMPAT(SAMSUNG_EXYNOS_USB_PHY, "samsung,exynos-usb-phy"), 50 COMPAT(SAMSUNG_EXYNOS5_USB3_PHY, "samsung,exynos5250-usb3-phy"), 51 COMPAT(SAMSUNG_EXYNOS_TMU, "samsung,exynos-tmu"), 52 COMPAT(SAMSUNG_EXYNOS_FIMD, "samsung,exynos-fimd"), 53 COMPAT(SAMSUNG_EXYNOS_MIPI_DSI, "samsung,exynos-mipi-dsi"), 54 COMPAT(SAMSUNG_EXYNOS5_DP, "samsung,exynos5-dp"), 55 COMPAT(SAMSUNG_EXYNOS_DWMMC, "samsung,exynos-dwmmc"), 56 COMPAT(SAMSUNG_EXYNOS_MMC, "samsung,exynos-mmc"), 57 COMPAT(SAMSUNG_EXYNOS_SERIAL, "samsung,exynos4210-uart"), 58 COMPAT(MAXIM_MAX77686_PMIC, "maxim,max77686"), 59 COMPAT(GENERIC_SPI_FLASH, "spi-flash"), 60 COMPAT(MAXIM_98095_CODEC, "maxim,max98095-codec"), 61 COMPAT(INFINEON_SLB9635_TPM, "infineon,slb9635-tpm"), 62 COMPAT(INFINEON_SLB9645_TPM, "infineon,slb9645tt"), 63 COMPAT(SAMSUNG_EXYNOS5_I2C, "samsung,exynos5-hsi2c"), 64 COMPAT(SANDBOX_LCD_SDL, "sandbox,lcd-sdl"), 65 COMPAT(TI_TPS65090, "ti,tps65090"), 66 COMPAT(COMPAT_NXP_PTN3460, "nxp,ptn3460"), 67 COMPAT(SAMSUNG_EXYNOS_SYSMMU, "samsung,sysmmu-v3.3"), 68 COMPAT(PARADE_PS8625, "parade,ps8625"), 69 COMPAT(INTEL_MICROCODE, "intel,microcode"), 70 COMPAT(MEMORY_SPD, "memory-spd"), 71 COMPAT(INTEL_PANTHERPOINT_AHCI, "intel,pantherpoint-ahci"), 72 COMPAT(INTEL_MODEL_206AX, "intel,model-206ax"), 73 COMPAT(INTEL_GMA, "intel,gma"), 74 COMPAT(AMS_AS3722, "ams,as3722"), 75 COMPAT(INTEL_ICH_SPI, "intel,ich-spi"), 76 COMPAT(INTEL_QRK_MRC, "intel,quark-mrc"), 77 COMPAT(INTEL_X86_PINCTRL, "intel,x86-pinctrl"), 78 COMPAT(SOCIONEXT_XHCI, "socionext,uniphier-xhci"), 79 COMPAT(COMPAT_INTEL_PCH, "intel,bd82x6x"), 80 COMPAT(COMPAT_INTEL_IRQ_ROUTER, "intel,irq-router"), 81 }; 82 83 const char *fdtdec_get_compatible(enum fdt_compat_id id) 84 { 85 /* We allow reading of the 'unknown' ID for testing purposes */ 86 assert(id >= 0 && id < COMPAT_COUNT); 87 return compat_names[id]; 88 } 89 90 fdt_addr_t fdtdec_get_addr_size(const void *blob, int node, 91 const char *prop_name, fdt_size_t *sizep) 92 { 93 const fdt32_t *ptr, *end; 94 int parent, na, ns, len; 95 fdt_addr_t addr; 96 97 debug("%s: %s: ", __func__, prop_name); 98 99 parent = fdt_parent_offset(blob, node); 100 if (parent < 0) { 101 debug("(no parent found)\n"); 102 return FDT_ADDR_T_NONE; 103 } 104 105 na = fdt_address_cells(blob, parent); 106 ns = fdt_size_cells(blob, parent); 107 108 ptr = fdt_getprop(blob, node, prop_name, &len); 109 if (!ptr) { 110 debug("(not found)\n"); 111 return FDT_ADDR_T_NONE; 112 } 113 114 end = ptr + len / sizeof(*ptr); 115 116 if (ptr + na + ns > end) { 117 debug("(not enough data: expected %d bytes, got %d bytes)\n", 118 (na + ns) * 4, len); 119 return FDT_ADDR_T_NONE; 120 } 121 122 addr = fdtdec_get_number(ptr, na); 123 124 if (sizep) { 125 *sizep = fdtdec_get_number(ptr + na, ns); 126 debug("addr=%pa, size=%pa\n", &addr, sizep); 127 } else { 128 debug("%pa\n", &addr); 129 } 130 131 return addr; 132 } 133 134 fdt_addr_t fdtdec_get_addr(const void *blob, int node, 135 const char *prop_name) 136 { 137 return fdtdec_get_addr_size(blob, node, prop_name, NULL); 138 } 139 140 #ifdef CONFIG_PCI 141 int fdtdec_get_pci_addr(const void *blob, int node, enum fdt_pci_space type, 142 const char *prop_name, struct fdt_pci_addr *addr) 143 { 144 const u32 *cell; 145 int len; 146 int ret = -ENOENT; 147 148 debug("%s: %s: ", __func__, prop_name); 149 150 /* 151 * If we follow the pci bus bindings strictly, we should check 152 * the value of the node's parent node's #address-cells and 153 * #size-cells. They need to be 3 and 2 accordingly. However, 154 * for simplicity we skip the check here. 155 */ 156 cell = fdt_getprop(blob, node, prop_name, &len); 157 if (!cell) 158 goto fail; 159 160 if ((len % FDT_PCI_REG_SIZE) == 0) { 161 int num = len / FDT_PCI_REG_SIZE; 162 int i; 163 164 for (i = 0; i < num; i++) { 165 debug("pci address #%d: %08lx %08lx %08lx\n", i, 166 (ulong)fdt_addr_to_cpu(cell[0]), 167 (ulong)fdt_addr_to_cpu(cell[1]), 168 (ulong)fdt_addr_to_cpu(cell[2])); 169 if ((fdt_addr_to_cpu(*cell) & type) == type) { 170 addr->phys_hi = fdt_addr_to_cpu(cell[0]); 171 addr->phys_mid = fdt_addr_to_cpu(cell[1]); 172 addr->phys_lo = fdt_addr_to_cpu(cell[2]); 173 break; 174 } else { 175 cell += (FDT_PCI_ADDR_CELLS + 176 FDT_PCI_SIZE_CELLS); 177 } 178 } 179 180 if (i == num) { 181 ret = -ENXIO; 182 goto fail; 183 } 184 185 return 0; 186 } else { 187 ret = -EINVAL; 188 } 189 190 fail: 191 debug("(not found)\n"); 192 return ret; 193 } 194 195 int fdtdec_get_pci_vendev(const void *blob, int node, u16 *vendor, u16 *device) 196 { 197 const char *list, *end; 198 int len; 199 200 list = fdt_getprop(blob, node, "compatible", &len); 201 if (!list) 202 return -ENOENT; 203 204 end = list + len; 205 while (list < end) { 206 char *s; 207 208 len = strlen(list); 209 if (len >= strlen("pciVVVV,DDDD")) { 210 s = strstr(list, "pci"); 211 212 /* 213 * check if the string is something like pciVVVV,DDDD.RR 214 * or just pciVVVV,DDDD 215 */ 216 if (s && s[7] == ',' && 217 (s[12] == '.' || s[12] == 0)) { 218 s += 3; 219 *vendor = simple_strtol(s, NULL, 16); 220 221 s += 5; 222 *device = simple_strtol(s, NULL, 16); 223 224 return 0; 225 } 226 } else { 227 list += (len + 1); 228 } 229 } 230 231 return -ENOENT; 232 } 233 234 int fdtdec_get_pci_bdf(const void *blob, int node, 235 struct fdt_pci_addr *addr, pci_dev_t *bdf) 236 { 237 u16 dt_vendor, dt_device, vendor, device; 238 int ret; 239 240 /* get vendor id & device id from the compatible string */ 241 ret = fdtdec_get_pci_vendev(blob, node, &dt_vendor, &dt_device); 242 if (ret) 243 return ret; 244 245 /* extract the bdf from fdt_pci_addr */ 246 *bdf = addr->phys_hi & 0xffff00; 247 248 /* read vendor id & device id based on bdf */ 249 pci_read_config_word(*bdf, PCI_VENDOR_ID, &vendor); 250 pci_read_config_word(*bdf, PCI_DEVICE_ID, &device); 251 252 /* 253 * Note there are two places in the device tree to fully describe 254 * a pci device: one is via compatible string with a format of 255 * "pciVVVV,DDDD" and the other one is the bdf numbers encoded in 256 * the device node's reg address property. We read the vendor id 257 * and device id based on bdf and compare the values with the 258 * "VVVV,DDDD". If they are the same, then we are good to use bdf 259 * to read device's bar. But if they are different, we have to rely 260 * on the vendor id and device id extracted from the compatible 261 * string and locate the real bdf by pci_find_device(). This is 262 * because normally we may only know device's device number and 263 * function number when writing device tree. The bus number is 264 * dynamically assigned during the pci enumeration process. 265 */ 266 if ((dt_vendor != vendor) || (dt_device != device)) { 267 *bdf = pci_find_device(dt_vendor, dt_device, 0); 268 if (*bdf == -1) 269 return -ENODEV; 270 } 271 272 return 0; 273 } 274 275 int fdtdec_get_pci_bar32(const void *blob, int node, 276 struct fdt_pci_addr *addr, u32 *bar) 277 { 278 pci_dev_t bdf; 279 int barnum; 280 int ret; 281 282 /* get pci devices's bdf */ 283 ret = fdtdec_get_pci_bdf(blob, node, addr, &bdf); 284 if (ret) 285 return ret; 286 287 /* extract the bar number from fdt_pci_addr */ 288 barnum = addr->phys_hi & 0xff; 289 if ((barnum < PCI_BASE_ADDRESS_0) || (barnum > PCI_CARDBUS_CIS)) 290 return -EINVAL; 291 292 barnum = (barnum - PCI_BASE_ADDRESS_0) / 4; 293 *bar = pci_read_bar32(pci_bus_to_hose(PCI_BUS(bdf)), bdf, barnum); 294 295 return 0; 296 } 297 #endif 298 299 uint64_t fdtdec_get_uint64(const void *blob, int node, const char *prop_name, 300 uint64_t default_val) 301 { 302 const uint64_t *cell64; 303 int length; 304 305 cell64 = fdt_getprop(blob, node, prop_name, &length); 306 if (!cell64 || length < sizeof(*cell64)) 307 return default_val; 308 309 return fdt64_to_cpu(*cell64); 310 } 311 312 int fdtdec_get_is_enabled(const void *blob, int node) 313 { 314 const char *cell; 315 316 /* 317 * It should say "okay", so only allow that. Some fdts use "ok" but 