1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * EFI application memory management 4 * 5 * Copyright (c) 2016 Alexander Graf 6 */ 7 8 #include <common.h> 9 #include <efi_loader.h> 10 #include <malloc.h> 11 #include <mapmem.h> 12 #include <watchdog.h> 13 #include <linux/list_sort.h> 14 #include <linux/sizes.h> 15 16 DECLARE_GLOBAL_DATA_PTR; 17 18 efi_uintn_t efi_memory_map_key; 19 20 struct efi_mem_list { 21 struct list_head link; 22 struct efi_mem_desc desc; 23 }; 24 25 #define EFI_CARVE_NO_OVERLAP -1 26 #define EFI_CARVE_LOOP_AGAIN -2 27 #define EFI_CARVE_OVERLAPS_NONRAM -3 28 29 /* This list contains all memory map items */ 30 LIST_HEAD(efi_mem); 31 32 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER 33 void *efi_bounce_buffer; 34 #endif 35 36 /* 37 * U-Boot services each EFI AllocatePool request as a separate 38 * (multiple) page allocation. We have to track the number of pages 39 * to be able to free the correct amount later. 40 * EFI requires 8 byte alignment for pool allocations, so we can 41 * prepend each allocation with an 64 bit header tracking the 42 * allocation size, and hand out the remainder to the caller. 43 */ 44 struct efi_pool_allocation { 45 u64 num_pages; 46 char data[] __aligned(ARCH_DMA_MINALIGN); 47 }; 48 49 /* 50 * Sorts the memory list from highest address to lowest address 51 * 52 * When allocating memory we should always start from the highest 53 * address chunk, so sort the memory list such that the first list 54 * iterator gets the highest address and goes lower from there. 55 */ 56 static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b) 57 { 58 struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link); 59 struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link); 60 61 if (mema->desc.physical_start == memb->desc.physical_start) 62 return 0; 63 else if (mema->desc.physical_start < memb->desc.physical_start) 64 return 1; 65 else 66 return -1; 67 } 68 69 static uint64_t desc_get_end(struct efi_mem_desc *desc) 70 { 71 return desc->physical_start + (desc->num_pages << EFI_PAGE_SHIFT); 72 } 73 74 static void efi_mem_sort(void) 75 { 76 struct list_head *lhandle; 77 struct efi_mem_list *prevmem = NULL; 78 bool merge_again = true; 79 80 list_sort(NULL, &efi_mem, efi_mem_cmp); 81 82 /* Now merge entries that can be merged */ 83 while (merge_again) { 84 merge_again = false; 85 list_for_each(lhandle, &efi_mem) { 86 struct efi_mem_list *lmem; 87 struct efi_mem_desc *prev = &prevmem->desc; 88 struct efi_mem_desc *cur; 89 uint64_t pages; 90 91 lmem = list_entry(lhandle, struct efi_mem_list, link); 92 if (!prevmem) { 93 prevmem = lmem; 94 continue; 95 } 96 97 cur = &lmem->desc; 98 99 if ((desc_get_end(cur) == prev->physical_start) && 100 (prev->type == cur->type) && 101 (prev->attribute == cur->attribute)) { 102 /* There is an existing map before, reuse it */ 103 pages = cur->num_pages; 104 prev->num_pages += pages; 105 prev->physical_start -= pages << EFI_PAGE_SHIFT; 106 prev->virtual_start -= pages << EFI_PAGE_SHIFT; 107 list_del(&lmem->link); 108 free(lmem); 109 110 merge_again = true; 111 break; 112 } 113 114 prevmem = lmem; 115 } 116 } 117 } 118 119 /** efi_mem_carve_out - unmap memory region 120 * 121 * @map: memory map 122 * @carve_desc: memory region to unmap 123 * @overlap_only_ram: the carved out region may only overlap RAM 124 * Return Value: the number of overlapping pages which have been 125 * removed from the map, 126 * EFI_CARVE_NO_OVERLAP, if the regions don't overlap, 127 * EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap, 128 * and the map contains anything but free ram 129 * (only when overlap_only_ram is true), 130 * EFI_CARVE_LOOP_AGAIN, if the mapping list should be 131 * traversed again, as it has been altered. 