1 /* 2 * EFI application memory management 3 * 4 * Copyright (c) 2016 Alexander Graf 5 * 6 * SPDX-License-Identifier: GPL-2.0+ 7 */ 8 9 #include <common.h> 10 #include <efi_loader.h> 11 #include <inttypes.h> 12 #include <malloc.h> 13 #include <watchdog.h> 14 #include <asm/global_data.h> 15 #include <linux/list_sort.h> 16 17 DECLARE_GLOBAL_DATA_PTR; 18 19 struct efi_mem_list { 20 struct list_head link; 21 struct efi_mem_desc desc; 22 }; 23 24 #define EFI_CARVE_NO_OVERLAP -1 25 #define EFI_CARVE_LOOP_AGAIN -2 26 #define EFI_CARVE_OVERLAPS_NONRAM -3 27 28 /* This list contains all memory map items */ 29 LIST_HEAD(efi_mem); 30 31 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER 32 void *efi_bounce_buffer; 33 #endif 34 35 /* 36 * U-Boot services each EFI AllocatePool request as a separate 37 * (multiple) page allocation. We have to track the number of pages 38 * to be able to free the correct amount later. 39 * EFI requires 8 byte alignment for pool allocations, so we can 40 * prepend each allocation with an 64 bit header tracking the 41 * allocation size, and hand out the remainder to the caller. 42 */ 43 struct efi_pool_allocation { 44 u64 num_pages; 45 char data[] __aligned(ARCH_DMA_MINALIGN); 46 }; 47 48 /* 49 * Sorts the memory list from highest address to lowest address 50 * 51 * When allocating memory we should always start from the highest 52 * address chunk, so sort the memory list such that the first list 53 * iterator gets the highest address and goes lower from there. 54 */ 55 static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b) 56 { 57 struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link); 58 struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link); 59 60 if (mema->desc.physical_start == memb->desc.physical_start) 61 return 0; 62 else if (mema->desc.physical_start < memb->desc.physical_start) 63 return 1; 64 else 65 return -1; 66 } 67 68 static void efi_mem_sort(void) 69 { 70 list_sort(NULL, &efi_mem, efi_mem_cmp); 71 } 72 73 /* 74 * Unmaps all memory occupied by the carve_desc region from the 75 * list entry pointed to by map. 76 * 77 * Returns EFI_CARVE_NO_OVERLAP if the regions don't overlap. 78 * Returns EFI_CARVE_OVERLAPS_NONRAM if the carve and map overlap, 79 * and the map contains anything but free ram. 80 * (only when overlap_only_ram is true) 81 * Returns EFI_CARVE_LOOP_AGAIN if the mapping list should be traversed 82 * again, as it has been altered 83 * Returns the number of overlapping pages. The pages are removed from 84 * the mapping list. 85 * 86 * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility 87 * to readd the already carved out pages to the mapping. 88 */ 89 static int efi_mem_carve_out(struct efi_mem_list *map, 90 struct efi_mem_desc *carve_desc, 91 bool overlap_only_ram) 92 { 93 struct efi_mem_list *newmap; 94 struct efi_mem_desc *map_desc = &map->desc; 95 uint64_t map_start = map_desc->physical_start; 96 uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT); 97 uint64_t carve_start = carve_desc->physical_start; 98 uint64_t carve_end = carve_start + 99 (carve_desc->num_pages << EFI_PAGE_SHIFT); 100 101 /* check whether we're overlapping */ 102 if ((carve_end <= map_start) || (carve_start >= map_end)) 103 return EFI_CARVE_NO_OVERLAP; 104 105 /* We're overlapping with non-RAM, warn the caller if desired */ 106 if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY)) 107 return EFI_CARVE_OVERLAPS_NONRAM; 108 109 /* Sanitize carve_start and carve_end to lie within our bounds */ 110 carve_start = max(carve_start, map_start); 111 carve_end = min(carve_end, map_end); 112 113 /* Carving at the beginning of our map? Just move it! */ 114 if (carve_start == map_start) { 115 if (map_end == carve_end) { 116 /* Full overlap, just remove map */ 117 list_del(&map->link); 118 free(map); 119 } else { 120 map->desc.physical_start = carve_end; 121 map->desc.num_pages = (map_end - carve_end) 122 >> EFI_PAGE_SHIFT; 123 } 124 125 return (carve_end - carve_start) >> EFI_PAGE_SHIFT; 126 } 127 128 /* 129 * Overlapping maps, just split the list map at carve_start, 130 * it will get moved or removed in the next iteration. 