xref: /openbmc/u-boot/lib/fdtdec.c (revision 1021af4ded2d0961a4ba2ba89851719b098a98b6)
1 /*
2  * Copyright (c) 2011 The Chromium OS Authors.
3  * SPDX-License-Identifier:	GPL-2.0+
4  */
5 
6 #ifndef USE_HOSTCC
7 #include <common.h>
8 #include <errno.h>
9 #include <serial.h>
10 #include <libfdt.h>
11 #include <fdtdec.h>
12 #include <linux/ctype.h>
13 
14 DECLARE_GLOBAL_DATA_PTR;
15 
16 /*
17  * Here are the type we know about. One day we might allow drivers to
18  * register. For now we just put them here. The COMPAT macro allows us to
19  * turn this into a sparse list later, and keeps the ID with the name.
20  */
21 #define COMPAT(id, name) name
22 static const char * const compat_names[COMPAT_COUNT] = {
23 	COMPAT(UNKNOWN, "<none>"),
24 	COMPAT(NVIDIA_TEGRA20_USB, "nvidia,tegra20-ehci"),
25 	COMPAT(NVIDIA_TEGRA30_USB, "nvidia,tegra30-ehci"),
26 	COMPAT(NVIDIA_TEGRA114_USB, "nvidia,tegra114-ehci"),
27 	COMPAT(NVIDIA_TEGRA20_EMC, "nvidia,tegra20-emc"),
28 	COMPAT(NVIDIA_TEGRA20_EMC_TABLE, "nvidia,tegra20-emc-table"),
29 	COMPAT(NVIDIA_TEGRA20_KBC, "nvidia,tegra20-kbc"),
30 	COMPAT(NVIDIA_TEGRA20_NAND, "nvidia,tegra20-nand"),
31 	COMPAT(NVIDIA_TEGRA20_PWM, "nvidia,tegra20-pwm"),
32 	COMPAT(NVIDIA_TEGRA20_DC, "nvidia,tegra20-dc"),
33 	COMPAT(NVIDIA_TEGRA124_SDMMC, "nvidia,tegra124-sdhci"),
34 	COMPAT(NVIDIA_TEGRA30_SDMMC, "nvidia,tegra30-sdhci"),
35 	COMPAT(NVIDIA_TEGRA20_SDMMC, "nvidia,tegra20-sdhci"),
36 	COMPAT(NVIDIA_TEGRA124_PCIE, "nvidia,tegra124-pcie"),
37 	COMPAT(NVIDIA_TEGRA30_PCIE, "nvidia,tegra30-pcie"),
38 	COMPAT(NVIDIA_TEGRA20_PCIE, "nvidia,tegra20-pcie"),
39 	COMPAT(NVIDIA_TEGRA124_XUSB_PADCTL, "nvidia,tegra124-xusb-padctl"),
40 	COMPAT(SMSC_LAN9215, "smsc,lan9215"),
41 	COMPAT(SAMSUNG_EXYNOS5_SROMC, "samsung,exynos-sromc"),
42 	COMPAT(SAMSUNG_S3C2440_I2C, "samsung,s3c2440-i2c"),
43 	COMPAT(SAMSUNG_EXYNOS5_SOUND, "samsung,exynos-sound"),
44 	COMPAT(WOLFSON_WM8994_CODEC, "wolfson,wm8994-codec"),
45 	COMPAT(GOOGLE_CROS_EC, "google,cros-ec"),
46 	COMPAT(GOOGLE_CROS_EC_KEYB, "google,cros-ec-keyb"),
47 	COMPAT(SAMSUNG_EXYNOS_EHCI, "samsung,exynos-ehci"),
48 	COMPAT(SAMSUNG_EXYNOS5_XHCI, "samsung,exynos5250-xhci"),
49 	COMPAT(SAMSUNG_EXYNOS_USB_PHY, "samsung,exynos-usb-phy"),
50 	COMPAT(SAMSUNG_EXYNOS5_USB3_PHY, "samsung,exynos5250-usb3-phy"),
51 	COMPAT(SAMSUNG_EXYNOS_TMU, "samsung,exynos-tmu"),
52 	COMPAT(SAMSUNG_EXYNOS_FIMD, "samsung,exynos-fimd"),
53 	COMPAT(SAMSUNG_EXYNOS_MIPI_DSI, "samsung,exynos-mipi-dsi"),
54 	COMPAT(SAMSUNG_EXYNOS5_DP, "samsung,exynos5-dp"),
55 	COMPAT(SAMSUNG_EXYNOS_DWMMC, "samsung,exynos-dwmmc"),
56 	COMPAT(SAMSUNG_EXYNOS_MMC, "samsung,exynos-mmc"),
57 	COMPAT(SAMSUNG_EXYNOS_SERIAL, "samsung,exynos4210-uart"),
