xref: /openbmc/u-boot/lib/efi_loader/efi_memory.c (revision 8044900a)
1 /*
2  *  EFI application memory management
3  *
4  *  Copyright (c) 2016 Alexander Graf
5  *
6  *  SPDX-License-Identifier:     GPL-2.0+
7  */
8 
9 #include <common.h>
10 #include <efi_loader.h>
11 #include <inttypes.h>
12 #include <malloc.h>
13 #include <watchdog.h>
14 #include <asm/global_data.h>
15 #include <linux/list_sort.h>
16 
17 DECLARE_GLOBAL_DATA_PTR;
18 
19 struct efi_mem_list {
20 	struct list_head link;
21 	struct efi_mem_desc desc;
22 };
23 
24 #define EFI_CARVE_NO_OVERLAP		-1
25 #define EFI_CARVE_LOOP_AGAIN		-2
26 #define EFI_CARVE_OVERLAPS_NONRAM	-3
27 
28 /* This list contains all memory map items */
29 LIST_HEAD(efi_mem);
30 
31 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
32 void *efi_bounce_buffer;
33 #endif
34 
35 /*
36  * U-Boot services each EFI AllocatePool request as a separate
37  * (multiple) page allocation.  We have to track the number of pages
38  * to be able to free the correct amount later.
39  * EFI requires 8 byte alignment for pool allocations, so we can
40  * prepend each allocation with an 64 bit header tracking the
41  * allocation size, and hand out the remainder to the caller.
42  */
43 struct efi_pool_allocation {
44 	u64 num_pages;
45 	char data[] __aligned(ARCH_DMA_MINALIGN);
46 };
47 
48 /*
49  * Sorts the memory list from highest address to lowest address
50  *
51  * When allocating memory we should always start from the highest
52  * address chunk, so sort the memory list such that the first list
53  * iterator gets the highest address and goes lower from there.
54  */
55 static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
56 {
57 	struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
58 	struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
59 
60 	if (mema->desc.physical_start == memb->desc.physical_start)
61 		return 0;
62 	else if (mema->desc.physical_start < memb->desc.physical_start)
63 		return 1;
64 	else
65 		return -1;
66 }
67 
68 static void efi_mem_sort(void)
69 {
70 	list_sort(NULL, &efi_mem, efi_mem_cmp);
71 }
72 
73 /*
74  * Unmaps all memory occupied by the carve_desc region from the
75  * list entry pointed to by map.
76  *
77  * Returns EFI_CARVE_NO_OVERLAP if the regions don't overlap.
78  * Returns EFI_CARVE_OVERLAPS_NONRAM if the carve and map overlap,
79  *    and the map contains anything but free ram.
80  *    (only when overlap_only_ram is true)
81  * Returns EFI_CARVE_LOOP_AGAIN if the mapping list should be traversed
82  *    again, as it has been altered
83  * Returns the number of overlapping pages. The pages are removed from
84  *     the mapping list.
85  *
86  * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
87  * to readd the already carved out pages to the mapping.
88  */
89 static int efi_mem_carve_out(struct efi_mem_list *map,
90 			     struct efi_mem_desc *carve_desc,
91 			     bool overlap_only_ram)
92 {
93 	struct efi_mem_list *newmap;
94 	struct efi_mem_desc *map_desc = &map->desc;
95 	uint64_t map_start = map_desc->physical_start;
96 	uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
97 	uint64_t carve_start = carve_desc->physical_start;
98 	uint64_t carve_end = carve_start +
99 			     (carve_desc->num_pages << EFI_PAGE_SHIFT);
100 
101 	/* check whether we're overlapping */
102 	if ((carve_end <= map_start) || (carve_start >= map_end))
103 		return EFI_CARVE_NO_OVERLAP;
104 
105 	/* We're overlapping with non-RAM, warn the caller if desired */
106 	if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
107 		return EFI_CARVE_OVERLAPS_NONRAM;
108 
109 	/* Sanitize carve_start and carve_end to lie within our bounds */
110 	carve_start = max(carve_start, map_start);
111 	carve_end = min(carve_end, map_end);
112 
113 	/* Carving at the beginning of our map? Just move it! */
114 	if (carve_start == map_start) {
115 		if (map_end == carve_end) {
116 			/* Full overlap, just remove map */
117 			list_del(&map->link);
118 			free(map);
119 		} else {
120 			map->desc.physical_start = carve_end;
121 			map->desc.num_pages = (map_end - carve_end)
122 					      >> EFI_PAGE_SHIFT;
123 		}
124 
125 		return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
126 	}
127 
128 	/*
129 	 * Overlapping maps, just split the list map at carve_start,
130 	 * it will get moved or removed in the next iteration.