132 * 133 * Unmaps all memory occupied by the carve_desc region from the list entry 134 * pointed to by map. 135 * 136 * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility 137 * to re-add the already carved out pages to the mapping. 138 */ 139 static s64 efi_mem_carve_out(struct efi_mem_list *map, 140 struct efi_mem_desc *carve_desc, 141 bool overlap_only_ram) 142 { 143 struct efi_mem_list *newmap; 144 struct efi_mem_desc *map_desc = &map->desc; 145 uint64_t map_start = map_desc->physical_start; 146 uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT); 147 uint64_t carve_start = carve_desc->physical_start; 148 uint64_t carve_end = carve_start + 149 (carve_desc->num_pages << EFI_PAGE_SHIFT); 150 151 /* check whether we're overlapping */ 152 if ((carve_end <= map_start) || (carve_start >= map_end)) 153 return EFI_CARVE_NO_OVERLAP; 154 155 /* We're overlapping with non-RAM, warn the caller if desired */ 156 if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY)) 157 return EFI_CARVE_OVERLAPS_NONRAM; 158 159 /* Sanitize carve_start and carve_end to lie within our bounds */ 160 carve_start = max(carve_start, map_start); 161 carve_end = min(carve_end, map_end); 162 163 /* Carving at the beginning of our map? Just move it! */ 164 if (carve_start == map_start) { 165 if (map_end == carve_end) { 166 /* Full overlap, just remove map */ 167 list_del(&map->link); 168 free(map); 169 } else { 170 map->desc.physical_start = carve_end; 171 map->desc.num_pages = (map_end - carve_end) 172 >> EFI_PAGE_SHIFT; 173 } 174 175 return (carve_end - carve_start) >> EFI_PAGE_SHIFT; 176 } 177 178 /* 179 * Overlapping maps, just split the list map at carve_start, 180 * it will get moved or removed in the next iteration. 181 * 182 * [ map_desc |__carve_start__| newmap ] 183 */ 184 185 /* Create a new map from [ carve_start ... map_end ] */ 186 newmap = calloc(1, sizeof(*newmap)); 187 newmap->desc = map->desc; 188 newmap->desc.physical_start = carve_start; 189 newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT; 190 /* Insert before current entry (descending address order) */ 191 list_add_tail(&newmap->link, &map->link); 192 193 /* Shrink the map to [ map_start ... carve_start ] */ 194 map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT; 195 196 return EFI_CARVE_LOOP_AGAIN; 197 } 198 199 uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type, 200 bool overlap_only_ram) 201 { 202 struct list_head *lhandle; 203 struct efi_mem_list *newlist; 204 bool carve_again; 205 uint64_t carved_pages = 0; 206 207 debug("%s: 0x%llx 0x%llx %d %s\n", __func__, 208 start, pages, memory_type, overlap_only_ram ? "yes" : "no"); 209 210 if (memory_type >= EFI_MAX_MEMORY_TYPE) 211 return EFI_INVALID_PARAMETER; 212 213 if (!pages) 214 return start; 215 216 ++efi_memory_map_key; 217 newlist = calloc(1, sizeof(*newlist)); 218 newlist->desc.type = memory_type; 219 newlist->desc.physical_start = start; 220 newlist->desc.virtual_start = start; 221 newlist->desc.num_pages = pages; 222 223 switch (memory_type) { 224 case EFI_RUNTIME_SERVICES_CODE: 225 case EFI_RUNTIME_SERVICES_DATA: 226 newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME; 227 break; 228 case EFI_MMAP_IO: 229 newlist->desc.attribute = EFI_MEMORY_RUNTIME; 230 break; 231 default: 232 newlist->desc.attribute = EFI_MEMORY_WB; 233 break; 234 } 235 236 /* Add our new map */ 237 do { 238 carve_again = false; 239 list_for_each(lhandle, &efi_mem) { 240 struct efi_mem_list *lmem; 241 s64 r; 242 243 lmem = list_entry(lhandle, struct efi_mem_list, link); 244 r = efi_mem_carve_out(lmem, &newlist->desc, 245 overlap_only_ram); 246 switch (r) { 247 case EFI_CARVE_OVERLAPS_NONRAM: 248 /* 249 * The