xref: /openbmc/u-boot/lib/efi_loader/efi_memory.c (revision 725e09b8)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  EFI application memory management
4  *
5  *  Copyright (c) 2016 Alexander Graf
6  */
7 
8 #include <common.h>
9 #include <efi_loader.h>
10 #include <inttypes.h>
11 #include <malloc.h>
12 #include <mapmem.h>
13 #include <watchdog.h>
14 #include <linux/list_sort.h>
15 
16 DECLARE_GLOBAL_DATA_PTR;
17 
18 efi_uintn_t efi_memory_map_key;
19 
20 struct efi_mem_list {
21 	struct list_head link;
22 	struct efi_mem_desc desc;
23 };
24 
25 #define EFI_CARVE_NO_OVERLAP		-1
26 #define EFI_CARVE_LOOP_AGAIN		-2
27 #define EFI_CARVE_OVERLAPS_NONRAM	-3
28 
29 /* This list contains all memory map items */
30 LIST_HEAD(efi_mem);
31 
32 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
33 void *efi_bounce_buffer;
34 #endif
35 
36 /*
37  * U-Boot services each EFI AllocatePool request as a separate
38  * (multiple) page allocation.  We have to track the number of pages
39  * to be able to free the correct amount later.
40  * EFI requires 8 byte alignment for pool allocations, so we can
41  * prepend each allocation with an 64 bit header tracking the
42  * allocation size, and hand out the remainder to the caller.
43  */
44 struct efi_pool_allocation {
45 	u64 num_pages;
46 	char data[] __aligned(ARCH_DMA_MINALIGN);
47 };
48 
49 /*
50  * Sorts the memory list from highest address to lowest address
51  *
52  * When allocating memory we should always start from the highest
53  * address chunk, so sort the memory list such that the first list
54  * iterator gets the highest address and goes lower from there.
55  */
56 static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
57 {
58 	struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
59 	struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
60 
61 	if (mema->desc.physical_start == memb->desc.physical_start)
62 		return 0;
63 	else if (mema->desc.physical_start < memb->desc.physical_start)
64 		return 1;
65 	else
66 		return -1;
67 }
68 
69 static void efi_mem_sort(void)
70 {
71 	list_sort(NULL, &efi_mem, efi_mem_cmp);
72 }
73 
74 /** efi_mem_carve_out - unmap memory region
75  *
76  * @map:		memory map
77  * @carve_desc:		memory region to unmap
78  * @overlap_only_ram:	the carved out region may only overlap RAM
79  * Return Value:	the number of overlapping pages which have been
80  *			removed from the map,
81  *			EFI_CARVE_NO_OVERLAP, if the regions don't overlap,
82  *			EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap,
83  *			and the map contains anything but free ram
84  *			(only when overlap_only_ram is true),
85  *			EFI_CARVE_LOOP_AGAIN, if the mapping list should be
86  *			traversed again, as it has been altered.
87  *
88  * Unmaps all memory occupied by the carve_desc region from the list entry
89  * pointed to by map.
90  *
91  * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
92  * to re-add the already carved out pages to the mapping.
93  */
94 static s64 efi_mem_carve_out(struct efi_mem_list *map,
95 			     struct efi_mem_desc *carve_desc,
96 			     bool overlap_only_ram)
97 {
98 	struct efi_mem_list *newmap;
99 	struct efi_mem_desc *map_desc = &map->desc;
100 	uint64_t map_start = map_desc->physical_start;
101 	uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
102 	uint64_t carve_start = carve_desc->physical_start;
103 	uint64_t carve_end = carve_start +
104 			     (carve_desc->num_pages << EFI_PAGE_SHIFT);
105 
106 	/* check whether we're overlapping */
107 	if ((carve_end <= map_start) || (carve_start >= map_end))
108 		return EFI_CARVE_NO_OVERLAP;
109 
110 	/* We're overlapping with non-RAM, warn the caller if desired */
111 	if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
112 		return EFI_CARVE_OVERLAPS_NONRAM;
113 
114 	/* Sanitize carve_start and carve_end to lie within our bounds */
115 	carve_start = max(carve_start, map_start);
116 	carve_end = min(carve_end, map_end);
117 
118 	/* Carving at the beginning of our map? Just move it! */
119 	if (carve_start == map_start) {
120 		if (map_end == carve_end) {
121 			/* Full overlap, just remove map */
122 			list_del(&map->link);
123 			free(map);
124 		} else {
125 			map->desc.physical_start = carve_end;
126 			map->desc.num_pages = (map_end - carve_end)
127 					      >> EFI_PAGE_SHIFT;
128 		}
129 
130 		return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
131 	}
132 
133 	/*
134 	 * Overlapping maps, just split the list map at carve_start,
135 	 * it will get moved or removed in the next iteration.
