xref: /openbmc/u-boot/lib/efi_loader/efi_runtime.c (revision 8664ab7d)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  EFI application runtime services
4  *
5  *  Copyright (c) 2016 Alexander Graf
6  */
7 
8 #include <common.h>
9 #include <command.h>
10 #include <dm.h>
11 #include <efi_loader.h>
12 #include <rtc.h>
13 
14 /* For manual relocation support */
15 DECLARE_GLOBAL_DATA_PTR;
16 
17 struct efi_runtime_mmio_list {
18 	struct list_head link;
19 	void **ptr;
20 	u64 paddr;
21 	u64 len;
22 };
23 
24 /* This list contains all runtime available mmio regions */
25 LIST_HEAD(efi_runtime_mmio);
26 
27 static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void);
28 static efi_status_t __efi_runtime EFIAPI efi_device_error(void);
29 static efi_status_t __efi_runtime EFIAPI efi_invalid_parameter(void);
30 
31 #if defined(CONFIG_ARM64)
32 #define R_RELATIVE	1027
33 #define R_MASK		0xffffffffULL
34 #define IS_RELA		1
35 #elif defined(CONFIG_ARM)
36 #define R_RELATIVE	23
37 #define R_MASK		0xffULL
38 #elif defined(CONFIG_X86)
39 #include <asm/elf.h>
40 #define R_RELATIVE	R_386_RELATIVE
41 #define R_MASK		0xffULL
42 #elif defined(CONFIG_RISCV)
43 #include <elf.h>
44 #define R_RELATIVE	R_RISCV_RELATIVE
45 #define R_MASK		0xffULL
46 #define IS_RELA		1
47 
48 struct dyn_sym {
49 	ulong foo1;
50 	ulong addr;
51 	u32 foo2;
52 	u32 foo3;
53 };
54 #ifdef CONFIG_CPU_RISCV_32
55 #define R_ABSOLUTE	R_RISCV_32
56 #define SYM_INDEX	8
57 #else
58 #define R_ABSOLUTE	R_RISCV_64
59 #define SYM_INDEX	32
60 #endif
61 #else
62 #error Need to add relocation awareness
63 #endif
64 
65 struct elf_rel {
66 	ulong *offset;
67 	ulong info;
68 };
69 
70 struct elf_rela {
71 	ulong *offset;
72 	ulong info;
73 	long addend;
74 };
75 
76 /*
77  * EFI Runtime code lives in 2 stages. In the first stage, U-Boot and an EFI
78  * payload are running concurrently at the same time. In this mode, we can
79  * handle a good number of runtime callbacks
80  */
81 
82 static void EFIAPI efi_reset_system_boottime(
83 			enum efi_reset_type reset_type,
84 			efi_status_t reset_status,
85 			unsigned long data_size, void *reset_data)
86 {
87 	struct efi_event *evt;
88 
89 	EFI_ENTRY("%d %lx %lx %p", reset_type, reset_status, data_size,
90 		  reset_data);
91 
92 	/* Notify reset */
93 	list_for_each_entry(evt, &efi_events, link) {
94 		if (evt->group &&
95 		    !guidcmp(evt->group,
96 			     &efi_guid_event_group_reset_system)) {
97 			efi_signal_event(evt, false);
98 			break;
99 		}
100 	}
101 	switch (reset_type) {
102 	case EFI_RESET_COLD:
103 	case EFI_RESET_WARM:
104 	case EFI_RESET_PLATFORM_SPECIFIC:
105 		do_reset(NULL, 0, 0, NULL);
106 		break;
107 	case EFI_RESET_SHUTDOWN:
108 		/* We don't have anything to map this to */
109 		break;
110 	}
111 
112 	while (1) { }
113 }
114 
115 static efi_status_t EFIAPI efi_get_time_boottime(
116 			struct efi_time *time,
117 			struct efi_time_cap *capabilities)
118 {
119 #if defined(CONFIG_CMD_DATE) && defined(CONFIG_DM_RTC)
120 	struct rtc_time tm;
121 	int r;
122 	struct udevice *dev;
123 
124 	EFI_ENTRY("%p %p", time, capabilities);
125 
126 	r = uclass_get_device(UCLASS_RTC, 0, &dev);
127 	if (r)
128 		return EFI_EXIT(EFI_DEVICE_ERROR);
129 
130 	r = dm_rtc_get(dev, &tm);
131 	if (r)
132 		return EFI_EXIT(EFI_DEVICE_ERROR);
133 
134 	memset(time, 0, sizeof(*time));
135 	time->year = tm.tm_year;
136 	time->month = tm.tm_mon;