58 	COMPAT(MAXIM_MAX77686_PMIC, "maxim,max77686_pmic"),
59 	COMPAT(GENERIC_SPI_FLASH, "spi-flash"),
60 	COMPAT(MAXIM_98095_CODEC, "maxim,max98095-codec"),
61 	COMPAT(INFINEON_SLB9635_TPM, "infineon,slb9635-tpm"),
62 	COMPAT(INFINEON_SLB9645_TPM, "infineon,slb9645-tpm"),
63 	COMPAT(SAMSUNG_EXYNOS5_I2C, "samsung,exynos5-hsi2c"),
64 	COMPAT(SANDBOX_HOST_EMULATION, "sandbox,host-emulation"),
65 	COMPAT(SANDBOX_LCD_SDL, "sandbox,lcd-sdl"),
66 	COMPAT(TI_TPS65090, "ti,tps65090"),
67 	COMPAT(COMPAT_NXP_PTN3460, "nxp,ptn3460"),
68 	COMPAT(SAMSUNG_EXYNOS_SYSMMU, "samsung,sysmmu-v3.3"),
69 	COMPAT(PARADE_PS8625, "parade,ps8625"),
70 	COMPAT(COMPAT_INTEL_LPC, "intel,lpc"),
71 	COMPAT(INTEL_MICROCODE, "intel,microcode"),
72 	COMPAT(MEMORY_SPD, "memory-spd"),
73 	COMPAT(INTEL_PANTHERPOINT_AHCI, "intel,pantherpoint-ahci"),
74 	COMPAT(INTEL_MODEL_206AX, "intel,model-206ax"),
75 	COMPAT(INTEL_GMA, "intel,gma"),
76 	COMPAT(AMS_AS3722, "ams,as3722"),
77 	COMPAT(INTEL_ICH_SPI, "intel,ich-spi"),
78 };
79 
80 const char *fdtdec_get_compatible(enum fdt_compat_id id)
81 {
82 	/* We allow reading of the 'unknown' ID for testing purposes */
83 	assert(id >= 0 && id < COMPAT_COUNT);
84 	return compat_names[id];
85 }
86 
87 fdt_addr_t fdtdec_get_addr_size(const void *blob, int node,
88 		const char *prop_name, fdt_size_t *sizep)
89 {
90 	const fdt_addr_t *cell;
91 	int len;
92 
93 	debug("%s: %s: ", __func__, prop_name);
94 	cell = fdt_getprop(blob, node, prop_name, &len);
95 	if (cell && ((!sizep && len == sizeof(fdt_addr_t)) ||
96 		     len == sizeof(fdt_addr_t) * 2)) {
97 		fdt_addr_t addr = fdt_addr_to_cpu(*cell);
98 		if (sizep) {
99 			const fdt_size_t *size;
100 
101 			size = (fdt_size_t *)((char *)cell +
102 					sizeof(fdt_addr_t));
103 			*sizep = fdt_size_to_cpu(*size);
104 			debug("addr=%08lx, size=%08x\n",
105 			      (ulong)addr, *sizep);
106 		} else {
107 			debug("%08lx\n", (ulong)addr);
108 		}
109 		return addr;
110 	}
111 	debug("(not found)\n");
112 	return FDT_ADDR_T_NONE;
113 }
114 
115 fdt_addr_t fdtdec_get_addr(const void *blob, int node,
116 		const char *prop_name)
117 {
118 	return fdtdec_get_addr_size(blob, node, prop_name, NULL);
119 }
120 
121 #ifdef CONFIG_PCI
122 int fdtdec_get_pci_addr(const void *blob, int node, enum fdt_pci_space type,
123 		const char *prop_name, struct fdt_pci_addr *addr)
124 {
125 	const u32 *cell;
126 	int len;
127 	int ret = -ENOENT;
128 
129 	debug("%s: %s: ", __func__, prop_name);
130 
131 	/*
132 	 * If we follow the pci bus bindings strictly, we should check
133 	 * the value of the node's parent node's #address-cells and
134 	 * #size-cells. They need to be 3 and 2 accordingly. However,
135 	 * for simplicity we skip the check here.