136 	 *
137 	 * [ map_desc |__carve_start__| newmap ]
138 	 */
139 
140 	/* Create a new map from [ carve_start ... map_end ] */
141 	newmap = calloc(1, sizeof(*newmap));
142 	newmap->desc = map->desc;
143 	newmap->desc.physical_start = carve_start;
144 	newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
145 	/* Insert before current entry (descending address order) */
146 	list_add_tail(&newmap->link, &map->link);
147 
148 	/* Shrink the map to [ map_start ... carve_start ] */
149 	map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
150 
151 	return EFI_CARVE_LOOP_AGAIN;
152 }
153 
154 uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type,
155 			    bool overlap_only_ram)
156 {
157 	struct list_head *lhandle;
158 	struct efi_mem_list *newlist;
159 	bool carve_again;
160 	uint64_t carved_pages = 0;
161 
162 	debug("%s: 0x%" PRIx64 " 0x%" PRIx64 " %d %s\n", __func__,
163 	      start, pages, memory_type, overlap_only_ram ? "yes" : "no");
164 
165 	if (memory_type >= EFI_MAX_MEMORY_TYPE)
166 		return EFI_INVALID_PARAMETER;
167 
168 	if (!pages)
169 		return start;
170 
171 	++efi_memory_map_key;
172 	newlist = calloc(1, sizeof(*newlist));
173 	newlist->desc.type = memory_type;
174 	newlist->desc.physical_start = start;
175 	newlist->desc.virtual_start = start;
176 	newlist->desc.num_pages = pages;
177 
178 	switch (memory_type) {
179 	case EFI_RUNTIME_SERVICES_CODE:
180 	case EFI_RUNTIME_SERVICES_DATA:
181 		newlist->desc.attribute = (1 << EFI_MEMORY_WB_SHIFT) |
182 					  (1ULL << EFI_MEMORY_RUNTIME_SHIFT);
183 		break;
184 	case EFI_MMAP_IO:
185 		newlist->desc.attribute = 1ULL << EFI_MEMORY_RUNTIME_SHIFT;
186 		break;
187 	default:
188 		newlist->desc.attribute = 1 << EFI_MEMORY_WB_SHIFT;
189 		break;
190 	}
191 
192 	/* Add our new map */
193 	do {
194 		carve_again = false;
195 		list_for_each(lhandle, &efi_mem) {
196 			struct efi_mem_list *lmem;
197 			s64 r;
198 
199 			lmem = list_entry(lhandle, struct efi_mem_list, link);
200 			r = efi_mem_carve_out(lmem, &newlist->desc,
201 					      overlap_only_ram);
202 			switch (r) {
203 			case EFI_CARVE_OVERLAPS_NONRAM:
204 				/*
205 				 * The user requested to only have RAM overlaps,
206 				 * but we hit a non-RAM region. Error out.
207 				 */
208 				return 0;
209 			case EFI_CARVE_NO_OVERLAP:
210 				/* Just ignore this list entry */
211 				break;
212 			case EFI_CARVE_LOOP_AGAIN:
213 				/*
214 				 * We split an entry, but need to loop through
215 				 * the list again to actually carve it.
216 				 */
217 				carve_again = true;
218 				break;
219 			default:
220 				/* We carved a number of pages */
221 				carved_pages += r;
222 				carve_again = true;
223 				break;
224 			}
225 
226 			if (carve_again) {
227 				/* The list changed, we need to start over */
228 				break;
229 			}
230 		}
231 	} while (carve_again);
232 
233 	if (overlap_only_ram && (carved_pages != pages)) {
234 		/*
235 		 * The payload wanted to have RAM overlaps, but we overlapped
236 		 * with an unallocated region. Error out.
