1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * EFI application memory management 4 * 5 * Copyright (c) 2016 Alexander Graf 6 */ 7 8 #include <common.h> 9 #include <efi_loader.h> 10 #include <inttypes.h> 11 #include <malloc.h> 12 #include <watchdog.h> 13 #include <asm/global_data.h> 14 #include <linux/list_sort.h> 15 16 DECLARE_GLOBAL_DATA_PTR; 17 18 struct efi_mem_list { 19 struct list_head link; 20 struct efi_mem_desc desc; 21 }; 22 23 #define EFI_CARVE_NO_OVERLAP -1 24 #define EFI_CARVE_LOOP_AGAIN -2 25 #define EFI_CARVE_OVERLAPS_NONRAM -3 26 27 /* This list contains all memory map items */ 28 LIST_HEAD(efi_mem); 29 30 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER 31 void *efi_bounce_buffer; 32 #endif 33 34 /* 35 * U-Boot services each EFI AllocatePool request as a separate 36 * (multiple) page allocation. We have to track the number of pages 37 * to be able to free the correct amount later. 38 * EFI requires 8 byte alignment for pool allocations, so we can 39 * prepend each allocation with an 64 bit header tracking the 40 * allocation size, and hand out the remainder to the caller. 41 */ 42 struct efi_pool_allocation { 43 u64 num_pages; 44 char data[] __aligned(ARCH_DMA_MINALIGN); 45 }; 46 47 /* 48 * Sorts the memory list from highest address to lowest address 49 * 50 * When allocating memory we should always start from the highest 51 * address chunk, so sort the memory list such that the first list 52 * iterator gets the highest address and goes lower from there. 53 */ 54 static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b) 55 { 56 struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link); 57 struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link); 58 59 if (mema->desc.physical_start == memb->desc.physical_start) 60 return 0; 61 else if (mema->desc.physical_start < memb->desc.physical_start) 62 return 1; 63 else 64 return -1; 65 } 66 67 static void efi_mem_sort(void) 68 { 69 list_sort(NULL, &efi_mem, efi_mem_cmp); 70 } 71 72 /* 73 * Unmaps all memory occupied by the carve_desc region from the 74 * list entry pointed to by map. 75 * 76 * Returns EFI_CARVE_NO_OVERLAP if the regions don't overlap. 77 * Returns EFI_CARVE_OVERLAPS_NONRAM if the carve and map overlap, 78 * and the map contains anything but free ram. 79 * (only when overlap_only_ram is true) 80 * Returns EFI_CARVE_LOOP_AGAIN if the mapping list should be traversed 81 * again, as it has been altered 82 * Returns the number of overlapping pages. The pages are removed from 83 * the mapping list. 84 * 85 * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility 86 * to readd the already carved out pages to the mapping. 87 */ 88 static int efi_mem_carve_out(struct efi_mem_list *map, 89 struct efi_mem_desc *carve_desc, 90 bool overlap_only_ram) 91 { 92 struct efi_mem_list *newmap; 93 struct efi_mem_desc *map_desc = &map->desc; 94 uint64_t map_start = map_desc->physical_start; 95 uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT); 96 uint64_t carve_start = carve_desc->physical_start; 97 uint64_t carve_end = carve_start + 98 (carve_desc->num_pages << EFI_PAGE_SHIFT); 99 100 /* check whether we're overlapping */ 101 if ((carve_end <= map_start) || (carve_start >= map_end)) 102 return EFI_CARVE_NO_OVERLAP; 103 104 /* We're overlapping with non-RAM, warn the caller if desired */ 105 if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY)) 106 return EFI_CARVE_OVERLAPS_NONRAM; 107 108 /* Sanitize carve_start and carve_end to lie within our bounds */ 109 carve_start = max(carve_start, map_start); 110 carve_end = min(carve_end, map_end); 111 112 /* Carving at the beginning of our map? Just move it! */ 113 if (carve_start == map_start) { 114 if (map_end == carve_end) { 115 /* Full overlap, just remove map */ 116 list_del(&map->link); 117 free(map); 118 } else { 119 map->desc.physical_start = carve_end; 120 map->desc.num_pages = (map_end - carve_end) 121 >> EFI_PAGE_SHIFT; 122 } 123 124 return (carve_end - carve_start) >> EFI_PAGE_SHIFT; 125 } 126 127 /* 128 * Overlapping maps, just split the list map at carve_start, 129 * it will get moved or removed in the next iteration. 