136 	 */
137 	cell = fdt_getprop(blob, node, prop_name, &len);
138 	if (!cell)
139 		goto fail;
140 
141 	if ((len % FDT_PCI_REG_SIZE) == 0) {
142 		int num = len / FDT_PCI_REG_SIZE;
143 		int i;
144 
145 		for (i = 0; i < num; i++) {
146 			debug("pci address #%d: %08lx %08lx %08lx\n", i,
147 			      (ulong)fdt_addr_to_cpu(cell[0]),
148 			      (ulong)fdt_addr_to_cpu(cell[1]),
149 			      (ulong)fdt_addr_to_cpu(cell[2]));
150 			if ((fdt_addr_to_cpu(*cell) & type) == type) {
151 				addr->phys_hi = fdt_addr_to_cpu(cell[0]);
152 				addr->phys_mid = fdt_addr_to_cpu(cell[1]);
153 				addr->phys_lo = fdt_addr_to_cpu(cell[2]);
154 				break;
155 			} else {
156 				cell += (FDT_PCI_ADDR_CELLS +
157 					 FDT_PCI_SIZE_CELLS);
158 			}
159 		}
160 
161 		if (i == num)
162 			goto fail;
163 
164 		return 0;
165 	} else {
166 		ret = -EINVAL;
167 	}
168 
169 fail:
170 	debug("(not found)\n");
171 	return ret;
172 }
173 
174 int fdtdec_get_pci_vendev(const void *blob, int node, u16 *vendor, u16 *device)
175 {
176 	const char *list, *end;
177 	int len;
178 
179 	list = fdt_getprop(blob, node, "compatible", &len);
180 	if (!list)
181 		return -ENOENT;
182 
183 	end = list + len;
184 	while (list < end) {
185 		char *s;
186 
187 		len = strlen(list);
188 		if (len >= strlen("pciVVVV,DDDD")) {
189 			s = strstr(list, "pci");
190 
191 			/*
192 			 * check if the string is something like pciVVVV,DDDD.RR
193 			 * or just pciVVVV,DDDD
194 			 */
195 			if (s && s[7] == ',' &&
196 			    (s[12] == '.' || s[12] == 0)) {
197 				s += 3;
198 				*vendor = simple_strtol(s, NULL, 16);
199 
200 				s += 5;
201 				*device = simple_strtol(s, NULL, 16);
202 
203 				return 0;
204 			}
205 		} else {
206 			list += (len + 1);
207 		}
208 	}
209 
210 	return -ENOENT;
211 }
212 
213 int fdtdec_get_pci_bdf(const void *blob, int node,
214 		struct fdt_pci_addr *addr, pci_dev_t *bdf)
215 {
216 	u16 dt_vendor, dt_device, vendor, device;
217 	int ret;
218 
219 	/* get vendor id & device id from the compatible string */
220 	ret = fdtdec_get_pci_vendev(blob, node, &dt_vendor, &dt_device);
221 	if (ret)
222 		return ret;
223 
224 	/* extract the bdf from fdt_pci_addr */
225 	*bdf = addr->phys_hi & 0xffff00;
226 
227 	/* read vendor id & device id based on bdf */
228 	pci_read_config_word(*bdf, PCI_VENDOR_ID, &vendor);
229 	pci_read_config_word(*bdf, PCI_DEVICE_ID, &device);
230 
231 	/*
232 	 * Note there are two places in the device tree to fully describe
233 	 * a pci device: one is via compatible string with a format of
234 	 * "pciVVVV,DDDD" and the other one is the bdf numbers encoded in
235 	 * the device node's reg address property. We read the vendor id
236 	 * and device id based on bdf and compare the values with the
237 	 * "VVVV,DDDD". If they are the same, then we are good to use bdf
238 	 * to read device's bar. But if they are different, we have to rely
239 	 * on the vendor id and device id extracted from the compatible
240 	 * string and locate the real bdf by pci_find_device(). This is
241 	 * because normally we may only know device's device number and
242 	 * function number when writing device tree. The bus number is
243 	 * dynamically assigned during the pci enumeration process.
244 	 */
245 	if ((dt_vendor != vendor) || (dt_device != device)) {
246 		*bdf = pci_find_device(dt_vendor, dt_device, 0);
247 		if (*bdf == -1)
248 			return -ENODEV;
249 	}
250 
251 	return 0;
252 }
253 
254 int fdtdec_get_pci_bar32(const void *blob, int node,
255 		struct fdt_pci_addr *addr, u32 *bar)
256 {
257 	pci_dev_t bdf;
258 	int barnum;
259 	int ret;
260 
261 	/* get pci devices's bdf */
262 	ret = fdtdec_get_pci_bdf(blob, node, addr, &bdf);
263 	if (ret)
264 		return ret;
265 
266 	/* extract the bar number from fdt_pci_addr */
267 	barnum = addr->phys_hi & 0xff;
268 	if ((barnum < PCI_BASE_ADDRESS_0) || (barnum > PCI_CARDBUS_CIS))
269 		return -EINVAL;
270 
271 	barnum = (barnum - PCI_BASE_ADDRESS_0) / 4;
272 	*bar = pci_read_bar32(pci_bus_to_hose(PCI_BUS(bdf)), bdf, barnum);
273 
274 	return 0;
275 }
276 #endif
277 
278 uint64_t fdtdec_get_uint64(const void *blob, int node, const char *prop_name,
279 		uint64_t default_val)
280 {
281 	const uint64_t *cell64;
282 	int length;
283 
284 	cell64 = fdt_getprop(blob, node, prop_name, &length);
285 	if (!cell64 || length < sizeof(*cell64))
286 		return default_val;
287 
288 	return fdt64_to_cpu(*cell64);
289 }
290 
291 int fdtdec_get_is_enabled(const void *blob, int node)
292 {
293 	const char *cell;
294 
295 	/*