137 	time->day = tm.tm_mday;
138 	time->hour = tm.tm_hour;
139 	time->minute = tm.tm_min;
140 	time->daylight = tm.tm_isdst;
141 
142 	return EFI_EXIT(EFI_SUCCESS);
143 #else
144 	return EFI_DEVICE_ERROR;
145 #endif
146 }
147 
148 /* Boards may override the helpers below to implement RTS functionality */
149 
150 void __weak __efi_runtime EFIAPI efi_reset_system(
151 			enum efi_reset_type reset_type,
152 			efi_status_t reset_status,
153 			unsigned long data_size, void *reset_data)
154 {
155 	/* Nothing we can do */
156 	while (1) { }
157 }
158 
159 efi_status_t __weak efi_reset_system_init(void)
160 {
161 	return EFI_SUCCESS;
162 }
163 
164 efi_status_t __weak __efi_runtime EFIAPI efi_get_time(
165 			struct efi_time *time,
166 			struct efi_time_cap *capabilities)
167 {
168 	/* Nothing we can do */
169 	return EFI_DEVICE_ERROR;
170 }
171 
172 efi_status_t __weak efi_get_time_init(void)
173 {
174 	return EFI_SUCCESS;
175 }
176 
177 struct efi_runtime_detach_list_struct {
178 	void *ptr;
179 	void *patchto;
180 };
181 
182 static const struct efi_runtime_detach_list_struct efi_runtime_detach_list[] = {
183 	{
184 		/* do_reset is gone */
185 		.ptr = &efi_runtime_services.reset_system,
186 		.patchto = efi_reset_system,
187 	}, {
188 		/* invalidate_*cache_all are gone */
189 		.ptr = &efi_runtime_services.set_virtual_address_map,
190 		.patchto = &efi_invalid_parameter,
191 	}, {
192 		/* RTC accessors are gone */
193 		.ptr = &efi_runtime_services.get_time,
194 		.patchto = &efi_get_time,
195 	}, {
196 		/* Clean up system table */
197 		.ptr = &systab.con_in,
198 		.patchto = NULL,
199 	}, {
200 		/* Clean up system table */
201 		.ptr = &systab.con_out,
202 		.patchto = NULL,
203 	}, {
204 		/* Clean up system table */
205 		.ptr = &systab.std_err,
206 		.patchto = NULL,
207 	}, {
208 		/* Clean up system table */
209 		.ptr = &systab.boottime,
210 		.patchto = NULL,
211 	}, {
212 		.ptr = &efi_runtime_services.get_variable,
213 		.patchto = &efi_device_error,
214 	}, {
215 		.ptr = &efi_runtime_services.get_next_variable_name,
216 		.patchto = &efi_device_error,
217 	}, {
218 		.ptr = &efi_runtime_services.set_variable,
219 		.patchto = &efi_device_error,
220 	}
221 };
222 
223 static bool efi_runtime_tobedetached(void *p)
224 {
225 	int i;
226 
227 	for (i = 0; i < ARRAY_SIZE(efi_runtime_detach_list); i++)
228 		if (efi_runtime_detach_list[i].ptr == p)
229 			return true;
230 
231 	return false;
232 }
233 
234 static void efi_runtime_detach(ulong offset)
235 {
236 	int i;
237 	ulong patchoff = offset - (ulong)gd->relocaddr;
238 
239 	for (i = 0; i < ARRAY_SIZE(efi_runtime_detach_list); i++) {
240 		ulong patchto = (ulong)efi_runtime_detach_list[i].patchto;
241 		ulong *p = efi_runtime_detach_list[i].ptr;
242 		ulong newaddr = patchto ? (patchto + patchoff) : 0;
243 
244 		debug("%s: Setting %p to %lx\n", __func__, p, newaddr);
245 		*p = newaddr;
246 	}
247 }
248 
249 /* Relocate EFI runtime to uboot_reloc_base = offset */
250 void efi_runtime_relocate(ulong offset, struct efi_mem_desc *map)
251 {
252 #ifdef IS_RELA
253 	struct elf_rela *rel = (void*)&__efi_runtime_rel_start;
254 #else
255 	struct elf_rel *rel = (void*)&__efi_runtime_rel_start;
256 	static ulong lastoff = CONFIG_SYS_TEXT_BASE;
257 #endif
258 
259 	debug("%s: Relocating to offset=%lx\n", __func__, offset);
260 	for (; (ulong)rel < (ulong)&__efi_runtime_rel_stop; rel++) {