131 * 132 * [ map_desc |__carve_start__| newmap ] 133 */ 134 135 /* Create a new map from [ carve_start ... map_end ] */ 136 newmap = calloc(1, sizeof(*newmap)); 137 newmap->desc = map->desc; 138 newmap->desc.physical_start = carve_start; 139 newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT; 140 /* Insert before current entry (descending address order) */ 141 list_add_tail(&newmap->link, &map->link); 142 143 /* Shrink the map to [ map_start ... carve_start ] */ 144 map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT; 145 146 return EFI_CARVE_LOOP_AGAIN; 147 } 148 149 uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type, 150 bool overlap_only_ram) 151 { 152 struct list_head *lhandle; 153 struct efi_mem_list *newlist; 154 bool carve_again; 155 uint64_t carved_pages = 0; 156 157 debug("%s: 0x%" PRIx64 " 0x%" PRIx64 " %d %s\n", __func__, 158 start, pages, memory_type, overlap_only_ram ? "yes" : "no"); 159 160 if (!pages) 161 return start; 162 163 newlist = calloc(1, sizeof(*newlist)); 164 newlist->desc.type = memory_type; 165 newlist->desc.physical_start = start; 166 newlist->desc.virtual_start = start; 167 newlist->desc.num_pages = pages; 168 169 switch (memory_type) { 170 case EFI_RUNTIME_SERVICES_CODE: 171 case EFI_RUNTIME_SERVICES_DATA: 172 newlist->desc.attribute = (1 << EFI_MEMORY_WB_SHIFT) | 173 (1ULL << EFI_MEMORY_RUNTIME_SHIFT); 174 break; 175 case EFI_MMAP_IO: 176 newlist->desc.attribute = 1ULL << EFI_MEMORY_RUNTIME_SHIFT; 177 break; 178 default: 179 newlist->desc.attribute = 1 << EFI_MEMORY_WB_SHIFT; 180 break; 181 } 182 183 /* Add our new map */ 184 do { 185 carve_again = false; 186 list_for_each(lhandle, &efi_mem) { 187 struct efi_mem_list *lmem; 188 int r; 189 190 lmem = list_entry(lhandle, struct efi_mem_list, link); 191 r = efi_mem_carve_out(lmem, &newlist->desc, 192 overlap_only_ram); 193 switch (r) { 194 case EFI_CARVE_OVERLAPS_NONRAM: 195 /* 196 * The user requested to only have RAM overlaps, 197 * but we hit a non-RAM region. Error out. 198 */ 199 return 0; 200 case EFI_CARVE_NO_OVERLAP: 201 /* Just ignore this list entry */ 202 break; 203 case EFI_CARVE_LOOP_AGAIN: 204 /* 205 * We split an entry, but need to loop through 206 * the list again to actually carve it. 207 */ 208 carve_again = true; 209 break; 210 default: 211 /* We carved a number of pages */ 212 carved_pages += r; 213 carve_again = true; 214 break; 215 } 216 217 if (carve_again) { 218 /* The list changed, we need to start over */ 219 break; 220 } 221 } 222 } while (carve_again); 223 224 if (overlap_only_ram && (carved_pages != pages)) { 225 /* 226 * The payload wanted to have RAM overlaps, but we overlapped 227 * with an unallocated region. Error out. 228 */ 229 return 0; 230 } 231 232 /* Add our new map */ 233 list_add_tail(&newlist->link, &efi_mem); 234 235 /* And make sure memory is listed in descending order */ 236 efi_mem_sort(); 237 238 return start; 239 } 240 241 static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr) 242 { 243 struct list_head *lhandle; 244 245 list_for_each(lhandle, &efi_mem) { 246 struct efi_mem_list *lmem = list_entry(lhandle, 247 struct efi_mem_list, link); 248 struct efi_mem_desc *desc = &lmem->desc; 249 uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT; 250 uint64_t desc_end = desc->physical_start + desc_len; 251 uint64_t curmax = min(max_addr, desc_end); 252 uint64_t ret = curmax - len; 253 254 /* We only take memory from free RAM */ 255 if (desc->type != EFI_CONVENTIONAL_MEMORY) 256 continue; 257 258 /* Out of bounds for max_addr */ 259 if ((ret + len) > max_addr) 260 continue; 261 262 /* Out of bounds for upper map limit */ 263 if ((ret + len) > desc_end) 264 continue; 265 266 /* Out of bounds for lower map limit */ 267 if (ret < desc->physical_start) 268 continue; 269 270 /* Return the highest address in this map within bounds */ 271 return ret; 272 } 273 274 return 0; 275 } 276 277 /* 278 * Allocate memory pages. 279 * 280 * @type type of allocation to be performed 281 * @memory_type usage type of the allocated memory 282 * @pages number of pages to be allocated 283 * @memory allocated memory 284 * @return status code 285 */ 286 efi_status_t efi_allocate_pages(int type, int memory_type, 287 efi_uintn_t pages, uint64_t *memory) 288 { 289 u64 len = pages << EFI_PAGE_SHIFT; 290 efi_status_t r = EFI_SUCCESS; 291 uint64_t addr; 292 293 switch (type) { 294 case EFI_ALLOCATE_ANY_PAGES: 295 /* Any page */ 296 addr = efi_find_free_memory(len, gd->start_addr_sp); 297 if (!addr) { 298 r = EFI_NOT_FOUND; 299 break; 300 } 301 break; 302 case EFI_ALLOCATE_MAX_ADDRESS: 303 /* Max address */ 304 addr = efi_find_free_memory(len, *memory); 305 if (!addr) { 306 r = EFI_NOT_FOUND; 307 break; 308 } 309 break; 310 case EFI_ALLOCATE_ADDRESS: 311 /* Exact address, reserve it. The addr is already in *memory. */ 312 addr = *memory; 313 break; 314 default: 315 /* UEFI doesn't specify other allocation types */ 316 r = EFI_INVALID_PARAMETER; 317 break; 318 } 319 320 if (r == EFI_SUCCESS) { 321 uint64_t ret; 322 323 /* Reserve that map in our memory maps */ 324 ret = efi_add_memory_map(addr, pages, memory_type, true); 325 if (ret == addr) { 326 *memory = addr; 327 } else { 328 /* Map would overlap, bail out */ 329 r = EFI_OUT_OF_RESOURCES; 330 } 331 } 332 333 return r; 334 } 335 336 void *efi_alloc(uint64_t len, int memory_type) 337 { 338 uint64_t ret = 0; 339 uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT; 340 efi_status_t r; 341 342 r = efi_allocate_pages(0, memory_type, pages, &ret); 343 if (r == EFI_SUCCESS) 344 return (void*)(uintptr_t)ret; 345 346 return NULL; 347 } 348 349 /* 350 * Free memory pages. 351 * 352 * @memory start of the memory area to be freed 353 * @pages number of pages to be freed 354 * @return status code 355 */ 356 efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages) 357 { 358 uint64_t r = 0; 359 360 r = efi_add_memory_map(memory, pages, EFI_CONVENTIONAL_MEMORY, false); 361 /* Merging of adjacent free regions is missing */ 362 363 if (r == memory) 364 return EFI_SUCCESS; 365 366 return EFI_NOT_FOUND; 367 } 368 369 /* 370 * Allocate memory from pool. 371 * 372 * @pool_type type of the pool from which memory is to be allocated 373 * @size number of bytes to be allocated 374 * @buffer allocated memory 375 * @return status code 376 */ 377 efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void **buffer) 378 { 379 efi_status_t r; 380 efi_physical_addr_t t; 381 u64 num_pages = (size + sizeof(struct efi_pool_allocation) + 382 EFI_PAGE_MASK) >> EFI_PAGE_SHIFT; 383 384 if (size == 0) { 385 *buffer = NULL; 386 return EFI_SUCCESS; 387 } 388 389 r = efi_allocate_pages(0, pool_type, num_pages, &t); 390 391 if (r == EFI_SUCCESS) { 392 struct efi_pool_allocation *alloc = (void *)(uintptr_t)t; 393 alloc->num_pages = num_pages; 394 *buffer = alloc->data; 395 } 396 397 return r; 398 } 399 400 /* 401 * Free memory from pool. 402 * 403 * @buffer start of memory to be freed 404 * @return status code 405 */ 406 efi_status_t efi_free_pool(void *buffer) 407 { 408 efi_status_t r; 409 struct efi_pool_allocation *alloc; 410 411 if (buffer == NULL) 412 return EFI_INVALID_PARAMETER; 413 414 alloc = container_of(buffer, struct efi_pool_allocation, data); 415 /* Sanity check, was the supplied address returned by allocate_pool */ 416 assert(((uintptr_t)alloc & EFI_PAGE_MASK) == 0); 417 418 r = efi_free_pages((uintptr_t)alloc, alloc->num_pages); 419 420 return r; 421 } 422 423 /* 424 * Get map describing memory usage. 