1 /* 2 * Generic binary BCH encoding/decoding library 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License version 2 as published by 6 * the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 51 15 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 16 * 17 * Copyright © 2011 Parrot S.A. 18 * 19 * Author: Ivan Djelic <ivan.djelic@parrot.com> 20 * 21 * Description: 22 * 23 * This library provides runtime configurable encoding/decoding of binary 24 * Bose-Chaudhuri-Hocquenghem (BCH) codes. 25 * 26 * Call init_bch to get a pointer to a newly allocated bch_control structure for 27 * the given m (Galois field order), t (error correction capability) and 28 * (optional) primitive polynomial parameters. 29 * 30 * Call encode_bch to compute and store ecc parity bytes to a given buffer. 31 * Call decode_bch to detect and locate errors in received data. 32 * 33 * On systems supporting hw BCH features, intermediate results may be provided 34 * to decode_bch in order to skip certain steps. See decode_bch() documentation 35 * for details. 36 * 37 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of 38 * parameters m and t; thus allowing extra compiler optimizations and providing 39 * better (up to 2x) encoding performance. Using this option makes sense when 40 * (m,t) are fixed and known in advance, e.g. when using BCH error correction 41 * on a particular NAND flash device. 42 * 43 * Algorithmic details: 44 * 45 * Encoding is performed by processing 32 input bits in parallel, using 4 46 * remainder lookup tables. 47 * 48 * The final stage of decoding involves the following internal steps: 49 * a. Syndrome computation 50 * b. Error locator polynomial computation using Berlekamp-Massey algorithm 51 * c. Error locator root finding (by far the most expensive step) 52 * 53 * In this implementation, step c is not performed using the usual Chien search. 54 * Instead, an alternative approach described in [1] is used. It consists in 55 * factoring the error locator polynomial using the Berlekamp Trace algorithm 56 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial 57 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields 58 * much better performance than Chien search for usual (m,t) values (typically 59 * m >= 13, t < 32, see [1]). 60 * 61 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields 62 * of characteristic 2, in: Western European Workshop on Research in Cryptology 63 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. 64 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over 65 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. 66 */ 67 68 #include <common.h> 69 #include <ubi_uboot.h> 70 71 #include <linux/bitops.h> 72 #include <asm/byteorder.h> 73 #include <linux/bch.h> 74 75 #if defined(CONFIG_BCH_CONST_PARAMS) 76 #define GF_M(_p) (CONFIG_BCH_CONST_M) 77 #define GF_T(_p) (CONFIG_BCH_CONST_T) 78 #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) 79 #else 80 #define GF_M(_p) ((_p)->m) 81 #define GF_T(_p) ((_p)->t) 82 #define GF_N(_p) ((_p)->n) 83 #endif 84 85 #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) 86 #define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) 87 88 #ifndef dbg 89 #define dbg(_fmt, args...) do {} while (0) 90 #endif 91 92 /* 93 * represent a polynomial over GF(2^m) 94 */ 95 struct gf_poly { 96 unsigned int deg; /* polynomial degree */ 97 unsigned int c[0]; /* polynomial terms */ 98 }; 99 100 /* given its degree, compute a polynomial size in bytes */ 101 #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) 102 103 /* polynomial of degree 1 */ 104 struct gf_poly_deg1 { 105 struct gf_poly poly; 106 unsigned int c[2]; 107 }; 108 109 /* 110 * same as encode_bch(), but process input data one byte at a time 111 */ 112 static void encode_bch_unaligned(struct bch_control *bch, 113 const unsigned char *data, unsigned int len, 114 uint32_t *ecc) 115 { 116 int i; 117 const uint32_t *p; 118 const int l = BCH_ECC_WORDS(bch)-1; 119 120 while (len--) { 121 p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); 122 123 for (i = 0; i < l; i++) 124 ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); 125 126 ecc[l] = (ecc[l] << 8)^(*p); 127 } 128 } 129 130 /* 131 * convert ecc bytes to aligned, zero-padded 32-bit ecc words 132 */ 133 static void load_ecc8(struct bch_control *bch, uint32_t *dst, 134 const uint8_t *src) 135 { 136 uint8_t pad[4] = {0, 0, 0, 0}; 137 unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; 138 139 for (i = 0; i < nwords; i++, src += 4) 140 dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; 141 142 memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); 143 dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; 144 } 145 146 /* 147 * convert 32-bit ecc words to ecc bytes 148 */ 149 static void store_ecc8(struct bch_control *bch, uint8_t *dst, 150 const uint32_t *src) 151 { 152 uint8_t pad[4]; 153 unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; 154 155 for (i = 0; i < nwords; i++) { 156 *dst++ = (src[i] >> 24); 157 *dst++ = (src[i] >> 16) & 