296 	 * It should say "okay", so only allow that. Some fdts use "ok" but
297 	 * this is a bug. Please fix your device tree source file. See here
298 	 * for discussion:
299 	 *
300 	 * http://www.mail-archive.com/u-boot@lists.denx.de/msg71598.html
301 	 */
302 	cell = fdt_getprop(blob, node, "status", NULL);
303 	if (cell)
304 		return 0 == strcmp(cell, "okay");
305 	return 1;
306 }
307 
308 enum fdt_compat_id fdtdec_lookup(const void *blob, int node)
309 {
310 	enum fdt_compat_id id;
311 
312 	/* Search our drivers */
313 	for (id = COMPAT_UNKNOWN; id < COMPAT_COUNT; id++)
314 		if (0 == fdt_node_check_compatible(blob, node,
315 				compat_names[id]))
316 			return id;
317 	return COMPAT_UNKNOWN;
318 }
319 
320 int fdtdec_next_compatible(const void *blob, int node,
321 		enum fdt_compat_id id)
322 {
323 	return fdt_node_offset_by_compatible(blob, node, compat_names[id]);
324 }
325 
326 int fdtdec_next_compatible_subnode(const void *blob, int node,
327 		enum fdt_compat_id id, int *depthp)
328 {
329 	do {
330 		node = fdt_next_node(blob, node, depthp);
331 	} while (*depthp > 1);
332 
333 	/* If this is a direct subnode, and compatible, return it */
334 	if (*depthp == 1 && 0 == fdt_node_check_compatible(
335 						blob, node, compat_names[id]))
336 		return node;
337 
338 	return -FDT_ERR_NOTFOUND;
339 }
340 
341 int fdtdec_next_alias(const void *blob, const char *name,
342 		enum fdt_compat_id id, int *upto)
343 {
344 #define MAX_STR_LEN 20
345 	char str[MAX_STR_LEN + 20];
346 	int node, err;
347 
348 	/* snprintf() is not available */
349 	assert(strlen(name) < MAX_STR_LEN);
350 	sprintf(str, "%.*s%d", MAX_STR_LEN, name, *upto);
351 	node = fdt_path_offset(blob, str);
352 	if (node < 0)
353 		return node;
354 	err = fdt_node_check_compatible(blob, node, compat_names[id]);
355 	if (err < 0)
356 		return err;
357 	if (err)
358 		return -FDT_ERR_NOTFOUND;
359 	(*upto)++;
360 	return node;
361 }
362 
363 int fdtdec_find_aliases_for_id(const void *blob, const char *name,
364 			enum fdt_compat_id id, int *node_list, int maxcount)
365 {
366 	memset(node_list, '\0', sizeof(*node_list) * maxcount);
367 
368 	return fdtdec_add_aliases_for_id(blob, name, id, node_list, maxcount);
369 }
370 
371 /* TODO: Can we tighten this code up a little? */
372 int fdtdec_add_aliases_for_id(const void *blob, const char *name,
373 			enum fdt_compat_id id, int *node_list, int maxcount)
374 {
375 	int name_len = strlen(name);
376 	int nodes[maxcount];
377 	int num_found = 0;
378 	int offset, node;
379 	int alias_node;
380 	int count;
381 	int i, j;
382 
383 	/* find the alias node if present */
384 	alias_node = fdt_path_offset(blob, "/aliases");
385 
386 	/*
387 	 * start with nothing, and we can assume that the root node can't
388 	 * match
389 	 */
390 	memset(nodes, '\0', sizeof(nodes));
391 
392 	/* First find all the compatible nodes */
393 	for (node = count = 0; node >= 0 && count < maxcount;) {
394 		node = fdtdec_next_compatible(blob, node, id);
395 		if (node >= 0)
396 			nodes[count++] = node;
397 	}
398 	if (node >= 0)
399 		debug("%s: warning: maxcount exceeded with alias '%s'\n",
400 		       __func__, name);
401 
402 	/* Now find all the aliases */
403 	for (offset = fdt_first_property_offset(blob, alias_node);
404 			offset > 0;
405 			offset = fdt_next_property_offset(blob, offset)) {
406 		const struct fdt_property *prop;
407 		const char *path;
408 		int number;
409 		int found;
410 
411 		node = 0;
412 		prop = fdt_get_property_by_offset(blob, offset, NULL);
413 		path = fdt_string(blob, fdt32_to_cpu(prop->nameoff));
414 		if (prop->len && 0 == strncmp(path, name, name_len))
415 			node = fdt_path_offset(blob, prop->data);
416 		if (node <= 0)
417 			continue;
418 
419 		/* Get the alias number */
420 		number = simple_strtoul(path + name_len, NULL, 10);
421 		if (number < 0 || number >= maxcount) {
422 			debug("%s: warning: alias '%s' is out of range\n",
423 			       __func__, path);
424 			continue;
425 		}
426 
427 		/* Make sure the node we found is actually in our list! */
428 		found = -1;
429 		for (j = 0; j < count; j++)
430 			if (nodes[j] == node) {
431 				found = j;
432 				break;
433 			}
434 
435 		if (found == -1) {
436 			debug("%s: warning: alias '%s' points to a node "
437 				"'%s' that is missing or is not compatible "
438 				" with '%s'\n", __func__, path,
439 				fdt_get_name(blob, node, NULL),
440 			       compat_names[id]);
441 			continue;
442 		}
443 
444 		/*
445 		 * Add this node to our list in the right place, and mark
446 		 * it as done.
