xref: /openbmc/u-boot/lib/efi_loader/efi_memory.c (revision 73e4ba98)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  EFI application memory management
4  *
5  *  Copyright (c) 2016 Alexander Graf
6  */
7 
8 #include <common.h>
9 #include <efi_loader.h>
10 #include <inttypes.h>
11 #include <malloc.h>
12 #include <mapmem.h>
13 #include <watchdog.h>
14 #include <linux/list_sort.h>
15 
16 DECLARE_GLOBAL_DATA_PTR;
17 
18 efi_uintn_t efi_memory_map_key;
19 
20 struct efi_mem_list {
21 	struct list_head link;
22 	struct efi_mem_desc desc;
23 };
24 
25 #define EFI_CARVE_NO_OVERLAP		-1
26 #define EFI_CARVE_LOOP_AGAIN		-2
27 #define EFI_CARVE_OVERLAPS_NONRAM	-3
28 
29 /* This list contains all memory map items */
30 LIST_HEAD(efi_mem);
31 
32 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
33 void *efi_bounce_buffer;
34 #endif
35 
36 /*
37  * U-Boot services each EFI AllocatePool request as a separate
38  * (multiple) page allocation.  We have to track the number of pages
39  * to be able to free the correct amount later.
40  * EFI requires 8 byte alignment for pool allocations, so we can
41  * prepend each allocation with an 64 bit header tracking the
42  * allocation size, and hand out the remainder to the caller.
43  */
44 struct efi_pool_allocation {
45 	u64 num_pages;
46 	char data[] __aligned(ARCH_DMA_MINALIGN);
47 };
48 
49 /*
50  * Sorts the memory list from highest address to lowest address
51  *
52  * When allocating memory we should always start from the highest
53  * address chunk, so sort the memory list such that the first list
54  * iterator gets the highest address and goes lower from there.
55  */
56 static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
57 {
58 	struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
59 	struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
60 
61 	if (mema->desc.physical_start == memb->desc.physical_start)
62 		return 0;
63 	else if (mema->desc.physical_start < memb->desc.physical_start)
64 		return 1;
65 	else
66 		return -1;
67 }
68 
69 static void efi_mem_sort(void)
70 {
71 	list_sort(NULL, &efi_mem, efi_mem_cmp);
72 }
73 
74 /** efi_mem_carve_out - unmap memory region
75  *
76  * @map:		memory map
77  * @carve_desc:		memory region to unmap
78  * @overlap_only_ram:	the carved out region may only overlap RAM
79  * Return Value:	the number of overlapping pages which have been
80  *			removed from the map,
81  *			EFI_CARVE_NO_OVERLAP, if the regions don't overlap,
82  *			EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap,
83  *			and the map contains anything but free ram
84  *			(only when overlap_only_ram is true),
85  *			EFI_CARVE_LOOP_AGAIN, if the mapping list should be
86  *			traversed again, as it has been altered.
87  *
88  * Unmaps all memory occupied by the carve_desc region from the list entry
89  * pointed to by map.
90  *
91  * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
92  * to re-add the already carved out pages to the mapping.
93  */
94 static s64 efi_mem_carve_out(struct efi_mem_list *map,
95 			     struct efi_mem_desc *carve_desc,
96 			     bool overlap_only_ram)
97 {
98 	struct efi_mem_list *newmap;
99 	struct efi_mem_desc *map_desc = &map->desc;
100 	uint64_t map_start = map_desc->physical_start;
101 	uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
102 	uint64_t carve_start = carve_desc->physical_start;
103 	uint64_t carve_end = carve_start +
104 			     (carve_desc->num_pages << EFI_PAGE_SHIFT);
105 
106 	/* check whether we're overlapping */
107 	if ((carve_end <= map_start) || (carve_start >= map_end))
108 		return EFI_CARVE_NO_OVERLAP;
109 
110 	/* We're overlapping with non-RAM, warn the caller if desired */
111 	if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
112 		return EFI_CARVE_OVERLAPS_NONRAM;
113 
114 	/* Sanitize carve_start and carve_end to lie within our bounds */
115 	carve_start = max(carve_start, map_start);
116 	carve_end = min(carve_end, map_end);
117 
118 	/* Carving at the beginning of our map? Just move it! */
119 	if (carve_start == map_start) {
120 		if (map_end == carve_end) {
121 			/* Full overlap, just remove map */
122 			list_del(&map->link);
123 			free(map);
124 		} else {
125 			map->desc.physical_start = carve_end;
126 			map->desc.num_pages = (map_end - carve_end)
127 					      >> EFI_PAGE_SHIFT;
128 		}
129 
130 		return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
131 	}
132 
133 	/*
134 	 * Overlapping maps, just split the list map at carve_start,
135 	 * it will get moved or removed in the next iteration.