318 * this is a bug. Please fix your device tree source file. See here 319 * for discussion: 320 * 321 * http://www.mail-archive.com/u-boot@lists.denx.de/msg71598.html 322 */ 323 cell = fdt_getprop(blob, node, "status", NULL); 324 if (cell) 325 return 0 == strcmp(cell, "okay"); 326 return 1; 327 } 328 329 enum fdt_compat_id fdtdec_lookup(const void *blob, int node) 330 { 331 enum fdt_compat_id id; 332 333 /* Search our drivers */ 334 for (id = COMPAT_UNKNOWN; id < COMPAT_COUNT; id++) 335 if (0 == fdt_node_check_compatible(blob, node, 336 compat_names[id])) 337 return id; 338 return COMPAT_UNKNOWN; 339 } 340 341 int fdtdec_next_compatible(const void *blob, int node, 342 enum fdt_compat_id id) 343 { 344 return fdt_node_offset_by_compatible(blob, node, compat_names[id]); 345 } 346 347 int fdtdec_next_compatible_subnode(const void *blob, int node, 348 enum fdt_compat_id id, int *depthp) 349 { 350 do { 351 node = fdt_next_node(blob, node, depthp); 352 } while (*depthp > 1); 353 354 /* If this is a direct subnode, and compatible, return it */ 355 if (*depthp == 1 && 0 == fdt_node_check_compatible( 356 blob, node, compat_names[id])) 357 return node; 358 359 return -FDT_ERR_NOTFOUND; 360 } 361 362 int fdtdec_next_alias(const void *blob, const char *name, 363 enum fdt_compat_id id, int *upto) 364 { 365 #define MAX_STR_LEN 20 366 char str[MAX_STR_LEN + 20]; 367 int node, err; 368 369 /* snprintf() is not available */ 370 assert(strlen(name) < MAX_STR_LEN); 371 sprintf(str, "%.*s%d", MAX_STR_LEN, name, *upto); 372 node = fdt_path_offset(blob, str); 373 if (node < 0) 374 return node; 375 err = fdt_node_check_compatible(blob, node, compat_names[id]); 376 if (err < 0) 377 return err; 378 if (err) 379 return -FDT_ERR_NOTFOUND; 380 (*upto)++; 381 return node; 382 } 383 384 int fdtdec_find_aliases_for_id(const void *blob, const char *name, 385 enum fdt_compat_id id, int *node_list, int maxcount) 386 { 387 memset(node_list, '\0', sizeof(*node_list) * maxcount); 388 389 return fdtdec_add_aliases_for_id(blob, name, id, node_list, maxcount); 390 } 391 392 /* TODO: Can we tighten this code up a little? */ 393 int fdtdec_add_aliases_for_id(const void *blob, const char *name, 394 enum fdt_compat_id id, int *node_list, int maxcount) 395 { 396 int name_len = strlen(name); 397 int nodes[maxcount]; 398 int num_found = 0; 399 int offset, node; 400 int alias_node; 401 int count; 402 int i, j; 403 404 /* find the alias node if present */ 405 alias_node = fdt_path_offset(blob, "/aliases"); 406 407 /* 408 * start with nothing, and we can assume that the root node can't 409 * match 410 */ 411 memset(nodes, '\0', sizeof(nodes)); 412 413 /* First find all the compatible nodes */ 414 for (node = count = 0; node >= 0 && count < maxcount;) { 415 node = fdtdec_next_compatible(blob, node, id); 416 if (node >= 0) 417 nodes[count++] = node; 418 } 419 if (node >= 0) 420 debug("%s: warning: maxcount exceeded with alias '%s'\n", 421 __func__, name); 422 423 /* Now find all the aliases */ 424 for (offset = fdt_first_property_offset(blob, alias_node); 425 offset > 0; 426 offset = fdt_next_property_offset(blob, offset)) { 427 const struct fdt_property *prop; 428 const char *path; 429 int number; 430 int found; 431 432 node = 0; 433 prop = fdt_get_property_by_offset(blob, offset, NULL); 434 path = fdt_string(blob, fdt32_to_cpu(prop->nameoff)); 435 if (prop->len && 0 == strncmp(path, name, name_len)) 436 node = fdt_path_offset(blob, prop->data); 437 if (node <= 0) 438 continue; 439 440 /* Get the alias number */ 441 number = simple_strtoul(path + name_len, NULL, 10); 442 if (number < 0 || number >= maxcount) { 443 debug("%s: warning: alias '%s' is out of range\n", 444 __func__, path); 445 continue; 446 } 447 448 /* Make sure the node we found is actually in our list! */ 449 found = -1; 450 for (j = 0; j < count; j++) 451 if (nodes[j] == node) { 452 found = j; 453 break; 454 } 455 456 if (found == -1) { 457 debug("%s: warning: alias '%s' points to a node " 458 "'%s' that is missing or is not compatible " 459 " with '%s'\n", __func__, path, 460 fdt_get_name(blob, node, NULL), 461 compat_names[id]); 462 continue; 463 } 464 465 /* 466 * Add this node to our list in the right place, and mark 467 * it as done. 468 */ 469 if (fdtdec_get_is_enabled(blob, node)) { 470 if (node_list[number]) { 471 debug("%s: warning: alias '%s' requires that " 472 "a node be placed in the list in a " 473 "position which is already filled by " 474 "node '%s'\n", __func__, path, 475 fdt_get_name(blob, node, NULL)); 476 continue; 477 } 478 node_list[number] = node; 479 if (number >= num_found) 480 num_found = number + 1; 481 } 482 nodes[found] = 0; 483 } 484 485 /* Add any nodes not mentioned by an alias */ 486 for (i = j = 0; i < maxcount; i++) { 487 if (!node_list[i]) { 488 for (; j < maxcount; j++) 489 if (nodes[j] && 490 fdtdec_get_is_enabled(blob, nodes[j])) 491 break; 492 493 /* Have we run out of nodes to add? */ 494 if (j == maxcount) 495 break; 496 497 assert(!node_list[i]); 498 node_list[i] = nodes[j++]; 499 if (i >= num_found) 500 num_found = i + 1; 501 } 502 } 503 504 return num_found; 505 } 506 507 int fdtdec_get_alias_seq(const void *blob, const char *base, int offset, 508 int *seqp) 509 { 510 int base_len = strlen(base); 511 const char *find_name; 512 int find_namelen; 513 int prop_offset; 514 int aliases; 515 516 find_name = fdt_get_name(blob, offset, &find_namelen); 517 debug("Looking for '%s' at %d, name %s\n", base, offset, find_name); 518 519 aliases = fdt_path_offset(blob, "/aliases"); 520 for (prop_offset = fdt_first_property_offset(blob, aliases); 521 prop_offset > 0; 522 prop_offset = fdt_next_property_offset(blob, prop_offset)) { 523 const char *prop; 524 const char *name; 525 const char *slash; 526 int len, val; 527 528 prop = fdt_getprop_by_offset(blob, prop_offset, &name, &len); 529 debug(" - %s, %s\n", name, prop); 530 if (len < find_namelen || *prop != '/' || prop[len - 1] || 531 strncmp(name, base, base_len)) 532 continue; 533 534 slash = strrchr(prop, '/'); 535 if (strcmp(slash + 1, find_name)) 536 continue; 537 val = trailing_strtol(name); 538 if (val != -1) { 539 *seqp = val; 540 debug("Found seq %d\n", *seqp); 541 return 0; 542 } 543 } 544 545 debug("Not found\n"); 546 return -ENOENT; 547 } 548 549 int fdtdec_get_chosen_node(const void *blob, const char *name) 550 { 551 const char *prop; 552 int chosen_node; 553 int len; 554 555 if (!blob) 556 return -FDT_ERR_NOTFOUND; 557 chosen_node = fdt_path_offset(blob, "/chosen"); 558 prop = fdt_getprop(blob, chosen_node, name, &len); 559 if (!prop) 560 return -FDT_ERR_NOTFOUND; 561 return fdt_path_offset(blob, prop); 562 } 563 564 int fdtdec_check_fdt(void) 565 { 566 /* 567 * We must have an FDT, but we cannot panic() yet since the console 568 * is not ready. So for now, just assert(). Boards which need an early 569 * FDT (prior to console ready) will need to make their own 570 * arrangements and do their own checks. 571 */ 572 assert(!fdtdec_prepare_fdt()); 573 return 0; 574 } 575 576 /* 577 * This function is a little odd in that it accesses global data. At some 578 * point if the architecture board.c files merge this will make more sense. 579 * Even now, it is common code. 580 */ 581 int fdtdec_prepare_fdt(void) 582 { 583 if (!gd->fdt_blob || ((uintptr_t)gd->fdt_blob & 3) || 584 fdt_check_header(gd->fdt_blob)) { 585 #ifdef CONFIG_SPL_BUILD 586 puts("Missing DTB\n"); 587 #else 588 puts("No valid device tree binary found - please append one to U-Boot binary, use u-boot-dtb.bin or define CONFIG_OF_EMBED. For sandbox, use -d <file.dtb>\n"); 589 # ifdef DEBUG 590 if (gd->fdt_blob) { 591 printf("fdt_blob=%p\n", gd->fdt_blob); 592 print_buffer((ulong)gd->fdt_blob, gd->fdt_blob, 4, 593 32, 0); 594 } 595 # endif 596 #endif 597 return -1; 598 } 599 return 0; 600 } 601 602 int fdtdec_lookup_phandle(const void *blob, int node, const char *prop_name) 603 { 604 const u32 *phandle; 605 int lookup; 606 607 debug("%s: %s\n", __func__, prop_name); 608 phandle = fdt_getprop(blob, node, prop_name, NULL); 609 if (!phandle) 610 return -FDT_ERR_NOTFOUND; 611 612 lookup = fdt_node_offset_by_phandle(blob, fdt32_to_cpu(*phandle)); 613 return lookup; 614 } 615 616 /** 617 * Look up a property in a node and check that it has a minimum length. 