447 		 */
448 		if (fdtdec_get_is_enabled(blob, node)) {
449 			if (node_list[number]) {
450 				debug("%s: warning: alias '%s' requires that "
451 				      "a node be placed in the list in a "
452 				      "position which is already filled by "
453 				      "node '%s'\n", __func__, path,
454 				      fdt_get_name(blob, node, NULL));
455 				continue;
456 			}
457 			node_list[number] = node;
458 			if (number >= num_found)
459 				num_found = number + 1;
460 		}
461 		nodes[found] = 0;
462 	}
463 
464 	/* Add any nodes not mentioned by an alias */
465 	for (i = j = 0; i < maxcount; i++) {
466 		if (!node_list[i]) {
467 			for (; j < maxcount; j++)
468 				if (nodes[j] &&
469 					fdtdec_get_is_enabled(blob, nodes[j]))
470 					break;
471 
472 			/* Have we run out of nodes to add? */
473 			if (j == maxcount)
474 				break;
475 
476 			assert(!node_list[i]);
477 			node_list[i] = nodes[j++];
478 			if (i >= num_found)
479 				num_found = i + 1;
480 		}
481 	}
482 
483 	return num_found;
484 }
485 
486 int fdtdec_get_alias_seq(const void *blob, const char *base, int offset,
487 			 int *seqp)
488 {
489 	int base_len = strlen(base);
490 	const char *find_name;
491 	int find_namelen;
492 	int prop_offset;
493 	int aliases;
494 
495 	find_name = fdt_get_name(blob, offset, &find_namelen);
496 	debug("Looking for '%s' at %d, name %s\n", base, offset, find_name);
497 
498 	aliases = fdt_path_offset(blob, "/aliases");
499 	for (prop_offset = fdt_first_property_offset(blob, aliases);
500 	     prop_offset > 0;
501 	     prop_offset = fdt_next_property_offset(blob, prop_offset)) {
502 		const char *prop;
503 		const char *name;
504 		const char *slash;
505 		const char *p;
506 		int len;
507 
508 		prop = fdt_getprop_by_offset(blob, prop_offset, &name, &len);
509 		debug("   - %s, %s\n", name, prop);
510 		if (len < find_namelen || *prop != '/' || prop[len - 1] ||
511 		    strncmp(name, base, base_len))
512 			continue;
513 
514 		slash = strrchr(prop, '/');
515 		if (strcmp(slash + 1, find_name))
516 			continue;
517 		for (p = name + strlen(name) - 1; p > name; p--) {
518 			if (!isdigit(*p)) {
519 				*seqp = simple_strtoul(p + 1, NULL, 10);
520 				debug("Found seq %d\n", *seqp);
521 				return 0;
522 			}
523 		}
524 	}
525 
526 	debug("Not found\n");
527 	return -ENOENT;
528 }
529 
530 int fdtdec_get_chosen_node(const void *blob, const char *name)
531 {
532 	const char *prop;
533 	int chosen_node;
534 	int len;
535 
536 	if (!blob)
537 		return -FDT_ERR_NOTFOUND;
538 	chosen_node = fdt_path_offset(blob, "/chosen");
539 	prop = fdt_getprop(blob, chosen_node, name, &len);
540 	if (!prop)
541 		return -FDT_ERR_NOTFOUND;
542 	return fdt_path_offset(blob, prop);
543 }
544 
545 int fdtdec_check_fdt(void)
546 {
547 	/*
548 	 * We must have an FDT, but we cannot panic() yet since the console
549 	 * is not ready. So for now, just assert(). Boards which need an early
550 	 * FDT (prior to console ready) will need to make their own
551 	 * arrangements and do their own checks.
552 	 */
553 	assert(!fdtdec_prepare_fdt());
554 	return 0;
555 }
556 
557 /*
558  * This function is a little odd in that it accesses global data. At some
559  * point if the architecture board.c files merge this will make more sense.
560  * Even now, it is common code.
561  */
562 int fdtdec_prepare_fdt(void)
563 {
564 	if (!gd->fdt_blob || ((uintptr_t)gd->fdt_blob & 3) ||
565 	    fdt_check_header(gd->fdt_blob)) {
566 		printf("No valid FDT found - please append one to U-Boot "
567 			"binary, use u-boot-dtb.bin or define "
568 			"CONFIG_OF_EMBED. For sandbox, use -d <file.dtb>\n");
569 		return -1;
570 	}
571 	return 0;
572 }
573 
574 int fdtdec_lookup_phandle(const void *blob, int node, const char *prop_name)
575 {
576 	const u32 *phandle;
577 	int lookup;
578 
579 	debug("%s: %s\n", __func__, prop_name);
580 	phandle = fdt_getprop(blob, node, prop_name, NULL);
581 	if (!phandle)
582 		return -FDT_ERR_NOTFOUND;
583 
584 	lookup = fdt_node_offset_by_phandle(blob, fdt32_to_cpu(*phandle));
585 	return lookup;
586 }
587 
588 /**
589  * Look up a property in a node and check that it has a minimum length.