131 	 *
132 	 * [ map_desc |__carve_start__| newmap ]
133 	 */
134 
135 	/* Create a new map from [ carve_start ... map_end ] */
136 	newmap = calloc(1, sizeof(*newmap));
137 	newmap->desc = map->desc;
138 	newmap->desc.physical_start = carve_start;
139 	newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
140 	/* Insert before current entry (descending address order) */
141 	list_add_tail(&newmap->link, &map->link);
142 
143 	/* Shrink the map to [ map_start ... carve_start ] */
144 	map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
145 
146 	return EFI_CARVE_LOOP_AGAIN;
147 }
148 
149 uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type,
150 			    bool overlap_only_ram)
151 {
152 	struct list_head *lhandle;
153 	struct efi_mem_list *newlist;
154 	bool carve_again;
155 	uint64_t carved_pages = 0;
156 
157 	debug("%s: 0x%" PRIx64 " 0x%" PRIx64 " %d %s\n", __func__,
158 	      start, pages, memory_type, overlap_only_ram ? "yes" : "no");
159 
160 	if (!pages)
161 		return start;
162 
163 	newlist = calloc(1, sizeof(*newlist));
164 	newlist->desc.type = memory_type;
165 	newlist->desc.physical_start = start;
166 	newlist->desc.virtual_start = start;
167 	newlist->desc.num_pages = pages;
168 
169 	switch (memory_type) {
170 	case EFI_RUNTIME_SERVICES_CODE:
171 	case EFI_RUNTIME_SERVICES_DATA:
172 		newlist->desc.attribute = (1 << EFI_MEMORY_WB_SHIFT) |
173 					  (1ULL << EFI_MEMORY_RUNTIME_SHIFT);
174 		break;
175 	case EFI_MMAP_IO:
176 		newlist->desc.attribute = 1ULL << EFI_MEMORY_RUNTIME_SHIFT;
177 		break;
178 	default:
179 		newlist->desc.attribute = 1 << EFI_MEMORY_WB_SHIFT;
180 		break;
181 	}
182 
183 	/* Add our new map */
184 	do {
185 		carve_again = false;
186 		list_for_each(lhandle, &efi_mem) {
187 			struct efi_mem_list *lmem;
188 			int r;
189 
190 			lmem = list_entry(lhandle, struct efi_mem_list, link);
191 			r = efi_mem_carve_out(lmem, &newlist->desc,
192 					      overlap_only_ram);
193 			switch (r) {
194 			case EFI_CARVE_OVERLAPS_NONRAM:
195 				/*
196 				 * The user requested to only have RAM overlaps,
197 				 * but we hit a non-RAM region. Error out.
198 				 */
199 				return 0;
200 			case EFI_CARVE_NO_OVERLAP:
201 				/* Just ignore this list entry */
202 				break;
203 			case EFI_CARVE_LOOP_AGAIN:
204 				/*
205 				 * We split an entry, but need to loop through
206 				 * the list again to actually carve it.
207 				 */
208 				carve_again = true;
209 				break;
210 			default:
211 				/* We carved a number of pages */
212 				carved_pages += r;
213 				carve_again = true;
214 				break;
215 			}
216 
217 			if (carve_again) {
218 				/* The list changed, we need to start over */
219 				break;
220 			}
221 		}
222 	} while (carve_again);
223 
224 	if (overlap_only_ram && (carved_pages != pages)) {
225 		/*
226 		 * The payload wanted to have RAM overlaps, but we overlapped
227 		 * with an unallocated region. Error out.