user requested to only have RAM overlaps, 250 * but we hit a non-RAM region. Error out. 251 */ 252 return 0; 253 case EFI_CARVE_NO_OVERLAP: 254 /* Just ignore this list entry */ 255 break; 256 case EFI_CARVE_LOOP_AGAIN: 257 /* 258 * We split an entry, but need to loop through 259 * the list again to actually carve it. 260 */ 261 carve_again = true; 262 break; 263 default: 264 /* We carved a number of pages */ 265 carved_pages += r; 266 carve_again = true; 267 break; 268 } 269 270 if (carve_again) { 271 /* The list changed, we need to start over */ 272 break; 273 } 274 } 275 } while (carve_again); 276 277 if (overlap_only_ram && (carved_pages != pages)) { 278 /* 279 * The payload wanted to have RAM overlaps, but we overlapped 280 * with an unallocated region. Error out. 281 */ 282 return 0; 283 } 284 285 /* Add our new map */ 286 list_add_tail(&newlist->link, &efi_mem); 287 288 /* And make sure memory is listed in descending order */ 289 efi_mem_sort(); 290 291 return start; 292 } 293 294 static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr) 295 { 296 struct list_head *lhandle; 297 298 /* 299 * Prealign input max address, so we simplify our matching 300 * logic below and can just reuse it as return pointer. 301 */ 302 max_addr &= ~EFI_PAGE_MASK; 303 304 list_for_each(lhandle, &efi_mem) { 305 struct efi_mem_list *lmem = list_entry(lhandle, 306 struct efi_mem_list, link); 307 struct efi_mem_desc *desc = &lmem->desc; 308 uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT; 309 uint64_t desc_end = desc->physical_start + desc_len; 310 uint64_t curmax = min(max_addr, desc_end); 311 uint64_t ret = curmax - len; 312 313 /* We only take memory from free RAM */ 314 if (desc->type != EFI_CONVENTIONAL_MEMORY) 315 continue; 316 317 /* Out of bounds for max_addr */ 318 if ((ret + len) > max_addr) 319 continue; 320 321 /* Out of bounds for upper map limit */ 322 if ((ret + len) > desc_end) 323 continue; 324 325 /* Out of bounds for lower map limit */ 326 if (ret < desc->physical_start) 327 continue; 328 329 /* Return the highest address in this map within bounds */ 330 return ret; 331 } 332 333 return 0; 334 } 335 336 /* 337 * Allocate memory pages. 338 * 339 * @type type of allocation to be performed 340 * @memory_type usage type of the allocated memory 341 * @pages number of pages to be allocated 342 * @memory allocated memory 343 * @return status code 344 */ 345 efi_status_t efi_allocate_pages(int type, int memory_type, 346 efi_uintn_t pages, uint64_t *memory) 347 { 348 u64 len = pages << EFI_PAGE_SHIFT; 349 efi_status_t r = EFI_SUCCESS; 350 uint64_t addr; 351 352 if (!memory) 353 return EFI_INVALID_PARAMETER; 354 355 switch (type) { 356 case EFI_ALLOCATE_ANY_PAGES: 357 /* Any page */ 358 addr = efi_find_free_memory(len, -1ULL); 359 if (!addr) { 360 r = EFI_NOT_FOUND; 361 break; 362 } 363 break; 364 case EFI_ALLOCATE_MAX_ADDRESS: 365 /* Max address */ 366 addr = efi_find_free_memory(len, *memory); 367 if (!addr) { 368 r = EFI_NOT_FOUND; 369 break; 370 } 371 break; 372 case EFI_ALLOCATE_ADDRESS: 373 /* Exact address, reserve it. The addr is already in *memory. */ 374 addr = *memory; 375 break; 376 default: 377 /* UEFI doesn't specify other allocation types */ 378 r = EFI_INVALID_PARAMETER; 379 break; 380 } 381 382 if (r == EFI_SUCCESS) { 383 uint64_t ret; 384 385 /* Reserve that map in our memory maps */ 386 ret = efi_add_memory_map(addr, pages, memory_type, true); 387 if (ret == addr) { 388 *memory = addr; 389 } else { 390 /* Map would overlap, bail out */ 391 r = EFI_OUT_OF_RESOURCES; 392 } 393 } 394 395 return r; 396 } 397 398 void *efi_alloc(uint64_t len, int memory_type) 399 { 400 uint64_t ret = 0; 401 uint64_t pages = efi_size_in_pages(len); 402 efi_status_t r; 403 404 r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type, pages, 405 &ret); 406 if (r == EFI_SUCCESS) 407 return (void*)(uintptr_t)ret; 408 409 return NULL; 410 } 411 412 /* 413 * Free memory pages. 