590  *
591  * @param blob		FDT blob
592  * @param node		node to examine
593  * @param prop_name	name of property to find
594  * @param min_len	minimum property length in bytes
595  * @param err		0 if ok, or -FDT_ERR_NOTFOUND if the property is not
596 			found, or -FDT_ERR_BADLAYOUT if not enough data
597  * @return pointer to cell, which is only valid if err == 0
598  */
599 static const void *get_prop_check_min_len(const void *blob, int node,
600 		const char *prop_name, int min_len, int *err)
601 {
602 	const void *cell;
603 	int len;
604 
605 	debug("%s: %s\n", __func__, prop_name);
606 	cell = fdt_getprop(blob, node, prop_name, &len);
607 	if (!cell)
608 		*err = -FDT_ERR_NOTFOUND;
609 	else if (len < min_len)
610 		*err = -FDT_ERR_BADLAYOUT;
611 	else
612 		*err = 0;
613 	return cell;
614 }
615 
616 int fdtdec_get_int_array(const void *blob, int node, const char *prop_name,
617 		u32 *array, int count)
618 {
619 	const u32 *cell;
620 	int i, err = 0;
621 
622 	debug("%s: %s\n", __func__, prop_name);
623 	cell = get_prop_check_min_len(blob, node, prop_name,
624 				      sizeof(u32) * count, &err);
625 	if (!err) {
626 		for (i = 0; i < count; i++)
627 			array[i] = fdt32_to_cpu(cell[i]);
628 	}
629 	return err;
630 }
631 
632 int fdtdec_get_int_array_count(const void *blob, int node,
633 			       const char *prop_name, u32 *array, int count)
634 {
635 	const u32 *cell;
636 	int len, elems;
637 	int i;
638 
639 	debug("%s: %s\n", __func__, prop_name);
640 	cell = fdt_getprop(blob, node, prop_name, &len);
641 	if (!cell)
642 		return -FDT_ERR_NOTFOUND;
643 	elems = len / sizeof(u32);
644 	if (count > elems)
645 		count = elems;
646 	for (i = 0; i < count; i++)
647 		array[i] = fdt32_to_cpu(cell[i]);
648 
649 	return count;
650 }
651 
652 const u32 *fdtdec_locate_array(const void *blob, int node,
653 			       const char *prop_name, int count)
654 {
655 	const u32 *cell;
656 	int err;
657 
658 	cell = get_prop_check_min_len(blob, node, prop_name,
659 				      sizeof(u32) * count, &err);
660 	return err ? NULL : cell;
661 }
662 
663 int fdtdec_get_bool(const void *blob, int node, const char *prop_name)
664 {
665 	const s32 *cell;
666 	int len;
667 
668 	debug("%s: %s\n", __func__, prop_name);
669 	cell = fdt_getprop(blob, node, prop_name, &len);
670 	return cell != NULL;
671 }
672 
673 int fdtdec_parse_phandle_with_args(const void *blob, int src_node,
674 				   const char *list_name,
675 				   const char *cells_name,
676 				   int cell_count, int index,
677 				   struct fdtdec_phandle_args *out_args)
678 {
679 	const __be32 *list, *list_end;
680 	int rc = 0, size, cur_index = 0;
681 	uint32_t count = 0;
682 	int node = -1;
683 	int phandle;
684 
685 	/* Retrieve the phandle list property */
686 	list = fdt_getprop(blob, src_node, list_name, &size);
687 	if (!list)
688 		return -ENOENT;
689 	list_end = list + size / sizeof(*list);
690 
691 	/* Loop over the phandles until all the requested entry is found */
692 	while (list < list_end) {
693 		rc = -EINVAL;
694 		count = 0;
695 
696 		/*
697 		 * If phandle is 0, then it is an empty entry with no
698 		 * arguments.  Skip forward to the next entry.
699 		 */
700 		phandle = be32_to_cpup(list++);
701 		if (phandle) {
702 			/*
703 			 * Find the provider node and parse the #*-cells
704 			 * property to determine the argument length.
705 			 *
706 			 * This is not needed if the cell count is hard-coded
707 			 * (i.e. cells_name not set, but cell_count is set),
708 			 * except when we're going to return the found node
709 			 * below.
710 			 */
711 			if (cells_name || cur_index == index) {
712 				node = fdt_node_offset_by_phandle(blob,
713 								  phandle);
714 				if (!node) {
715 					debug("%s: could not find phandle\n",
716 					      fdt_get_name(blob, src_node,
717 							   NULL));
718 					goto err;
719 				}
720 			}
721 
722 			if (cells_name) {
723 				count = fdtdec_get_int(blob, node, cells_name,
724 						       -1);
725 				if (count == -1) {
726 					debug("%s: could not get %s for %s\n",
727 					      fdt_get_name(blob, src_node,
728 							   NULL),
729 					      cells_name,
730 					      fdt_get_name(blob, node,
731 							   NULL));
732 					goto err;
733 				}
734 			} else {
735 				count = cell_count;
736 			}
737 
738 			/*
739 			 * Make sure that the arguments actually fit in the
740 			 * remaining property data length
741 			 */
742 			if (list + count > list_end) {
743 				debug("%s: arguments longer than property\n",
744 				      fdt_get_name(blob, src_node, NULL));
745 				goto err;
746 			}
747 		}
748 
749 		/*
750 		 * All of the error cases above bail out of the loop, so at
751 		 * this point, the parsing is successful. If the requested
752 		 * index matches, then fill the out_args structure and return,
753 		 * or return -ENOENT for an empty entry.