618 * 619 * @param blob FDT blob 620 * @param node node to examine 621 * @param prop_name name of property to find 622 * @param min_len minimum property length in bytes 623 * @param err 0 if ok, or -FDT_ERR_NOTFOUND if the property is not 624 found, or -FDT_ERR_BADLAYOUT if not enough data 625 * @return pointer to cell, which is only valid if err == 0 626 */ 627 static const void *get_prop_check_min_len(const void *blob, int node, 628 const char *prop_name, int min_len, int *err) 629 { 630 const void *cell; 631 int len; 632 633 debug("%s: %s\n", __func__, prop_name); 634 cell = fdt_getprop(blob, node, prop_name, &len); 635 if (!cell) 636 *err = -FDT_ERR_NOTFOUND; 637 else if (len < min_len) 638 *err = -FDT_ERR_BADLAYOUT; 639 else 640 *err = 0; 641 return cell; 642 } 643 644 int fdtdec_get_int_array(const void *blob, int node, const char *prop_name, 645 u32 *array, int count) 646 { 647 const u32 *cell; 648 int i, err = 0; 649 650 debug("%s: %s\n", __func__, prop_name); 651 cell = get_prop_check_min_len(blob, node, prop_name, 652 sizeof(u32) * count, &err); 653 if (!err) { 654 for (i = 0; i < count; i++) 655 array[i] = fdt32_to_cpu(cell[i]); 656 } 657 return err; 658 } 659 660 int fdtdec_get_int_array_count(const void *blob, int node, 661 const char *prop_name, u32 *array, int count) 662 { 663 const u32 *cell; 664 int len, elems; 665 int i; 666 667 debug("%s: %s\n", __func__, prop_name); 668 cell = fdt_getprop(blob, node, prop_name, &len); 669 if (!cell) 670 return -FDT_ERR_NOTFOUND; 671 elems = len / sizeof(u32); 672 if (count > elems) 673 count = elems; 674 for (i = 0; i < count; i++) 675 array[i] = fdt32_to_cpu(cell[i]); 676 677 return count; 678 } 679 680 const u32 *fdtdec_locate_array(const void *blob, int node, 681 const char *prop_name, int count) 682 { 683 const u32 *cell; 684 int err; 685 686 cell = get_prop_check_min_len(blob, node, prop_name, 687 sizeof(u32) * count, &err); 688 return err ? NULL : cell; 689 } 690 691 int fdtdec_get_bool(const void *blob, int node, const char *prop_name) 692 { 693 const s32 *cell; 694 int len; 695 696 debug("%s: %s\n", __func__, prop_name); 697 cell = fdt_getprop(blob, node, prop_name, &len); 698 return cell != NULL; 699 } 700 701 int fdtdec_parse_phandle_with_args(const void *blob, int src_node, 702 const char *list_name, 703 const char *cells_name, 704 int cell_count, int index, 705 struct fdtdec_phandle_args *out_args) 706 { 707 const __be32 *list, *list_end; 708 int rc = 0, size, cur_index = 0; 709 uint32_t count = 0; 710 int node = -1; 711 int phandle; 712 713 /* Retrieve the phandle list property */ 714 list = fdt_getprop(blob, src_node, list_name, &size); 715 if (!list) 716 return -ENOENT; 717 list_end = list + size / sizeof(*list); 718 719 /* Loop over the phandles until all the requested entry is found */ 720 while (list < list_end) { 721 rc = -EINVAL; 722 count = 0; 723 724 /* 725 * If phandle is 0, then it is an empty entry with no 726 * arguments. Skip forward to the next entry. 727 */ 728 phandle = be32_to_cpup(list++); 729 if (phandle) { 730 /* 731 * Find the provider node and parse the #*-cells 732 * property to determine the argument length. 733 * 734 * This is not needed if the cell count is hard-coded 735 * (i.e. cells_name not set, but cell_count is set), 736 * except when we're going to return the found node 737 * below. 