136 	 *
137 	 * [ map_desc |__carve_start__| newmap ]
138 	 */
139 
140 	/* Create a new map from [ carve_start ... map_end ] */
141 	newmap = calloc(1, sizeof(*newmap));
142 	newmap->desc = map->desc;
143 	newmap->desc.physical_start = carve_start;
144 	newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
145 	/* Insert before current entry (descending address order) */
146 	list_add_tail(&newmap->link, &map->link);
147 
148 	/* Shrink the map to [ map_start ... carve_start ] */
149 	map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
150 
151 	return EFI_CARVE_LOOP_AGAIN;
152 }
153 
154 uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type,
155 			    bool overlap_only_ram)
156 {
157 	struct list_head *lhandle;
158 	struct efi_mem_list *newlist;
159 	bool carve_again;
160 	uint64_t carved_pages = 0;
161 
162 	debug("%s: 0x%" PRIx64 " 0x%" PRIx64 " %d %s\n", __func__,
163 	      start, pages, memory_type, overlap_only_ram ? "yes" : "no");
164 
165 	if (memory_type >= EFI_MAX_MEMORY_TYPE)
166 		return EFI_INVALID_PARAMETER;
167 
168 	if (!pages)
169 		return start;
170 
171 	++efi_memory_map_key;
172 	newlist = calloc(1, sizeof(*newlist));
173 	newlist->desc.type = memory_type;
174 	newlist->desc.physical_start = start;
175 	newlist->desc.virtual_start = start;
176 	newlist->desc.num_pages = pages;
177 
178 	switch (memory_type) {
179 	case EFI_RUNTIME_SERVICES_CODE:
180 	case EFI_RUNTIME_SERVICES_DATA:
181 		newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME;
182 		break;
183 	case EFI_MMAP_IO:
184 		newlist->desc.attribute = EFI_MEMORY_RUNTIME;
185 		break;
186 	default:
187 		newlist->desc.attribute = EFI_MEMORY_WB;
188 		break;
189 	}
190 
191 	/* Add our new map */
192 	do {
193 		carve_again = false;
194 		list_for_each(lhandle, &efi_mem) {
195 			struct efi_mem_list *lmem;
196 			s64 r;
197 
198 			lmem = list_entry(lhandle, struct efi_mem_list, link);
199 			r = efi_mem_carve_out(lmem, &newlist->desc,
200 					      overlap_only_ram);
201 			switch (r) {
202 			case EFI_CARVE_OVERLAPS_NONRAM:
203 				/*
204 				 * The user requested to only have RAM overlaps,
205 				 * but we hit a non-RAM region. Error out.
206 				 */
207 				return 0;
208 			case EFI_CARVE_NO_OVERLAP:
209 				/* Just ignore this list entry */
210 				break;
211 			case EFI_CARVE_LOOP_AGAIN:
212 				/*
213 				 * We split an entry, but need to loop through
214 				 * the list again to actually carve it.
215 				 */
216 				carve_again = true;
217 				break;
218 			default:
219 				/* We carved a number of pages */
220 				carved_pages += r;
221 				carve_again = true;
222 				break;
223 			}
224 
225 			if (carve_again) {
226 				/* The list changed, we need to start over */
227 				break;
228 			}
229 		}
230 	} while (carve_again);
231 
232 	if (overlap_only_ram && (carved_pages != pages)) {
233 		/*
234 		 * The payload wanted to have RAM overlaps, but we overlapped
235 		 * with an unallocated region. Error out.
236 		 */
237 		return 0;
238 	}
239 
240 	/* Add our new map */
241         list_add_tail(&newlist->link, &efi_mem);
242 
243 	/* And make sure memory is listed in descending order */
244 	efi_mem_sort();
245 
246 	return start;
247 }
248 
249 static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
250 {
251 	struct list_head *lhandle;
252 
253 	list_for_each(lhandle, &efi_mem) {
254 		struct efi_mem_list *lmem = list_entry(lhandle,
255 			struct efi_mem_list, link);
256 		struct efi_mem_desc *desc = &lmem->desc;
257 		uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
258 		uint64_t desc_end = desc->physical_start + desc_len;
259 		uint64_t curmax = min(max_addr, desc_end);
260 		uint64_t ret = curmax - len;
261 
262 		/* We only take memory from free RAM */
263 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
264 			continue;
265 
266 		/* Out of bounds for max_addr */
267 		if ((ret + len) > max_addr)
268 			continue;
269 
270 		/* Out of bounds for upper map limit */
271 		if ((ret + len) > desc_end)
272 			continue;
273 
274 		/* Out of bounds for lower map limit */
275 		if (ret < desc->physical_start)
276 			continue;
277 
278 		/* Return the highest address in this map within bounds */
279 		return ret;
280 	}
281 
282 	return 0;
283 }
284 
285 /*
286  * Allocate memory pages.
