xref: /openbmc/u-boot/lib/div64.c (revision eb5ba3ae)
1 /*
2  * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
3  *
4  * Based on former do_div() implementation from asm-parisc/div64.h:
5  *	Copyright (C) 1999 Hewlett-Packard Co
6  *	Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
7  *
8  *
9  * Generic C version of 64bit/32bit division and modulo, with
10  * 64bit result and 32bit remainder.
11  *
12  * The fast case for (n>>32 == 0) is handled inline by do_div().
13  *
14  * Code generated for this function might be very inefficient
15  * for some CPUs. __div64_32() can be overridden by linking arch-specific
16  * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
17  * or by defining a preprocessor macro in arch/include/asm/div64.h.
18  */
19 
20 #include <linux/compat.h>
21 #include <linux/kernel.h>
22 #include <linux/math64.h>
23 
24 /* Not needed on 64bit architectures */
25 #if BITS_PER_LONG == 32
26 
27 #ifndef __div64_32
28 uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
29 {
30 	uint64_t rem = *n;
31 	uint64_t b = base;
32 	uint64_t res, d = 1;
33 	uint32_t high = rem >> 32;
34 
35 	/* Reduce the thing a bit first */
36 	res = 0;
37 	if (high >= base) {
38 		high /= base;
39 		res = (uint64_t) high << 32;
40 		rem -= (uint64_t) (high*base) << 32;
41 	}
42 
43 	while ((int64_t)b > 0 && b < rem) {
44 		b = b+b;
45 		d = d+d;
46 	}
47 
48 	do {
49 		if (rem >= b) {
50 			rem -= b;
51 			res += d;
52 		}
53 		b >>= 1;
54 		d >>= 1;
55 	} while (d);
56 
57 	*n = res;
58 	return rem;
59 }
60 EXPORT_SYMBOL(__div64_32);
61 #endif
62 
63 #ifndef div_s64_rem
64 s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
65 {
66 	u64 quotient;
67 
68 	if (dividend < 0) {
69 		quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
70 		*remainder = -*remainder;
71 		if (divisor > 0)
72 			quotient = -quotient;
73 	} else {
74 		quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
75 		if (divisor < 0)
76 			quotient = -quotient;
77 	}
78 	return quotient;
79 }
80 EXPORT_SYMBOL(div_s64_rem);
81 #endif
82 
83 /**
84  * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
85  * @dividend:	64bit dividend
86  * @divisor:	64bit divisor
87  * @remainder:  64bit remainder
88  *
89  * This implementation is a comparable to algorithm used by div64_u64.
90  * But this operation, which includes math for calculating the remainder,
91  * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
92  * systems.
93  */
94 #ifndef div64_u64_rem
95 u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
96 {
97 	u32 high = divisor >> 32;
98 	u64 quot;
99 
100 	if (high == 0) {
101 		u32 rem32;
102 		quot = div_u64_rem(dividend, divisor, &rem32);
103 		*remainder = rem32;
104 	} else {
105 		int n = 1 + fls(high);
106 		quot = div_u64(dividend >> n, divisor >> n);
107 
108 		if (quot != 0)
109 			quot--;
110 
111 		*remainder = dividend - quot * divisor;
112 		if (*remainder >= divisor) {
113 			quot++;
114 			*remainder -= divisor;
115 		}
116 	}
117 
118 	return quot;
119 }
120 EXPORT_SYMBOL(div64_u64_rem);
121 #endif
122 
123 /**
124  * div64_u64 - unsigned 64bit divide with 64bit divisor
125  * @dividend:	64bit dividend
126  * @divisor:	64bit divisor
127  *
128  * This implementation is a modified version of the algorithm proposed
129  * by the book 'Hacker's Delight'.  The original source and full proof
130  * can be found here and is available for use without restriction.
131  *
132  * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
133  */
134 #ifndef div64_u64
135 u64 div64_u64(u64 dividend, u64 divisor)
136 {
137 	u32 high = divisor >> 32;
138 	u64 quot;
139 
140 	if (high == 0) {
141 		quot = div_u64(dividend, divisor);
142 	} else {
143 		int n = 1 + fls(high);
144 		quot = div_u64(dividend >> n, divisor >> n);
145 
146 		if (quot != 0)
147 			quot--;
148 		if ((dividend - quot * divisor) >= divisor)
149 			quot++;
150 	}
151 
152 	return quot;
153 }
154 EXPORT_SYMBOL(div64_u64);
155 #endif
156 
157 /**
158  * div64_s64 - signed 64bit divide with 64bit divisor
159  * @dividend:	64bit dividend
160  * @divisor:	64bit divisor
161  */
162 #ifndef div64_s64
163 s64 div64_s64(s64 dividend, s64 divisor)
164 {
165 	s64 quot, t;
166 
167 	quot = div64_u64(abs(dividend), abs(divisor));
168 	t = (dividend ^ divisor) >> 63;
169 
170 	return (quot ^ t) - t;
171 }
172 EXPORT_SYMBOL(div64_s64);
173 #endif
174 
175 #endif /* BITS_PER_LONG == 32 */
176 
177 /*
178  * Iterative div/mod for use when dividend is not expected to be much
179  * bigger than divisor.
180  */
181 u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
182 {
183 	return __iter_div_u64_rem(dividend, divisor, remainder);
184 }
185 EXPORT_SYMBOL(iter_div_u64_rem);
186