261 		ulong base = CONFIG_SYS_TEXT_BASE;
262 		ulong *p;
263 		ulong newaddr;
264 
265 		p = (void*)((ulong)rel->offset - base) + gd->relocaddr;
266 
267 		debug("%s: rel->info=%#lx *p=%#lx rel->offset=%p\n", __func__, rel->info, *p, rel->offset);
268 
269 		switch (rel->info & R_MASK) {
270 		case R_RELATIVE:
271 #ifdef IS_RELA
272 		newaddr = rel->addend + offset - CONFIG_SYS_TEXT_BASE;
273 #else
274 		newaddr = *p - lastoff + offset;
275 #endif
276 			break;
277 #ifdef R_ABSOLUTE
278 		case R_ABSOLUTE: {
279 			ulong symidx = rel->info >> SYM_INDEX;
280 			extern struct dyn_sym __dyn_sym_start[];
281 			newaddr = __dyn_sym_start[symidx].addr + offset;
282 			break;
283 		}
284 #endif
285 		default:
286 			continue;
287 		}
288 
289 		/* Check if the relocation is inside bounds */
290 		if (map && ((newaddr < map->virtual_start) ||
291 		    newaddr > (map->virtual_start +
292 			      (map->num_pages << EFI_PAGE_SHIFT)))) {
293 			if (!efi_runtime_tobedetached(p))
294 				printf("U-Boot EFI: Relocation at %p is out of "
295 				       "range (%lx)\n", p, newaddr);
296 			continue;
297 		}
298 
299 		debug("%s: Setting %p to %lx\n", __func__, p, newaddr);
300 		*p = newaddr;
301 		flush_dcache_range((ulong)p & ~(EFI_CACHELINE_SIZE - 1),
302 			ALIGN((ulong)&p[1], EFI_CACHELINE_SIZE));
303 	}
304 
305 #ifndef IS_RELA
306 	lastoff = offset;
307 #endif
308 
309         invalidate_icache_all();
310 }
311 
312 static efi_status_t EFIAPI efi_set_virtual_address_map(
313 			unsigned long memory_map_size,
314 			unsigned long descriptor_size,
315 			uint32_t descriptor_version,
316 			struct efi_mem_desc *virtmap)
317 {
318 	ulong runtime_start = (ulong)&__efi_runtime_start &
319 			      ~(ulong)EFI_PAGE_MASK;
320 	int n = memory_map_size / descriptor_size;
321 	int i;
322 
323 	EFI_ENTRY("%lx %lx %x %p", memory_map_size, descriptor_size,
324 		  descriptor_version, virtmap);
325 
326 	/* Rebind mmio pointers */
327 	for (i = 0; i < n; i++) {
328 		struct efi_mem_desc *map = (void*)virtmap +
329 					   (descriptor_size * i);
330 		struct list_head *lhandle;
331 		efi_physical_addr_t map_start = map->physical_start;
332 		efi_physical_addr_t map_len = map->num_pages << EFI_PAGE_SHIFT;
333 		efi_physical_addr_t map_end = map_start + map_len;
334 
335 		/* Adjust all mmio pointers in this region */
336 		list_for_each(lhandle, &efi_runtime_mmio) {
337 			struct efi_runtime_mmio_list *lmmio;
338 
339 			lmmio = list_entry(lhandle,
340 					   struct efi_runtime_mmio_list,
341 					   link);
342 			if ((map_start <= lmmio->paddr) &&
343 			    (map_end >= lmmio->paddr)) {
344 				u64 off = map->virtual_start - map_start;
345 				uintptr_t new_addr = lmmio->paddr + off;
346 				*lmmio->ptr = (void *)new_addr;
347 			}
348 		}
349 	}
350 
351 	/* Move the actual runtime code over */
352 	for (i = 0; i < n; i++) {
353 		struct efi_mem_desc *map;
354 
355 		map = (void*)virtmap + (descriptor_size * i);
356 		if (map->type == EFI_RUNTIME_SERVICES_CODE) {
357 			ulong new_offset = map->virtual_start -
358 					   (runtime_start - gd->relocaddr);
359 
360 			efi_runtime_relocate(new_offset, map);
361 			/* Once we're virtual, we can no longer handle
362 			   complex callbacks */
363 			efi_runtime_detach(new_offset);
364 			return EFI_EXIT(EFI_SUCCESS);
365 		}
366 	}
367 
368 	return EFI_EXIT(EFI_INVALID_PARAMETER);
369 }
370 