228 		 */
229 		return 0;
230 	}
231 
232 	/* Add our new map */
233         list_add_tail(&newlist->link, &efi_mem);
234 
235 	/* And make sure memory is listed in descending order */
236 	efi_mem_sort();
237 
238 	return start;
239 }
240 
241 static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
242 {
243 	struct list_head *lhandle;
244 
245 	list_for_each(lhandle, &efi_mem) {
246 		struct efi_mem_list *lmem = list_entry(lhandle,
247 			struct efi_mem_list, link);
248 		struct efi_mem_desc *desc = &lmem->desc;
249 		uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
250 		uint64_t desc_end = desc->physical_start + desc_len;
251 		uint64_t curmax = min(max_addr, desc_end);
252 		uint64_t ret = curmax - len;
253 
254 		/* We only take memory from free RAM */
255 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
256 			continue;
257 
258 		/* Out of bounds for max_addr */
259 		if ((ret + len) > max_addr)
260 			continue;
261 
262 		/* Out of bounds for upper map limit */
263 		if ((ret + len) > desc_end)
264 			continue;
265 
266 		/* Out of bounds for lower map limit */
267 		if (ret < desc->physical_start)
268 			continue;
269 
270 		/* Return the highest address in this map within bounds */
271 		return ret;
272 	}
273 
274 	return 0;
275 }
276 
277 /*
278  * Allocate memory pages.
279  *
280  * @type		type of allocation to be performed
281  * @memory_type		usage type of the allocated memory
282  * @pages		number of pages to be allocated
283  * @memory		allocated memory
284  * @return		status code
285  */
286 efi_status_t efi_allocate_pages(int type, int memory_type,
287 				efi_uintn_t pages, uint64_t *memory)
288 {
289 	u64 len = pages << EFI_PAGE_SHIFT;
290 	efi_status_t r = EFI_SUCCESS;
291 	uint64_t addr;
292 
293 	switch (type) {
294 	case EFI_ALLOCATE_ANY_PAGES:
295 		/* Any page */
296 		addr = efi_find_free_memory(len, gd->start_addr_sp);
297 		if (!addr) {
298 			r = EFI_NOT_FOUND;
299 			break;
300 		}
301 		break;
302 	case EFI_ALLOCATE_MAX_ADDRESS:
303 		/* Max address */
304 		addr = efi_find_free_memory(len, *memory);
305 		if (!addr) {
306 			r = EFI_NOT_FOUND;
307 			break;
308 		}
309 		break;
310 	case EFI_ALLOCATE_ADDRESS:
311 		/* Exact address, reserve it. The addr is already in *memory. */
312 		addr = *memory;
313 		break;
314 	default:
315 		/* UEFI doesn't specify other allocation types */
316 		r = EFI_INVALID_PARAMETER;
317 		break;
318 	}
319 
320 	if (r == EFI_SUCCESS) {
321 		uint64_t ret;
322 
323 		/* Reserve that map in our memory maps */
324 		ret = efi_add_memory_map(addr, pages, memory_type, true);
325 		if (ret == addr) {
326 			*memory = addr;
327 		} else {
328 			/* Map would overlap, bail out */
329 			r = EFI_OUT_OF_RESOURCES;
330 		}
331 	}
332 
333 	return r;
334 }
335 
336 void *efi_alloc(uint64_t len, int memory_type)
337 {
338 	uint64_t ret = 0;
339 	uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
340 	efi_status_t r;
341 
342 	r = efi_allocate_pages(0, memory_type, pages, &ret);
343 	if (r == EFI_SUCCESS)
344 		return (void*)(uintptr_t)ret;
345 
346 	return NULL;
347 }
348 
349 /*
350  * Free memory pages.
351  *
352  * @memory	start of the memory area to be freed
353  * @pages	number of pages to be freed
354  * @return	status code
355  */
356 efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
357 {
358 	uint64_t r = 0;
359 
360 	r = efi_add_memory_map(memory, pages, EFI_CONVENTIONAL_MEMORY, false);
361 	/* Merging of adjacent free regions is missing */
362 
363 	if (r == memory)
364 		return EFI_SUCCESS;
365 
366 	return EFI_NOT_FOUND;
367 }
368 
369 /*
370  * Allocate memory from pool.
371  *
372  * @pool_type	type of the pool from which memory is to be allocated
373  * @size	number of bytes to be allocated
374  * @buffer	allocated memory
375  * @return	status code
376  */
377 efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void **buffer)
378 {
379 	efi_status_t r;
380 	efi_physical_addr_t t;
381 	u64 num_pages = (size + sizeof(struct efi_pool_allocation) +
382 			 EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
383 
384 	if (size == 0) {
385 		*buffer = NULL;
386 		return EFI_SUCCESS;
387 	}
388 
389 	r = efi_allocate_pages(0, pool_type, num_pages, &t);
390 
391 	if (r == EFI_SUCCESS) {
392 		struct efi_pool_allocation *alloc = (void *)(uintptr_t)t;
393 		alloc->num_pages = num_pages;
394 		*buffer = alloc->data;
395 	}
396 
397 	return r;
398 }
399 
400 /*
401  * Free memory from pool.