738 */ 739 if (cells_name || cur_index == index) { 740 node = fdt_node_offset_by_phandle(blob, 741 phandle); 742 if (!node) { 743 debug("%s: could not find phandle\n", 744 fdt_get_name(blob, src_node, 745 NULL)); 746 goto err; 747 } 748 } 749 750 if (cells_name) { 751 count = fdtdec_get_int(blob, node, cells_name, 752 -1); 753 if (count == -1) { 754 debug("%s: could not get %s for %s\n", 755 fdt_get_name(blob, src_node, 756 NULL), 757 cells_name, 758 fdt_get_name(blob, node, 759 NULL)); 760 goto err; 761 } 762 } else { 763 count = cell_count; 764 } 765 766 /* 767 * Make sure that the arguments actually fit in the 768 * remaining property data length 769 */ 770 if (list + count > list_end) { 771 debug("%s: arguments longer than property\n", 772 fdt_get_name(blob, src_node, NULL)); 773 goto err; 774 } 775 } 776 777 /* 778 * All of the error cases above bail out of the loop, so at 779 * this point, the parsing is successful. If the requested 780 * index matches, then fill the out_args structure and return, 781 * or return -ENOENT for an empty entry. 782 */ 783 rc = -ENOENT; 784 if (cur_index == index) { 785 if (!phandle) 786 goto err; 787 788 if (out_args) { 789 int i; 790 791 if (count > MAX_PHANDLE_ARGS) { 792 debug("%s: too many arguments %d\n", 793 fdt_get_name(blob, src_node, 794 NULL), count); 795 count = MAX_PHANDLE_ARGS; 796 } 797 out_args->node = node; 798 out_args->args_count = count; 799 for (i = 0; i < count; i++) { 800 out_args->args[i] = 801 be32_to_cpup(list++); 802 } 803 } 804 805 /* Found it! return success */ 806 return 0; 807 } 808 809 node = -1; 810 list += count; 811 cur_index++; 812 } 813 814 /* 815 * Result will be one of: 816 * -ENOENT : index is for empty phandle 817 * -EINVAL : parsing error on data 818 * [1..n] : Number of phandle (count mode; when index = -1) 819 */ 820 rc = index < 0 ? cur_index : -ENOENT; 821 err: 822 return rc; 823 } 824 825 int fdtdec_get_byte_array(const void *blob, int node, const char *prop_name, 826 u8 *array, int count) 827 { 828 const u8 *cell; 829 int err; 830 831 cell = get_prop_check_min_len(blob, node, prop_name, count, &err); 832 if (!err) 833 memcpy(array, cell, count); 834 return err; 835 } 836 837 const u8 *fdtdec_locate_byte_array(const void *blob, int node, 838 const char *prop_name, int count) 839 { 840 const u8 *cell; 841 int err; 842 843 cell = get_prop_check_min_len(blob, node, prop_name, count, &err); 844 if (err) 845 return NULL; 846 return cell; 847 } 848 849 int fdtdec_get_config_int(const void *blob, const char *prop_name, 850 int default_val) 851 { 852 int config_node; 853 854 debug("%s: %s\n", __func__, prop_name); 855 config_node = fdt_path_offset(blob, "/config"); 856 if (config_node < 0) 857 return default_val; 858 return fdtdec_get_int(blob, config_node, prop_name, default_val); 859 } 860 861 int fdtdec_get_config_bool(const void *blob, const char *prop_name) 862 { 863 int config_node; 864 const void *prop; 865 866 debug("%s: %s\n", __func__, prop_name); 867 config_node = fdt_path_offset(blob, "/config"); 868 if (config_node < 0) 869 return 0; 870 prop = fdt_get_property(blob, config_node, prop_name, NULL); 871 872 return prop != NULL; 873 } 874 875 char *fdtdec_get_config_string(const void *blob, const char *prop_name) 876 { 877 const char *nodep; 878 int nodeoffset; 879 int len; 880 881 debug("%s: %s\n", __func__, prop_name); 882 nodeoffset = fdt_path_offset(blob, "/config"); 883 if (nodeoffset < 0) 884 return NULL; 885 886 nodep = fdt_getprop(blob, nodeoffset, prop_name, &len); 887 if (!nodep) 888 return NULL; 889 890 return (char *)nodep; 891 } 892 893 int fdtdec_decode_region(const void *blob, int node, const char *prop_name, 894 fdt_addr_t *basep, fdt_size_t *sizep) 895 { 896 const fdt_addr_t *cell; 897 int len; 898 899 debug("%s: %s: %s\n", __func__, fdt_get_name(blob, node, NULL), 900 prop_name); 901 cell = fdt_getprop(blob, node, prop_name, &len); 902 if (!cell || (len < sizeof(fdt_addr_t) * 2)) { 903 debug("cell=%p, len=%d\n", cell, len); 904 return -1; 905 } 906 907 *basep = fdt_addr_to_cpu(*cell); 908 *sizep = fdt_size_to_cpu(cell[1]); 909 debug("%s: base=%08lx, size=%lx\n", __func__, (ulong)*basep, 910 (ulong)*sizep); 911 912 