237 		 */
238 		return 0;
239 	}
240 
241 	/* Add our new map */
242         list_add_tail(&newlist->link, &efi_mem);
243 
244 	/* And make sure memory is listed in descending order */
245 	efi_mem_sort();
246 
247 	return start;
248 }
249 
250 static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
251 {
252 	struct list_head *lhandle;
253 
254 	list_for_each(lhandle, &efi_mem) {
255 		struct efi_mem_list *lmem = list_entry(lhandle,
256 			struct efi_mem_list, link);
257 		struct efi_mem_desc *desc = &lmem->desc;
258 		uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
259 		uint64_t desc_end = desc->physical_start + desc_len;
260 		uint64_t curmax = min(max_addr, desc_end);
261 		uint64_t ret = curmax - len;
262 
263 		/* We only take memory from free RAM */
264 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
265 			continue;
266 
267 		/* Out of bounds for max_addr */
268 		if ((ret + len) > max_addr)
269 			continue;
270 
271 		/* Out of bounds for upper map limit */
272 		if ((ret + len) > desc_end)
273 			continue;
274 
275 		/* Out of bounds for lower map limit */
276 		if (ret < desc->physical_start)
277 			continue;
278 
279 		/* Return the highest address in this map within bounds */
280 		return ret;
281 	}
282 
283 	return 0;
284 }
285 
286 /*
287  * Allocate memory pages.
288  *
289  * @type		type of allocation to be performed
290  * @memory_type		usage type of the allocated memory
291  * @pages		number of pages to be allocated
292  * @memory		allocated memory
293  * @return		status code
294  */
295 efi_status_t efi_allocate_pages(int type, int memory_type,
296 				efi_uintn_t pages, uint64_t *memory)
297 {
298 	u64 len = pages << EFI_PAGE_SHIFT;
299 	efi_status_t r = EFI_SUCCESS;
300 	uint64_t addr;
301 
302 	if (!memory)
303 		return EFI_INVALID_PARAMETER;
304 
305 	switch (type) {
306 	case EFI_ALLOCATE_ANY_PAGES:
307 		/* Any page */
308 		addr = efi_find_free_memory(len, -1ULL);
309 		if (!addr) {
310 			r = EFI_NOT_FOUND;
311 			break;
312 		}
313 		break;
314 	case EFI_ALLOCATE_MAX_ADDRESS:
315 		/* Max address */
316 		addr = efi_find_free_memory(len, *memory);
317 		if (!addr) {
318 			r = EFI_NOT_FOUND;
319 			break;
320 		}
321 		break;
322 	case EFI_ALLOCATE_ADDRESS:
323 		/* Exact address, reserve it. The addr is already in *memory. */
324 		addr = *memory;
325 		break;
326 	default:
327 		/* UEFI doesn't specify other allocation types */
328 		r = EFI_INVALID_PARAMETER;
329 		break;
330 	}
331 
332 	if (r == EFI_SUCCESS) {
333 		uint64_t ret;
334 
335 		/* Reserve that map in our memory maps */
336 		ret = efi_add_memory_map(addr, pages, memory_type, true);
337 		if (ret == addr) {
338 			*memory = (uintptr_t)map_sysmem(addr, len);
339 		} else {
340 			/* Map would overlap, bail out */
341 			r = EFI_OUT_OF_RESOURCES;
342 		}
343 	}
344 
345 	return r;
346 }
347 
348 void *efi_alloc(uint64_t len, int memory_type)
349 {
350 	uint64_t ret = 0;
351 	uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
352 	efi_status_t r;
353 
354 	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type, pages,
355 			       &ret);
356 	if (r == EFI_SUCCESS)
357 		return (void*)(uintptr_t)ret;
358 
359 	return NULL;
360 }
361 
362 /*
363  * Free memory pages.
364  *
365  * @memory	start of the memory area to be freed
366  * @pages	number of pages to be freed
367  * @return	status code
368  */
369 efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
370 {
371 	uint64_t r = 0;
372 	uint64_t addr = map_to_sysmem((void *)(uintptr_t)memory);
373 
374 	r = efi_add_memory_map(addr, pages, EFI_CONVENTIONAL_MEMORY, false);
375 	/* Merging of adjacent free regions is missing */
376 
377 	if (r == addr)
378 		return EFI_SUCCESS;
379 
380 	return EFI_NOT_FOUND;
381 }
382 
383 /*
384  * Allocate memory from pool.
385  *
386  * @pool_type	type of the pool from which memory is to be allocated
387  * @size	number of bytes to be allocated
388  * @buffer	allocated memory
389  * @return	status code
390  */
391 efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void **buffer)
392 {
393 	efi_status_t r;
394 	struct efi_pool_allocation *alloc;
395 	u64 num_pages = (size + sizeof(struct efi_pool_allocation) +
396 			 EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
397 
398 	if (!buffer)
399 		return EFI_INVALID_PARAMETER;
400 
401 	if (size == 0) {
402 		*buffer = NULL;
403 		return EFI_SUCCESS;
404 	}
405 
406 	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages,
407 			       (uint64_t *)&alloc);
408 
409 	if (r == EFI_SUCCESS) {
410 		alloc->num_pages = num_pages;
411 		*buffer = alloc->data;
412 	}
413 
414 	return r;
415 }
416 
417 /*
418  * Free memory from pool.