414 * 415 * @memory start of the memory area to be freed 416 * @pages number of pages to be freed 417 * @return status code 418 */ 419 efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages) 420 { 421 uint64_t r = 0; 422 423 r = efi_add_memory_map(memory, pages, EFI_CONVENTIONAL_MEMORY, false); 424 /* Merging of adjacent free regions is missing */ 425 426 if (r == memory) 427 return EFI_SUCCESS; 428 429 return EFI_NOT_FOUND; 430 } 431 432 /* 433 * Allocate memory from pool. 434 * 435 * @pool_type type of the pool from which memory is to be allocated 436 * @size number of bytes to be allocated 437 * @buffer allocated memory 438 * @return status code 439 */ 440 efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void **buffer) 441 { 442 efi_status_t r; 443 u64 addr; 444 struct efi_pool_allocation *alloc; 445 u64 num_pages = efi_size_in_pages(size + 446 sizeof(struct efi_pool_allocation)); 447 448 if (!buffer) 449 return EFI_INVALID_PARAMETER; 450 451 if (size == 0) { 452 *buffer = NULL; 453 return EFI_SUCCESS; 454 } 455 456 r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages, 457 &addr); 458 if (r == EFI_SUCCESS) { 459 alloc = (struct efi_pool_allocation *)(uintptr_t)addr; 460 alloc->num_pages = num_pages; 461 *buffer = alloc->data; 462 } 463 464 return r; 465 } 466 467 /* 468 * Free memory from pool. 469 * 470 * @buffer start of memory to be freed 471 * @return status code 472 */ 473 efi_status_t efi_free_pool(void *buffer) 474 { 475 efi_status_t r; 476 struct efi_pool_allocation *alloc; 477 478 if (buffer == NULL) 479 return EFI_INVALID_PARAMETER; 480 481 alloc = container_of(buffer, struct efi_pool_allocation, data); 482 /* Sanity check, was the supplied address returned by allocate_pool */ 483 assert(((uintptr_t)alloc & EFI_PAGE_MASK) == 0); 484 485 r = efi_free_pages((uintptr_t)alloc, alloc->num_pages); 486 487 return r; 488 } 489 490 /* 491 * Get map describing memory usage. 492 * 493 * @memory_map_size on entry the size, in bytes, of the memory map buffer, 494 * on exit the size of the copied memory map 495 * @memory_map buffer to which the memory map is written 496 * @map_key key for the memory map 497 * @descriptor_size size of an individual memory descriptor 498 * @descriptor_version version number of the memory descriptor structure 499 * @return status code 500 */ 501 efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size, 502 struct efi_mem_desc *memory_map, 503 efi_uintn_t *map_key, 504 efi_uintn_t *descriptor_size, 505 uint32_t *descriptor_version) 506 { 507 efi_uintn_t map_size = 0; 508 int map_entries = 0; 509 struct list_head *lhandle; 510 efi_uintn_t provided_map_size; 511 512 if (!memory_map_size) 513 return EFI_INVALID_PARAMETER; 514 515 provided_map_size = *memory_map_size; 516 517 list_for_each(lhandle, &efi_mem) 518 map_entries++; 519 520 map_size = map_entries * sizeof(struct efi_mem_desc); 521 522 *memory_map_size = map_size; 523 524 if (provided_map_size < map_size) 525 return EFI_BUFFER_TOO_SMALL; 526 527 if (!memory_map) 528 return EFI_INVALID_PARAMETER; 529 530 if (descriptor_size) 531 *descriptor_size = sizeof(struct efi_mem_desc); 532 533 if (descriptor_version) 534 *descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION; 535 536 /* Copy list into array */ 537 /* Return the list in ascending order */ 538 memory_map = &memory_map[map_entries - 1]; 539 list_for_each(lhandle, &efi_mem) { 540 struct efi_mem_list *lmem; 541 542 lmem = list_entry(lhandle, struct efi_mem_list, link); 543 *memory_map = lmem->desc; 544 memory_map--; 545 } 546 547 if (map_key) 548 *map_key = efi_memory_map_key; 549 550 return EFI_SUCCESS; 551 } 552 553 __weak void efi_add_known_memory(void) 554 { 555 u64 ram_top = board_get_usable_ram_top(0) & ~EFI_PAGE_MASK; 556 int i; 557 558 /* 559 * ram_top is just outside mapped memory. So use an offset of one for 560 * mapping the sandbox address. 