130 * 131 * [ map_desc |__carve_start__| newmap ] 132 */ 133 134 /* Create a new map from [ carve_start ... map_end ] */ 135 newmap = calloc(1, sizeof(*newmap)); 136 newmap->desc = map->desc; 137 newmap->desc.physical_start = carve_start; 138 newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT; 139 /* Insert before current entry (descending address order) */ 140 list_add_tail(&newmap->link, &map->link); 141 142 /* Shrink the map to [ map_start ... carve_start ] */ 143 map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT; 144 145 return EFI_CARVE_LOOP_AGAIN; 146 } 147 148 uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type, 149 bool overlap_only_ram) 150 { 151 struct list_head *lhandle; 152 struct efi_mem_list *newlist; 153 bool carve_again; 154 uint64_t carved_pages = 0; 155 156 debug("%s: 0x%" PRIx64 " 0x%" PRIx64 " %d %s\n", __func__, 157 start, pages, memory_type, overlap_only_ram ? "yes" : "no"); 158 159 if (!pages) 160 return start; 161 162 newlist = calloc(1, sizeof(*newlist)); 163 newlist->desc.type = memory_type; 164 newlist->desc.physical_start = start; 165 newlist->desc.virtual_start = start; 166 newlist->desc.num_pages = pages; 167 168 switch (memory_type) { 169 case EFI_RUNTIME_SERVICES_CODE: 170 case EFI_RUNTIME_SERVICES_DATA: 171 newlist->desc.attribute = (1 << EFI_MEMORY_WB_SHIFT) | 172 (1ULL << EFI_MEMORY_RUNTIME_SHIFT); 173 break; 174 case EFI_MMAP_IO: 175 newlist->desc.attribute = 1ULL << EFI_MEMORY_RUNTIME_SHIFT; 176 break; 177 default: 178 newlist->desc.attribute = 1 << EFI_MEMORY_WB_SHIFT; 179 break; 180 } 181 182 /* Add our new map */ 183 do { 184 carve_again = false; 185 list_for_each(lhandle, &efi_mem) { 186 struct efi_mem_list *lmem; 187 int r; 188 189 lmem = list_entry(lhandle, struct efi_mem_list, link); 190 r = efi_mem_carve_out(lmem, &newlist->desc, 191 overlap_only_ram); 192 switch (r) { 193 case EFI_CARVE_OVERLAPS_NONRAM: 194 /* 195 * The user requested to only have RAM overlaps, 196 * but we hit a non-RAM region. Error out. 197 */ 198 return 0; 199 case EFI_CARVE_NO_OVERLAP: 200 /* Just ignore this list entry */ 201 break; 202 case EFI_CARVE_LOOP_AGAIN: 203 /* 204 * We split an entry, but need to loop through 205 * the list again to actually carve it. 206 */ 207 carve_again = true; 208 break; 209 default: 210 /* We carved a number of pages */ 211 carved_pages += r; 212 carve_again = true; 213 break; 214 } 215 216 if (carve_again) { 217 /* The list changed, we need to start over */ 218 break; 219 } 220 } 221 } while (carve_again); 222 223 if (overlap_only_ram && (carved_pages != pages)) { 224 /* 225 * The payload wanted to have RAM overlaps, but we overlapped 226 * with an unallocated region. Error out. 227 */ 228 return 0; 229 } 230 231 /* Add our new map */ 232 list_add_tail(&newlist->link, &efi_mem); 233 234 /* And make sure memory is listed in descending order */ 235 efi_mem_sort(); 236 237 return start; 238 } 239 240 static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr) 241 { 242 struct list_head *lhandle; 243 244 list_for_each(lhandle, &efi_mem) { 245 struct efi_mem_list *lmem = list_entry(lhandle, 246 struct efi_mem_list, link); 247 struct efi_mem_desc *desc = &lmem->desc; 248 uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT; 249 uint64_t desc_end = desc->physical_start + desc_len; 250 uint64_t curmax = min(max_addr, desc_end); 251 uint64_t ret = curmax - len; 252 253 /* We only take memory from free RAM */ 254 if (desc->type != EFI_CONVENTIONAL_MEMORY) 255 continue; 256 257 /* Out of bounds for max_addr */ 258 if ((ret + len) > max_addr) 259 continue; 260 261 /* Out of bounds for upper map limit */ 262 if ((ret + len) > desc_end) 263 continue; 264 265 /* Out of bounds for lower map limit */ 266 if (ret < desc->physical_start) 267 continue; 268 269 /* Return the highest address in this map within bounds */ 270 return ret; 271 } 272 273 return 0; 274 } 275 276 /* 277 * Allocate memory pages. 278 * 279 * @type type of allocation to be performed 280 * @memory_type usage type of the allocated memory 281 * @pages number of pages to be allocated 282 * @memory allocated memory 283 * @return status code 284 */ 285 efi_status_t efi_allocate_pages(int type, int memory_type, 286 efi_uintn_t pages, uint64_t *memory) 287 { 288 u64 len = pages << EFI_PAGE_SHIFT; 289 efi_status_t r = EFI_SUCCESS; 290 uint64_t addr; 291 292 switch (type) { 293 case EFI_ALLOCATE_ANY_PAGES: 294 /* Any page */ 295 addr = efi_find_free_memory(len, gd->start_addr_sp); 296 if (!addr) { 297 r = EFI_NOT_FOUND; 298 break; 299 } 300 break; 301 case EFI_ALLOCATE_MAX_ADDRESS: 302 /* Max address */ 303 addr = efi_find_free_memory(len, *memory); 304 if (!addr) { 305 r = EFI_NOT_FOUND; 306 break; 307 } 308 break; 309 case EFI_ALLOCATE_ADDRESS: 310 /* Exact address, reserve it. The addr is already in *memory. */ 311 addr = *memory; 312 break; 313 default: 314 /* UEFI doesn't specify other allocation types */ 315 r = EFI_INVALID_PARAMETER; 316 break; 317 } 318 319 if (r == EFI_SUCCESS) { 320 uint64_t ret; 321 322 /* Reserve that map in our memory maps */ 323 ret = efi_add_memory_map(addr, pages, memory_type, true); 324 if (ret == addr) { 325 *memory = addr; 326 } else { 327 /* Map would overlap, bail out */ 328 r = EFI_OUT_OF_RESOURCES; 329 } 330 } 331 332 return r; 333 } 334 335 void *efi_alloc(uint64_t len, int memory_type) 336 { 337 uint64_t ret = 0; 338 uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT; 339 efi_status_t r; 340 341 r = efi_allocate_pages(0, memory_type, pages, &ret); 342 if (r == EFI_SUCCESS) 343 return (void*)(uintptr_t)ret; 344 345 return NULL; 346 } 347 348 /* 349 * Free memory pages. 350 * 351 * @memory start of the memory area to be freed 352 * @pages number of pages to be freed 353 * @return status code 354 */ 355 efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages) 356 { 357 uint64_t r = 0; 358 359 r = efi_add_memory_map(memory, pages, EFI_CONVENTIONAL_MEMORY, false); 360 /* Merging of adjacent free regions is missing */ 361 362 if (r == memory) 363 return EFI_SUCCESS; 364 365 return EFI_NOT_FOUND; 366 } 367 368 /* 369 * Allocate memory from pool. 370 * 371 * @pool_type type of the pool from which memory is to be allocated 372 * @size number of bytes to be allocated 373 * @buffer allocated memory 374 * @return status code 375 */ 376 efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void **buffer) 377 { 378 efi_status_t r; 379 efi_physical_addr_t t; 380 u64 num_pages = (size + sizeof(struct efi_pool_allocation) + 381 EFI_PAGE_MASK) >> EFI_PAGE_SHIFT; 382 383 if (size == 0) { 384 *buffer = NULL; 385 return EFI_SUCCESS; 386 } 387 388 r = efi_allocate_pages(0, pool_type, num_pages, &t); 389 390 if (r == EFI_SUCCESS) { 391 struct efi_pool_allocation *alloc = (void *)(uintptr_t)t; 392 alloc->num_pages = num_pages; 393 *buffer = alloc->data; 394 } 395 396 return r; 397 } 398 399 /* 400 * Free memory from pool. 401 * 402 * @buffer start of memory to be freed 403 * @return status code 404 */ 405 efi_status_t efi_free_pool(void *buffer) 406 { 407 efi_status_t r; 408 struct efi_pool_allocation *alloc; 409 410 if (buffer == NULL) 411 return EFI_INVALID_PARAMETER; 412 413 alloc = container_of(buffer, struct efi_pool_allocation, data); 414 /* Sanity check, was the supplied address returned by allocate_pool */ 415 assert(((uintptr_t)alloc & EFI_PAGE_MASK) == 0); 416 417 r = efi_free_pages((uintptr_t)alloc, alloc->num_pages); 418 419 return r; 420 } 421 422 /* 423 * Get map describing memory usage. 