402  *
403  * @buffer	start of memory to be freed
404  * @return	status code
405  */
406 efi_status_t efi_free_pool(void *buffer)
407 {
408 	efi_status_t r;
409 	struct efi_pool_allocation *alloc;
410 
411 	if (buffer == NULL)
412 		return EFI_INVALID_PARAMETER;
413 
414 	alloc = container_of(buffer, struct efi_pool_allocation, data);
415 	/* Sanity check, was the supplied address returned by allocate_pool */
416 	assert(((uintptr_t)alloc & EFI_PAGE_MASK) == 0);
417 
418 	r = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
419 
420 	return r;
421 }
422 
423 /*
424  * Get map describing memory usage.
425  *
426  * @memory_map_size	on entry the size, in bytes, of the memory map buffer,
427  *			on exit the size of the copied memory map
428  * @memory_map		buffer to which the memory map is written
429  * @map_key		key for the memory map
430  * @descriptor_size	size of an individual memory descriptor
431  * @descriptor_version	version number of the memory descriptor structure
432  * @return		status code
433  */
434 efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
435 				struct efi_mem_desc *memory_map,
436 				efi_uintn_t *map_key,
437 				efi_uintn_t *descriptor_size,
438 				uint32_t *descriptor_version)
439 {
440 	efi_uintn_t map_size = 0;
441 	int map_entries = 0;
442 	struct list_head *lhandle;
443 	efi_uintn_t provided_map_size = *memory_map_size;
444 
445 	list_for_each(lhandle, &efi_mem)
446 		map_entries++;
447 
448 	map_size = map_entries * sizeof(struct efi_mem_desc);
449 
450 	*memory_map_size = map_size;
451 
452 	if (provided_map_size < map_size)
453 		return EFI_BUFFER_TOO_SMALL;
454 
455 	if (descriptor_size)
456 		*descriptor_size = sizeof(struct efi_mem_desc);
457 
458 	if (descriptor_version)
459 		*descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
460 
461 	/* Copy list into array */
462 	if (memory_map) {
463 		/* Return the list in ascending order */
464 		memory_map = &memory_map[map_entries - 1];
465 		list_for_each(lhandle, &efi_mem) {
466 			struct efi_mem_list *lmem;
467 
468 			lmem = list_entry(lhandle, struct efi_mem_list, link);
469 			*memory_map = lmem->desc;
470 			memory_map--;
471 		}
472 	}
473 
474 	*map_key = 0;
475 
476 	return EFI_SUCCESS;
477 }
478 
479 __weak void efi_add_known_memory(void)
480 {
481 	int i;
482 
483 	/* Add RAM */
484 	for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
485 		u64 ram_start = gd->bd->bi_dram[i].start;
486 		u64 ram_size = gd->bd->bi_dram[i].size;
487 		u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
488 		u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
489 
490 		efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY,
491 				   false);
492 	}
493 }
494 
495 int efi_memory_init(void)
496 {
497 	unsigned long runtime_start, runtime_end, runtime_pages;
498 	unsigned long uboot_start, uboot_pages;
499 	unsigned long uboot_stack_size = 16 * 1024 * 1024;
500 
501 	efi_add_known_memory();
502 
503 	/* Add U-Boot */
504 	uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK;
505 	uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT;
506 	efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false);
507 
508 	/* Add Runtime Services */
509 	runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK;
510 	runtime_end = (ulong)&__efi_runtime_stop;
511 	runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
512 	runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
513 	efi_add_memory_map(runtime_start, runtime_pages,
514 			   EFI_RUNTIME_SERVICES_CODE, false);
515 
516 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
517 	/* Request a 32bit 64MB bounce buffer region */
518 	uint64_t efi_bounce_buffer_addr = 0xffffffff;
519 
520 	if (efi_allocate_pages(1, EFI_LOADER_DATA,
521 			       (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
522 			       &efi_bounce_buffer_addr) != EFI_SUCCESS)
523 		return -1;
524 
525 	efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
526 #endif
527 
528 	return 0;
529 }
530