return 0; 913 } 914 915 /** 916 * Read a flash entry from the fdt 917 * 918 * @param blob FDT blob 919 * @param node Offset of node to read 920 * @param name Name of node being read 921 * @param entry Place to put offset and size of this node 922 * @return 0 if ok, -ve on error 923 */ 924 int fdtdec_read_fmap_entry(const void *blob, int node, const char *name, 925 struct fmap_entry *entry) 926 { 927 const char *prop; 928 u32 reg[2]; 929 930 if (fdtdec_get_int_array(blob, node, "reg", reg, 2)) { 931 debug("Node '%s' has bad/missing 'reg' property\n", name); 932 return -FDT_ERR_NOTFOUND; 933 } 934 entry->offset = reg[0]; 935 entry->length = reg[1]; 936 entry->used = fdtdec_get_int(blob, node, "used", entry->length); 937 prop = fdt_getprop(blob, node, "compress", NULL); 938 entry->compress_algo = prop && !strcmp(prop, "lzo") ? 939 FMAP_COMPRESS_LZO : FMAP_COMPRESS_NONE; 940 prop = fdt_getprop(blob, node, "hash", &entry->hash_size); 941 entry->hash_algo = prop ? FMAP_HASH_SHA256 : FMAP_HASH_NONE; 942 entry->hash = (uint8_t *)prop; 943 944 return 0; 945 } 946 947 u64 fdtdec_get_number(const fdt32_t *ptr, unsigned int cells) 948 { 949 u64 number = 0; 950 951 while (cells--) 952 number = (number << 32) | fdt32_to_cpu(*ptr++); 953 954 return number; 955 } 956 957 int fdt_get_resource(const void *fdt, int node, const char *property, 958 unsigned int index, struct fdt_resource *res) 959 { 960 const fdt32_t *ptr, *end; 961 int na, ns, len, parent; 962 unsigned int i = 0; 963 964 parent = fdt_parent_offset(fdt, node); 965 if (parent < 0) 966 return parent; 967 968 na = fdt_address_cells(fdt, parent); 969 ns = fdt_size_cells(fdt, parent); 970 971 ptr = fdt_getprop(fdt, node, property, &len); 972 if (!ptr) 973 return len; 974 975 end = ptr + len / sizeof(*ptr); 976 977 while (ptr + na + ns <= end) { 978 if (i == index) { 979 res->start = res->end = fdtdec_get_number(ptr, na); 980 res->end += fdtdec_get_number(&ptr[na], ns) - 1; 981 return 0; 982 } 983 984 ptr += na + ns; 985 i++; 986 } 987 988 return -FDT_ERR_NOTFOUND; 989 } 990 991 int fdt_get_named_resource(const void *fdt, int node, const char *property, 992 const char *prop_names, const char *name, 993 struct fdt_resource *res) 994 { 995 int index; 996 997 index = fdt_find_string(fdt, node, prop_names, name); 998 if (index < 0) 999 return index; 1000 1001 return fdt_get_resource(fdt, node, property, index, res); 1002 } 1003 1004 int fdtdec_decode_memory_region(const void *blob, int config_node, 1005 const char *mem_type, const char *suffix, 1006 fdt_addr_t *basep, fdt_size_t *sizep) 1007 { 1008 char prop_name[50]; 1009 const char *mem; 1010 fdt_size_t size, offset_size; 1011 fdt_addr_t base, offset; 1012 int node; 1013 1014 if (config_node == -1) { 1015 config_node = fdt_path_offset(blob, "/config"); 1016 if (config_node < 0) { 1017 debug("%s: Cannot find /config node\n", __func__); 1018 return -ENOENT; 1019 } 1020 } 1021 if (!suffix) 1022 suffix = ""; 1023 1024 snprintf(prop_name, sizeof(prop_name), "%s-memory%s", mem_type, 1025 suffix); 1026 mem = fdt_getprop(blob, config_node, prop_name, NULL); 1027 if (!mem) { 1028 debug("%s: No memory type for '%s', using /memory\n", __func__, 1029 prop_name); 1030 mem = "/memory"; 1031 } 1032 1033 node = fdt_path_offset(blob, mem); 1034 if (node < 0) { 1035 debug("%s: Failed to find node '%s': %s\n", __func__, mem, 1036 fdt_strerror(node)); 1037 return -ENOENT; 1038 } 1039 1040 /* 1041 * Not strictly correct - the memory may have multiple banks. We just 1042 * use the first 1043 */ 1044 if (fdtdec_decode_region(blob, node, "reg", &base, &size)) { 1045 debug("%s: Failed to decode memory region %s\n", __func__, 1046 mem); 1047 return -EINVAL; 1048 } 1049 1050 snprintf(prop_name, sizeof(prop_name), "%s-offset%s", mem_type, 1051 suffix); 1052 if (fdtdec_decode_region(blob, config_node, prop_name, &offset, 1053 &offset_size)) { 1054 debug("%s: Failed to decode memory region '%s'\n", __func__, 1055 prop_name); 