371 efi_status_t efi_add_runtime_mmio(void *mmio_ptr, u64 len)
372 {
373 	struct efi_runtime_mmio_list *newmmio;
374 	u64 pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
375 	uint64_t addr = *(uintptr_t *)mmio_ptr;
376 	uint64_t retaddr;
377 
378 	retaddr = efi_add_memory_map(addr, pages, EFI_MMAP_IO, false);
379 	if (retaddr != addr)
380 		return EFI_OUT_OF_RESOURCES;
381 
382 	newmmio = calloc(1, sizeof(*newmmio));
383 	if (!newmmio)
384 		return EFI_OUT_OF_RESOURCES;
385 	newmmio->ptr = mmio_ptr;
386 	newmmio->paddr = *(uintptr_t *)mmio_ptr;
387 	newmmio->len = len;
388 	list_add_tail(&newmmio->link, &efi_runtime_mmio);
389 
390 	return EFI_SUCCESS;
391 }
392 
393 /*
394  * In the second stage, U-Boot has disappeared. To isolate our runtime code
395  * that at this point still exists from the rest, we put it into a special
396  * section.
397  *
398  *        !!WARNING!!
399  *
400  * This means that we can not rely on any code outside of this file in any
401  * function or variable below this line.
402  *
403  * Please keep everything fully self-contained and annotated with
404  * __efi_runtime and __efi_runtime_data markers.
405  */
406 
407 /*
408  * Relocate the EFI runtime stub to a different place. We need to call this
409  * the first time we expose the runtime interface to a user and on set virtual
410  * address map calls.
411  */
412 
413 static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void)
414 {
415 	return EFI_UNSUPPORTED;
416 }
417 
418 static efi_status_t __efi_runtime EFIAPI efi_device_error(void)
419 {
420 	return EFI_DEVICE_ERROR;
421 }
422 
423 static efi_status_t __efi_runtime EFIAPI efi_invalid_parameter(void)
424 {
425 	return EFI_INVALID_PARAMETER;
426 }
427 
428 efi_status_t __efi_runtime EFIAPI efi_update_capsule(
429 			struct efi_capsule_header **capsule_header_array,
430 			efi_uintn_t capsule_count,
431 			u64 scatter_gather_list)
432 {
433 	return EFI_UNSUPPORTED;
434 }
435 
436 efi_status_t __efi_runtime EFIAPI efi_query_capsule_caps(
437 			struct efi_capsule_header **capsule_header_array,
438 			efi_uintn_t capsule_count,
439 			u64 maximum_capsule_size,
440 			u32 reset_type)
441 {
442 	return EFI_UNSUPPORTED;
443 }
444 
445 efi_status_t __efi_runtime EFIAPI efi_query_variable_info(
446 			u32 attributes,
447 			u64 *maximum_variable_storage_size,
448 			u64 *remaining_variable_storage_size,
449 			u64 *maximum_variable_size)
450 {
451 	return EFI_UNSUPPORTED;
452 }
453 
454 struct efi_runtime_services __efi_runtime_data efi_runtime_services = {
455 	.hdr = {
456 		.signature = EFI_RUNTIME_SERVICES_SIGNATURE,
457 		.revision = EFI_RUNTIME_SERVICES_REVISION,
458 		.headersize = sizeof(struct efi_table_hdr),
459 	},
460 	.get_time = &efi_get_time_boottime,
461 	.set_time = (void *)&efi_device_error,
462 	.get_wakeup_time = (void *)&efi_unimplemented,
463 	.set_wakeup_time = (void *)&efi_unimplemented,
464 	.set_virtual_address_map = &efi_set_virtual_address_map,
465 	.convert_pointer = (void *)&efi_invalid_parameter,
466 	.get_variable = efi_get_variable,
467 	.get_next_variable_name = efi_get_next_variable_name,
468 	.set_variable = efi_set_variable,
469 	.get_next_high_mono_count = (void *)&efi_device_error,
470 	.reset_system = &efi_reset_system_boottime,
471 	.update_capsule = efi_update_capsule,
472 	.query_capsule_caps = efi_query_capsule_caps,
473 	.query_variable_info = efi_query_variable_info,
474 };
475