287  *
288  * @type		type of allocation to be performed
289  * @memory_type		usage type of the allocated memory
290  * @pages		number of pages to be allocated
291  * @memory		allocated memory
292  * @return		status code
293  */
294 efi_status_t efi_allocate_pages(int type, int memory_type,
295 				efi_uintn_t pages, uint64_t *memory)
296 {
297 	u64 len = pages << EFI_PAGE_SHIFT;
298 	efi_status_t r = EFI_SUCCESS;
299 	uint64_t addr;
300 
301 	if (!memory)
302 		return EFI_INVALID_PARAMETER;
303 
304 	switch (type) {
305 	case EFI_ALLOCATE_ANY_PAGES:
306 		/* Any page */
307 		addr = efi_find_free_memory(len, gd->start_addr_sp);
308 		if (!addr) {
309 			r = EFI_NOT_FOUND;
310 			break;
311 		}
312 		break;
313 	case EFI_ALLOCATE_MAX_ADDRESS:
314 		/* Max address */
315 		addr = efi_find_free_memory(len, *memory);
316 		if (!addr) {
317 			r = EFI_NOT_FOUND;
318 			break;
319 		}
320 		break;
321 	case EFI_ALLOCATE_ADDRESS:
322 		/* Exact address, reserve it. The addr is already in *memory. */
323 		addr = *memory;
324 		break;
325 	default:
326 		/* UEFI doesn't specify other allocation types */
327 		r = EFI_INVALID_PARAMETER;
328 		break;
329 	}
330 
331 	if (r == EFI_SUCCESS) {
332 		uint64_t ret;
333 
334 		/* Reserve that map in our memory maps */
335 		ret = efi_add_memory_map(addr, pages, memory_type, true);
336 		if (ret == addr) {
337 			*memory = (uintptr_t)map_sysmem(addr, len);
338 		} else {
339 			/* Map would overlap, bail out */
340 			r = EFI_OUT_OF_RESOURCES;
341 		}
342 	}
343 
344 	return r;
345 }
346 
347 void *efi_alloc(uint64_t len, int memory_type)
348 {
349 	uint64_t ret = 0;
350 	uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
351 	efi_status_t r;
352 
353 	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type, pages,
354 			       &ret);
355 	if (r == EFI_SUCCESS)
356 		return (void*)(uintptr_t)ret;
357 
358 	return NULL;
359 }
360 
361 /*
362  * Free memory pages.
363  *
364  * @memory	start of the memory area to be freed
365  * @pages	number of pages to be freed
366  * @return	status code
367  */
368 efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
369 {
370 	uint64_t r = 0;
371 	uint64_t addr = map_to_sysmem((void *)(uintptr_t)memory);
372 
373 	r = efi_add_memory_map(addr, pages, EFI_CONVENTIONAL_MEMORY, false);
374 	/* Merging of adjacent free regions is missing */
375 
376 	if (r == addr)
377 		return EFI_SUCCESS;
378 
379 	return EFI_NOT_FOUND;
380 }
381 
382 /*
383  * Allocate memory from pool.
384  *
385  * @pool_type	type of the pool from which memory is to be allocated
386  * @size	number of bytes to be allocated
387  * @buffer	allocated memory
388  * @return	status code
389  */
390 efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void **buffer)
391 {
392 	efi_status_t r;
393 	struct efi_pool_allocation *alloc;
394 	u64 num_pages = (size + sizeof(struct efi_pool_allocation) +
395 			 EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
396 
397 	if (!buffer)
398 		return EFI_INVALID_PARAMETER;
399 
400 	if (size == 0) {
401 		*buffer = NULL;
402 		return EFI_SUCCESS;
403 	}
404 
405 	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages,
406 			       (uint64_t *)&alloc);
407 
408 	if (r == EFI_SUCCESS) {
409 		alloc->num_pages = num_pages;
410 		*buffer = alloc->data;
411 	}
412 
413 	return r;
414 }
415 
416 /*
417  * Free memory from pool.