1056 return -EINVAL; 1057 } 1058 1059 *basep = base + offset; 1060 *sizep = offset_size; 1061 1062 return 0; 1063 } 1064 1065 static int decode_timing_property(const void *blob, int node, const char *name, 1066 struct timing_entry *result) 1067 { 1068 int length, ret = 0; 1069 const u32 *prop; 1070 1071 prop = fdt_getprop(blob, node, name, &length); 1072 if (!prop) { 1073 debug("%s: could not find property %s\n", 1074 fdt_get_name(blob, node, NULL), name); 1075 return length; 1076 } 1077 1078 if (length == sizeof(u32)) { 1079 result->typ = fdtdec_get_int(blob, node, name, 0); 1080 result->min = result->typ; 1081 result->max = result->typ; 1082 } else { 1083 ret = fdtdec_get_int_array(blob, node, name, &result->min, 3); 1084 } 1085 1086 return ret; 1087 } 1088 1089 int fdtdec_decode_display_timing(const void *blob, int parent, int index, 1090 struct display_timing *dt) 1091 { 1092 int i, node, timings_node; 1093 u32 val = 0; 1094 int ret = 0; 1095 1096 timings_node = fdt_subnode_offset(blob, parent, "display-timings"); 1097 if (timings_node < 0) 1098 return timings_node; 1099 1100 for (i = 0, node = fdt_first_subnode(blob, timings_node); 1101 node > 0 && i != index; 1102 node = fdt_next_subnode(blob, node)) 1103 i++; 1104 1105 if (node < 0) 1106 return node; 1107 1108 memset(dt, 0, sizeof(*dt)); 1109 1110 ret |= decode_timing_property(blob, node, "hback-porch", 1111 &dt->hback_porch); 1112 ret |= decode_timing_property(blob, node, "hfront-porch", 1113 &dt->hfront_porch); 1114 ret |= decode_timing_property(blob, node, "hactive", &dt->hactive); 1115 ret |= decode_timing_property(blob, node, "hsync-len", &dt->hsync_len); 1116 ret |= decode_timing_property(blob, node, "vback-porch", 1117 &dt->vback_porch); 1118 ret |= decode_timing_property(blob, node, "vfront-porch", 1119 &dt->vfront_porch); 1120 ret |= decode_timing_property(blob, node, "vactive", &dt->vactive); 1121 ret |= decode_timing_property(blob, node, "vsync-len", &dt->vsync_len); 1122 ret |= decode_timing_property(blob, node, "clock-frequency", 1123 &dt->pixelclock); 1124 1125 dt->flags = 0; 1126 val = fdtdec_get_int(blob, node, "vsync-active", -1); 1127 if (val != -1) { 1128 dt->flags |= val ? DISPLAY_FLAGS_VSYNC_HIGH : 1129 DISPLAY_FLAGS_VSYNC_LOW; 1130 } 1131 val = fdtdec_get_int(blob, node, "hsync-active", -1); 1132 if (val != -1) { 1133 dt->flags |= val ? DISPLAY_FLAGS_HSYNC_HIGH : 1134 DISPLAY_FLAGS_HSYNC_LOW; 1135 } 1136 val = fdtdec_get_int(blob, node, "de-active", -1); 1137 if (val != -1) { 1138 dt->flags |= val ? DISPLAY_FLAGS_DE_HIGH : 1139 DISPLAY_FLAGS_DE_LOW; 1140 } 1141 val = fdtdec_get_int(blob, node, "pixelclk-active", -1); 1142 if (val != -1) { 1143 dt->flags |= val ? DISPLAY_FLAGS_PIXDATA_POSEDGE : 1144 DISPLAY_FLAGS_PIXDATA_NEGEDGE; 1145 } 1146 1147 if (fdtdec_get_bool(blob, node, "interlaced")) 1148 dt->flags |= DISPLAY_FLAGS_INTERLACED; 1149 if (fdtdec_get_bool(blob, node, "doublescan")) 1150 dt->flags |= DISPLAY_FLAGS_DOUBLESCAN; 1151 if (fdtdec_get_bool(blob, node, "doubleclk")) 1152 dt->flags |= DISPLAY_FLAGS_DOUBLECLK; 1153 1154 return 0; 1155 } 1156 1157 int fdtdec_setup(void) 1158 { 1159 #ifdef CONFIG_OF_CONTROL 1160 # ifdef CONFIG_OF_EMBED 1161 /* Get a pointer to the FDT */ 1162 gd->fdt_blob = __dtb_dt_begin; 1163 # elif defined CONFIG_OF_SEPARATE 1164 # ifdef CONFIG_SPL_BUILD 1165 /* FDT is at end of BSS */ 1166 gd->fdt_blob = (ulong *)&__bss_end; 1167 # else 1168 /* FDT is at end of image */ 1169 gd->fdt_blob = (ulong *)&_end; 1170 #endif 1171 # elif defined(CONFIG_OF_HOSTFILE) 1172 if (sandbox_read_fdt_from_file()) { 1173 puts("Failed to read control FDT\n"); 1174 return -1; 1175 } 1176 # endif 1177 # ifndef CONFIG_SPL_BUILD 1178 /* Allow the early environment to override the fdt address */ 1179 gd->fdt_blob = (void *)getenv_ulong("fdtcontroladdr", 16, 1180 (uintptr_t)gd->fdt_blob); 1181 # endif 1182 #endif 1183 return fdtdec_prepare_fdt(); 1184 } 1185 1186 #endif /* !USE_HOSTCC */ 1187