424 * 425 * @memory_map_size on entry the size, in bytes, of the memory map buffer, 426 * on exit the size of the copied memory map 427 * @memory_map buffer to which the memory map is written 428 * @map_key key for the memory map 429 * @descriptor_size size of an individual memory descriptor 430 * @descriptor_version version number of the memory descriptor structure 431 * @return status code 432 */ 433 efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size, 434 struct efi_mem_desc *memory_map, 435 efi_uintn_t *map_key, 436 efi_uintn_t *descriptor_size, 437 uint32_t *descriptor_version) 438 { 439 efi_uintn_t map_size = 0; 440 int map_entries = 0; 441 struct list_head *lhandle; 442 efi_uintn_t provided_map_size = *memory_map_size; 443 444 list_for_each(lhandle, &efi_mem) 445 map_entries++; 446 447 map_size = map_entries * sizeof(struct efi_mem_desc); 448 449 *memory_map_size = map_size; 450 451 if (provided_map_size < map_size) 452 return EFI_BUFFER_TOO_SMALL; 453 454 if (descriptor_size) 455 *descriptor_size = sizeof(struct efi_mem_desc); 456 457 if (descriptor_version) 458 *descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION; 459 460 /* Copy list into array */ 461 if (memory_map) { 462 /* Return the list in ascending order */ 463 memory_map = &memory_map[map_entries - 1]; 464 list_for_each(lhandle, &efi_mem) { 465 struct efi_mem_list *lmem; 466 467 lmem = list_entry(lhandle, struct efi_mem_list, link); 468 *memory_map = lmem->desc; 469 memory_map--; 470 } 471 } 472 473 *map_key = 0; 474 475 return EFI_SUCCESS; 476 } 477 478 __weak void efi_add_known_memory(void) 479 { 480 int i; 481 482 /* Add RAM */ 483 for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { 484 u64 ram_start = gd->bd->bi_dram[i].start; 485 u64 ram_size = gd->bd->bi_dram[i].size; 486 u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK; 487 u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT; 488 489 efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY, 490 false); 491 } 492 } 493 494 int efi_memory_init(void) 495 { 496 unsigned long runtime_start, runtime_end, runtime_pages; 497 unsigned long uboot_start, uboot_pages; 498 unsigned long uboot_stack_size = 16 * 1024 * 1024; 499 500 efi_add_known_memory(); 501 502 /* Add U-Boot */ 503 uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK; 504 uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT; 505 efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false); 506 507 /* Add Runtime Services */ 508 runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK; 509 runtime_end = (ulong)&__efi_runtime_stop; 510 runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK; 511 runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT; 512 efi_add_memory_map(runtime_start, runtime_pages, 513 EFI_RUNTIME_SERVICES_CODE, false); 514 515 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER 516 /* Request a 32bit 64MB bounce buffer region */ 517 uint64_t efi_bounce_buffer_addr = 0xffffffff; 518 519 if (efi_allocate_pages(1, EFI_LOADER_DATA, 520 (64 * 1024 * 1024) >> EFI_PAGE_SHIFT, 521 &efi_bounce_buffer_addr) != EFI_SUCCESS) 522 return -1; 523 524 efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr; 525 #endif 526 527 return 0; 528 } 529