425 * 426 * @memory_map_size on entry the size, in bytes, of the memory map buffer, 427 * on exit the size of the copied memory map 428 * @memory_map buffer to which the memory map is written 429 * @map_key key for the memory map 430 * @descriptor_size size of an individual memory descriptor 431 * @descriptor_version version number of the memory descriptor structure 432 * @return status code 433 */ 434 efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size, 435 struct efi_mem_desc *memory_map, 436 efi_uintn_t *map_key, 437 efi_uintn_t *descriptor_size, 438 uint32_t *descriptor_version) 439 { 440 efi_uintn_t map_size = 0; 441 int map_entries = 0; 442 struct list_head *lhandle; 443 efi_uintn_t provided_map_size = *memory_map_size; 444 445 list_for_each(lhandle, &efi_mem) 446 map_entries++; 447 448 map_size = map_entries * sizeof(struct efi_mem_desc); 449 450 *memory_map_size = map_size; 451 452 if (provided_map_size < map_size) 453 return EFI_BUFFER_TOO_SMALL; 454 455 if (descriptor_size) 456 *descriptor_size = sizeof(struct efi_mem_desc); 457 458 if (descriptor_version) 459 *descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION; 460 461 /* Copy list into array */ 462 if (memory_map) { 463 /* Return the list in ascending order */ 464 memory_map = &memory_map[map_entries - 1]; 465 list_for_each(lhandle, &efi_mem) { 466 struct efi_mem_list *lmem; 467 468 lmem = list_entry(lhandle, struct efi_mem_list, link); 469 *memory_map = lmem->desc; 470 memory_map--; 471 } 472 } 473 474 *map_key = 0; 475 476 return EFI_SUCCESS; 477 } 478 479 __weak void efi_add_known_memory(void) 480 { 481 int i; 482 483 /* Add RAM */ 484 for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) { 485 u64 ram_start = gd->bd->bi_dram[i].start; 486 u64 ram_size = gd->bd->bi_dram[i].size; 487 u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK; 488 u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT; 489 490 efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY, 491 false); 492 } 493 } 494 495 int efi_memory_init(void) 496 { 497 unsigned long runtime_start, runtime_end, runtime_pages; 498 unsigned long uboot_start, uboot_pages; 499 unsigned long uboot_stack_size = 16 * 1024 * 1024; 500 501 efi_add_known_memory(); 502 503 /* Add U-Boot */ 504 uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK; 505 uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT; 506 efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false); 507 508 /* Add Runtime Services */ 509 runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK; 510 runtime_end = (ulong)&__efi_runtime_stop; 511 runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK; 512 runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT; 513 efi_add_memory_map(runtime_start, runtime_pages, 514 EFI_RUNTIME_SERVICES_CODE, false); 515 516 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER 517 /* Request a 32bit 64MB bounce buffer region */ 518 uint64_t efi_bounce_buffer_addr = 0xffffffff; 519 520 if (efi_allocate_pages(1, EFI_LOADER_DATA, 521 (64 * 1024 * 1024) >> EFI_PAGE_SHIFT, 522 &efi_bounce_buffer_addr) != EFI_SUCCESS) 523 return -1; 524 525 efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr; 526 #endif 527 528 return 0; 529 } 530