418  *
419  * @buffer	start of memory to be freed
420  * @return	status code
421  */
422 efi_status_t efi_free_pool(void *buffer)
423 {
424 	efi_status_t r;
425 	struct efi_pool_allocation *alloc;
426 
427 	if (buffer == NULL)
428 		return EFI_INVALID_PARAMETER;
429 
430 	alloc = container_of(buffer, struct efi_pool_allocation, data);
431 	/* Sanity check, was the supplied address returned by allocate_pool */
432 	assert(((uintptr_t)alloc & EFI_PAGE_MASK) == 0);
433 
434 	r = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
435 
436 	return r;
437 }
438 
439 /*
440  * Get map describing memory usage.
441  *
442  * @memory_map_size	on entry the size, in bytes, of the memory map buffer,
443  *			on exit the size of the copied memory map
444  * @memory_map		buffer to which the memory map is written
445  * @map_key		key for the memory map
446  * @descriptor_size	size of an individual memory descriptor
447  * @descriptor_version	version number of the memory descriptor structure
448  * @return		status code
449  */
450 efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
451 				struct efi_mem_desc *memory_map,
452 				efi_uintn_t *map_key,
453 				efi_uintn_t *descriptor_size,
454 				uint32_t *descriptor_version)
455 {
456 	efi_uintn_t map_size = 0;
457 	int map_entries = 0;
458 	struct list_head *lhandle;
459 	efi_uintn_t provided_map_size;
460 
461 	if (!memory_map_size)
462 		return EFI_INVALID_PARAMETER;
463 
464 	provided_map_size = *memory_map_size;
465 
466 	list_for_each(lhandle, &efi_mem)
467 		map_entries++;
468 
469 	map_size = map_entries * sizeof(struct efi_mem_desc);
470 
471 	*memory_map_size = map_size;
472 
473 	if (provided_map_size < map_size)
474 		return EFI_BUFFER_TOO_SMALL;
475 
476 	if (!memory_map)
477 		return EFI_INVALID_PARAMETER;
478 
479 	if (descriptor_size)
480 		*descriptor_size = sizeof(struct efi_mem_desc);
481 
482 	if (descriptor_version)
483 		*descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
484 
485 	/* Copy list into array */
486 	/* Return the list in ascending order */
487 	memory_map = &memory_map[map_entries - 1];
488 	list_for_each(lhandle, &efi_mem) {
489 		struct efi_mem_list *lmem;
490 
491 		lmem = list_entry(lhandle, struct efi_mem_list, link);
492 		*memory_map = lmem->desc;
493 		memory_map--;
494 	}
495 
496 	if (map_key)
497 		*map_key = efi_memory_map_key;
498 
499 	return EFI_SUCCESS;
500 }
501 
502 __weak void efi_add_known_memory(void)
503 {
504 	int i;
505 
506 	/* Add RAM */
507 	for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
508 		u64 ram_start = gd->bd->bi_dram[i].start;
509 		u64 ram_size = gd->bd->bi_dram[i].size;
510 		u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
511 		u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
512 
513 		efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY,
514 				   false);
515 	}
516 }
517 
518 /* Add memory regions for U-Boot's memory and for the runtime services code */
519 static void add_u_boot_and_runtime(void)
520 {
521 	unsigned long runtime_start, runtime_end, runtime_pages;
522 	unsigned long uboot_start, uboot_pages;
523 	unsigned long uboot_stack_size = 16 * 1024 * 1024;
524 
525 	/* Add U-Boot */
526 	uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK;
527 	uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT;
528 	efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false);
529 
530 	/* Add Runtime Services */
531 	runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK;
532 	runtime_end = (ulong)&__efi_runtime_stop;
533 	runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
534 	runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
535 	efi_add_memory_map(runtime_start, runtime_pages,
536 			   EFI_RUNTIME_SERVICES_CODE, false);
537 }
538 
539 int efi_memory_init(void)
540 {
541 	efi_add_known_memory();
542 
543 	if (!IS_ENABLED(CONFIG_SANDBOX))
544 		add_u_boot_and_runtime();
545 
546 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
547 	/* Request a 32bit 64MB bounce buffer region */
548 	uint64_t efi_bounce_buffer_addr = 0xffffffff;
549 
550 	if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_LOADER_DATA,
551 			       (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
552 			       &efi_bounce_buffer_addr) != EFI_SUCCESS)
553 		return -1;
554 
555 	efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
556 #endif
557 
558 	return 0;
559 }
560