561 */ 562 ram_top = (uintptr_t)map_sysmem(ram_top - 1, 0) + 1; 563 564 /* Fix for 32bit targets with ram_top at 4G */ 565 if (!ram_top) 566 ram_top = 0x100000000ULL; 567 568 /* Add RAM */ 569 for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { 570 u64 ram_end, ram_start, pages; 571 572 ram_start = (uintptr_t)map_sysmem(gd->bd->bi_dram[i].start, 0); 573 ram_end = ram_start + gd->bd->bi_dram[i].size; 574 575 /* Remove partial pages */ 576 ram_end &= ~EFI_PAGE_MASK; 577 ram_start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK; 578 579 if (ram_end <= ram_start) { 580 /* Invalid mapping, keep going. */ 581 continue; 582 } 583 584 pages = (ram_end - ram_start) >> EFI_PAGE_SHIFT; 585 586 efi_add_memory_map(ram_start, pages, 587 EFI_CONVENTIONAL_MEMORY, false); 588 589 /* 590 * Boards may indicate to the U-Boot memory core that they 591 * can not support memory above ram_top. Let's honor this 592 * in the efi_loader subsystem too by declaring any memory 593 * above ram_top as "already occupied by firmware". 594 */ 595 if (ram_top < ram_start) { 596 /* ram_top is before this region, reserve all */ 597 efi_add_memory_map(ram_start, pages, 598 EFI_BOOT_SERVICES_DATA, true); 599 } else if ((ram_top >= ram_start) && (ram_top < ram_end)) { 600 /* ram_top is inside this region, reserve parts */ 601 pages = (ram_end - ram_top) >> EFI_PAGE_SHIFT; 602 603 efi_add_memory_map(ram_top, pages, 604 EFI_BOOT_SERVICES_DATA, true); 605 } 606 } 607 } 608 609 /* Add memory regions for U-Boot's memory and for the runtime services code */ 610 static void add_u_boot_and_runtime(void) 611 { 612 unsigned long runtime_start, runtime_end, runtime_pages; 613 unsigned long runtime_mask = EFI_PAGE_MASK; 614 unsigned long uboot_start, uboot_pages; 615 unsigned long uboot_stack_size = 16 * 1024 * 1024; 616 617 /* Add U-Boot */ 618 uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK; 619 uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT; 620 efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false); 621 622 #if defined(__aarch64__) 623 /* 624 * Runtime Services must be 64KiB aligned according to the 625 * "AArch64 Platforms" section in the UEFI spec (2.7+). 626 */ 627 628 runtime_mask = SZ_64K - 1; 629 #endif 630 631 /* 632 * Add Runtime Services. We mark surrounding boottime code as runtime as 633 * well to fulfill the runtime alignment constraints but avoid padding. 634 */ 635 runtime_start = (ulong)&__efi_runtime_start & ~runtime_mask; 636 runtime_end = (ulong)&__efi_runtime_stop; 637 runtime_end = (runtime_end + runtime_mask) & ~runtime_mask; 638 runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT; 639 efi_add_memory_map(runtime_start, runtime_pages, 640 EFI_RUNTIME_SERVICES_CODE, false); 641 } 642 643 int efi_memory_init(void) 644 { 645 efi_add_known_memory(); 646 647 if (!IS_ENABLED(CONFIG_SANDBOX)) 648 add_u_boot_and_runtime(); 649 650 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER 651 /* Request a 32bit 64MB bounce buffer region */ 652 uint64_t efi_bounce_buffer_addr = 0xffffffff; 653 654 if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_LOADER_DATA, 655 (64 * 1024 * 1024) >> EFI_PAGE_SHIFT, 656 &efi_bounce_buffer_addr) != EFI_SUCCESS) 657 return -1; 658 659 efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr; 660 #endif 661 662 return 0; 663 } 664