754 		 */
755 		rc = -ENOENT;
756 		if (cur_index == index) {
757 			if (!phandle)
758 				goto err;
759 
760 			if (out_args) {
761 				int i;
762 
763 				if (count > MAX_PHANDLE_ARGS) {
764 					debug("%s: too many arguments %d\n",
765 					      fdt_get_name(blob, src_node,
766 							   NULL), count);
767 					count = MAX_PHANDLE_ARGS;
768 				}
769 				out_args->node = node;
770 				out_args->args_count = count;
771 				for (i = 0; i < count; i++) {
772 					out_args->args[i] =
773 							be32_to_cpup(list++);
774 				}
775 			}
776 
777 			/* Found it! return success */
778 			return 0;
779 		}
780 
781 		node = -1;
782 		list += count;
783 		cur_index++;
784 	}
785 
786 	/*
787 	 * Result will be one of:
788 	 * -ENOENT : index is for empty phandle
789 	 * -EINVAL : parsing error on data
790 	 * [1..n]  : Number of phandle (count mode; when index = -1)
791 	 */
792 	rc = index < 0 ? cur_index : -ENOENT;
793  err:
794 	return rc;
795 }
796 
797 int fdtdec_get_byte_array(const void *blob, int node, const char *prop_name,
798 		u8 *array, int count)
799 {
800 	const u8 *cell;
801 	int err;
802 
803 	cell = get_prop_check_min_len(blob, node, prop_name, count, &err);
804 	if (!err)
805 		memcpy(array, cell, count);
806 	return err;
807 }
808 
809 const u8 *fdtdec_locate_byte_array(const void *blob, int node,
810 			     const char *prop_name, int count)
811 {
812 	const u8 *cell;
813 	int err;
814 
815 	cell = get_prop_check_min_len(blob, node, prop_name, count, &err);
816 	if (err)
817 		return NULL;
818 	return cell;
819 }
820 
821 int fdtdec_get_config_int(const void *blob, const char *prop_name,
822 		int default_val)
823 {
824 	int config_node;
825 
826 	debug("%s: %s\n", __func__, prop_name);
827 	config_node = fdt_path_offset(blob, "/config");
828 	if (config_node < 0)
829 		return default_val;
830 	return fdtdec_get_int(blob, config_node, prop_name, default_val);
831 }
832 
833 int fdtdec_get_config_bool(const void *blob, const char *prop_name)
834 {
835 	int config_node;
836 	const void *prop;
837 
838 	debug("%s: %s\n", __func__, prop_name);
839 	config_node = fdt_path_offset(blob, "/config");
840 	if (config_node < 0)
841 		return 0;
842 	prop = fdt_get_property(blob, config_node, prop_name, NULL);
843 
844 	return prop != NULL;
845 }
846 
847 char *fdtdec_get_config_string(const void *blob, const char *prop_name)
848 {
849 	const char *nodep;
850 	int nodeoffset;
851 	int len;
852 
853 	debug("%s: %s\n", __func__, prop_name);
854 	nodeoffset = fdt_path_offset(blob, "/config");
855 	if (nodeoffset < 0)
856 		return NULL;
857 
858 	nodep = fdt_getprop(blob, nodeoffset, prop_name, &len);
859 	if (!nodep)
860 		return NULL;
861 
862 	return (char *)nodep;
863 }
864 
865 int fdtdec_decode_region(const void *blob, int node, const char *prop_name,
866 			 fdt_addr_t *basep, fdt_size_t *sizep)
867 {
868 	const fdt_addr_t *cell;
869 	int len;
870 
871 	debug("%s: %s: %s\n", __func__, fdt_get_name(blob, node, NULL),
872 	      prop_name);
873 	cell = fdt_getprop(blob, node, prop_name, &len);
874 	if (!cell || (len < sizeof(fdt_addr_t) * 2)) {
875 		debug("cell=%p, len=%d\n", cell, len);
876 		return -1;
877 	}
878 
879 	*basep = fdt_addr_to_cpu(*cell);
880 	*sizep = fdt_size_to_cpu(cell[1]);
881 	debug("%s: base=%08lx, size=%lx\n", __func__, (ulong)*basep,
882 	      (ulong)*sizep);
883 
884 	return 0;
885 }
886 
887 /**
888  * Read a flash entry from the fdt
889  *
890  * @param blob		FDT blob
891  * @param node		Offset of node to read
892  * @param name		Name of node being read
893  * @param entry		Place to put offset and size of this node
894  * @return 0 if ok, -ve on error
895  */
896 int fdtdec_read_fmap_entry(const void *blob, int node, const char *name,
897 			   struct fmap_entry *entry)
898 {
899 	const char *prop;
900 	u32 reg[2];
901 
902 	if (fdtdec_get_int_array(blob, node, "reg", reg, 2)) {
903 		debug("Node '%s' has bad/missing 'reg' property\n", name);
904 		return -FDT_ERR_NOTFOUND;
905 	}
906 	entry->offset = reg[0];
907 	entry->length = reg[1];
908 	entry->used = fdtdec_get_int(blob, node, "used", entry->length);
909 	prop = fdt_getprop(blob, node, "compress", NULL);
910 	entry->compress_algo = prop && !strcmp(prop, "lzo") ?