419  *
420  * @buffer	start of memory to be freed
421  * @return	status code
422  */
423 efi_status_t efi_free_pool(void *buffer)
424 {
425 	efi_status_t r;
426 	struct efi_pool_allocation *alloc;
427 
428 	if (buffer == NULL)
429 		return EFI_INVALID_PARAMETER;
430 
431 	alloc = container_of(buffer, struct efi_pool_allocation, data);
432 	/* Sanity check, was the supplied address returned by allocate_pool */
433 	assert(((uintptr_t)alloc & EFI_PAGE_MASK) == 0);
434 
435 	r = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
436 
437 	return r;
438 }
439 
440 /*
441  * Get map describing memory usage.
442  *
443  * @memory_map_size	on entry the size, in bytes, of the memory map buffer,
444  *			on exit the size of the copied memory map
445  * @memory_map		buffer to which the memory map is written
446  * @map_key		key for the memory map
447  * @descriptor_size	size of an individual memory descriptor
448  * @descriptor_version	version number of the memory descriptor structure
449  * @return		status code
450  */
451 efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
452 				struct efi_mem_desc *memory_map,
453 				efi_uintn_t *map_key,
454 				efi_uintn_t *descriptor_size,
455 				uint32_t *descriptor_version)
456 {
457 	efi_uintn_t map_size = 0;
458 	int map_entries = 0;
459 	struct list_head *lhandle;
460 	efi_uintn_t provided_map_size = *memory_map_size;
461 
462 	if (!memory_map_size)
463 		return EFI_INVALID_PARAMETER;
464 
465 	list_for_each(lhandle, &efi_mem)
466 		map_entries++;
467 
468 	map_size = map_entries * sizeof(struct efi_mem_desc);
469 
470 	*memory_map_size = map_size;
471 
472 	if (provided_map_size < map_size)
473 		return EFI_BUFFER_TOO_SMALL;
474 
475 	if (!memory_map)
476 		return EFI_INVALID_PARAMETER;
477 
478 	if (descriptor_size)
479 		*descriptor_size = sizeof(struct efi_mem_desc);
480 
481 	if (descriptor_version)
482 		*descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
483 
484 	/* Copy list into array */
485 	/* Return the list in ascending order */
486 	memory_map = &memory_map[map_entries - 1];
487 	list_for_each(lhandle, &efi_mem) {
488 		struct efi_mem_list *lmem;
489 
490 		lmem = list_entry(lhandle, struct efi_mem_list, link);
491 		*memory_map = lmem->desc;
492 		memory_map--;
493 	}
494 
495 	if (map_key)
496 		*map_key = efi_memory_map_key;
497 
498 	return EFI_SUCCESS;
499 }
500 
501 __weak void efi_add_known_memory(void)
502 {
503 	int i;
504 
505 	/* Add RAM */
506 	for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
507 		u64 ram_start = gd->bd->bi_dram[i].start;
508 		u64 ram_size = gd->bd->bi_dram[i].size;
509 		u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
510 		u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
511 
512 		efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY,
513 				   false);
514 	}
515 }
516 
517 /* Add memory regions for U-Boot's memory and for the runtime services code */
518 static void add_u_boot_and_runtime(void)
519 {
520 	unsigned long runtime_start, runtime_end, runtime_pages;
521 	unsigned long uboot_start, uboot_pages;
522 	unsigned long uboot_stack_size = 16 * 1024 * 1024;
523 
524 	/* Add U-Boot */
525 	uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK;
526 	uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT;
527 	efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false);
528 
529 	/* Add Runtime Services */
530 	runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK;
531 	runtime_end = (ulong)&__efi_runtime_stop;
532 	runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
533 	runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
534 	efi_add_memory_map(runtime_start, runtime_pages,
535 			   EFI_RUNTIME_SERVICES_CODE, false);
536 }
537 
538 int efi_memory_init(void)
539 {
540 	efi_add_known_memory();
541 
542 	if (!IS_ENABLED(CONFIG_SANDBOX))
543 		add_u_boot_and_runtime();
544 
545 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
546 	/* Request a 32bit 64MB bounce buffer region */
547 	uint64_t efi_bounce_buffer_addr = 0xffffffff;
548 
549 	if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_LOADER_DATA,
550 			       (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
551 			       &efi_bounce_buffer_addr) != EFI_SUCCESS)
552 		return -1;
553 
554 	efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
555 #endif
556 
557 	return 0;
558 }
559