911 		FMAP_COMPRESS_LZO : FMAP_COMPRESS_NONE;
912 	prop = fdt_getprop(blob, node, "hash", &entry->hash_size);
913 	entry->hash_algo = prop ? FMAP_HASH_SHA256 : FMAP_HASH_NONE;
914 	entry->hash = (uint8_t *)prop;
915 
916 	return 0;
917 }
918 
919 static u64 fdtdec_get_number(const fdt32_t *ptr, unsigned int cells)
920 {
921 	u64 number = 0;
922 
923 	while (cells--)
924 		number = (number << 32) | fdt32_to_cpu(*ptr++);
925 
926 	return number;
927 }
928 
929 int fdt_get_resource(const void *fdt, int node, const char *property,
930 		     unsigned int index, struct fdt_resource *res)
931 {
932 	const fdt32_t *ptr, *end;
933 	int na, ns, len, parent;
934 	unsigned int i = 0;
935 
936 	parent = fdt_parent_offset(fdt, node);
937 	if (parent < 0)
938 		return parent;
939 
940 	na = fdt_address_cells(fdt, parent);
941 	ns = fdt_size_cells(fdt, parent);
942 
943 	ptr = fdt_getprop(fdt, node, property, &len);
944 	if (!ptr)
945 		return len;
946 
947 	end = ptr + len / sizeof(*ptr);
948 
949 	while (ptr + na + ns <= end) {
950 		if (i == index) {
951 			res->start = res->end = fdtdec_get_number(ptr, na);
952 			res->end += fdtdec_get_number(&ptr[na], ns) - 1;
953 			return 0;
954 		}
955 
956 		ptr += na + ns;
957 		i++;
958 	}
959 
960 	return -FDT_ERR_NOTFOUND;
961 }
962 
963 int fdt_get_named_resource(const void *fdt, int node, const char *property,
964 			   const char *prop_names, const char *name,
965 			   struct fdt_resource *res)
966 {
967 	int index;
968 
969 	index = fdt_find_string(fdt, node, prop_names, name);
970 	if (index < 0)
971 		return index;
972 
973 	return fdt_get_resource(fdt, node, property, index, res);
974 }
975 
976 int fdtdec_decode_memory_region(const void *blob, int config_node,
977 				const char *mem_type, const char *suffix,
978 				fdt_addr_t *basep, fdt_size_t *sizep)
979 {
980 	char prop_name[50];
981 	const char *mem;
982 	fdt_size_t size, offset_size;
983 	fdt_addr_t base, offset;
984 	int node;
985 
986 	if (config_node == -1) {
987 		config_node = fdt_path_offset(blob, "/config");
988 		if (config_node < 0) {
989 			debug("%s: Cannot find /config node\n", __func__);
990 			return -ENOENT;
991 		}
992 	}
993 	if (!suffix)
994 		suffix = "";
995 
996 	snprintf(prop_name, sizeof(prop_name), "%s-memory%s", mem_type,
997 		 suffix);
998 	mem = fdt_getprop(blob, config_node, prop_name, NULL);
999 	if (!mem) {
1000 		debug("%s: No memory type for '%s', using /memory\n", __func__,
1001 		      prop_name);
1002 		mem = "/memory";
1003 	}
1004 
1005 	node = fdt_path_offset(blob, mem);
1006 	if (node < 0) {
1007 		debug("%s: Failed to find node '%s': %s\n", __func__, mem,
1008 		      fdt_strerror(node));
1009 		return -ENOENT;
1010 	}
1011 
1012 	/*
1013 	 * Not strictly correct - the memory may have multiple banks. We just
1014 	 * use the first
1015 	 */
1016 	if (fdtdec_decode_region(blob, node, "reg", &base, &size)) {
1017 		debug("%s: Failed to decode memory region %s\n", __func__,
1018 		      mem);
1019 		return -EINVAL;
1020 	}
1021 
1022 	snprintf(prop_name, sizeof(prop_name), "%s-offset%s", mem_type,
1023 		 suffix);
1024 	if (fdtdec_decode_region(blob, config_node, prop_name, &offset,
1025 				 &offset_size)) {
1026 		debug("%s: Failed to decode memory region '%s'\n", __func__,
1027 		      prop_name);
1028 		return -EINVAL;
1029 	}
1030 
1031 	*basep = base + offset;
1032 	*sizep = offset_size;
1033 
1034 	return 0;
1035 }
1036 #endif
1037