0xff; 158 *dst++ = (src[i] >> 8) & 0xff; 159 *dst++ = (src[i] >> 0) & 0xff; 160 } 161 pad[0] = (src[nwords] >> 24); 162 pad[1] = (src[nwords] >> 16) & 0xff; 163 pad[2] = (src[nwords] >> 8) & 0xff; 164 pad[3] = (src[nwords] >> 0) & 0xff; 165 memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); 166 } 167 168 /** 169 * encode_bch - calculate BCH ecc parity of data 170 * @bch: BCH control structure 171 * @data: data to encode 172 * @len: data length in bytes 173 * @ecc: ecc parity data, must be initialized by caller 174 * 175 * The @ecc parity array is used both as input and output parameter, in order to 176 * allow incremental computations. It should be of the size indicated by member 177 * @ecc_bytes of @bch, and should be initialized to 0 before the first call. 178 * 179 * The exact number of computed ecc parity bits is given by member @ecc_bits of 180 * @bch; it may be less than m*t for large values of t. 181 */ 182 void encode_bch(struct bch_control *bch, const uint8_t *data, 183 unsigned int len, uint8_t *ecc) 184 { 185 const unsigned int l = BCH_ECC_WORDS(bch)-1; 186 unsigned int i, mlen; 187 unsigned long m; 188 uint32_t w, r[l+1]; 189 const uint32_t * const tab0 = bch->mod8_tab; 190 const uint32_t * const tab1 = tab0 + 256*(l+1); 191 const uint32_t * const tab2 = tab1 + 256*(l+1); 192 const uint32_t * const tab3 = tab2 + 256*(l+1); 193 const uint32_t *pdata, *p0, *p1, *p2, *p3; 194 195 if (ecc) { 196 /* load ecc parity bytes into internal 32-bit buffer */ 197 load_ecc8(bch, bch->ecc_buf, ecc); 198 } else { 199 memset(bch->ecc_buf, 0, sizeof(r)); 200 } 201 202 /* process first unaligned data bytes */ 203 m = ((unsigned long)data) & 3; 204 if (m) { 205 mlen = (len < (4-m)) ? len : 4-m; 206 encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); 207 data += mlen; 208 len -= mlen; 209 } 210 211 /* process 32-bit aligned data words */ 212 pdata = (uint32_t *)data; 213 mlen = len/4; 214 data += 4*mlen; 215 len -= 4*mlen; 216 memcpy(r, bch->ecc_buf, sizeof(r)); 217 218 /* 219 * split each 32-bit word into 4 polynomials of weight 8 as follows: 220 * 221 * 31 ...24 23 ...16 15 ... 8 7 ... 0 222 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt 223 * tttttttt mod g = r0 (precomputed) 224 * zzzzzzzz 00000000 mod g = r1 (precomputed) 225 * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) 226 * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) 227 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 228 */ 229 while (mlen--) { 230 /* input data is read in big-endian format */ 231 w = r[0]^cpu_to_be32(*pdata++); 232 p0 = tab0 + (l+1)*((w >> 0) & 0xff); 233 p1 = tab1 + (l+1)*((w >> 8) & 0xff); 234 p2 = tab2 + (l+1)*((w >> 16) & 0xff); 235 p3 = tab3 + (l+1)*((w >> 24) & 0xff); 236 237 for (i = 0; i < l; i++) 238 r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; 239 240 r[l] = p0[l]^p1[l]^p2[l]^p3[l]; 241 } 242 memcpy(bch->ecc_buf, r, sizeof(r)); 243 244 /* process last unaligned bytes */ 245 if (len) 246 encode_bch_unaligned(bch, data, len, bch->ecc_buf); 247 248 /* store ecc parity bytes into original parity buffer */ 249 if (ecc) 250 store_ecc8(bch, ecc, bch->ecc_buf); 251 } 252 253 static inline int modulo(struct bch_control *bch, unsigned int v) 254 { 255 const unsigned int n = GF_N(bch); 256 while (v >= n) { 257 v -= n; 258 v = (v & n) + (v >> GF_M(bch)); 259 } 260 return v; 261 } 262 263 /* 264 * shorter and faster modulo function, only works when v < 2N. 265 */ 266 static inline int mod_s(struct bch_control *bch, unsigned int v) 267 { 268 const unsigned int n = GF_N(bch); 269 return (v < n) ? v : v-n; 270 } 271 272 static inline int deg(unsigned int poly) 273 { 274 /* polynomial degree is the most-significant bit index */ 275 return fls(poly)-1; 276 } 277 278 static inline int parity(unsigned int x) 279 { 280 /* 281 * public domain code snippet, lifted from 282 * http://www-graphics.stanford.edu/~seander/bithacks.html 283 */ 284 x ^= x >> 1; 285 x ^= x >> 2; 286 x = (x & 0x11111111U) * 0x11111111U; 287 return (x >> 28) & 1; 288 } 289 290 /* Galois field basic operations: multiply, divide, inverse, etc. */ 291 292 static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, 293 unsigned int b) 294 { 295 return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ 296 bch->a_log_tab[b])] : 0; 297 } 298 299 static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) 300 { 301 return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; 302 } 303 304 static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, 305 unsigned int b) 306 { 307 return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ 308 GF_N(bch)-bch->a_log_tab[b])] : 0; 309 } 310 311 static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) 312 { 313 return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; 314 } 315 316 static inline unsigned int a_pow(struct bch_control *bch, int i) 317 { 318 return bch->a_pow_tab[modulo(bch, i)]; 319 } 320 321 static inline int a_log(struct bch_control *bch, unsigned int x) 322 { 323 return bch->a_log_tab[x]; 324 } 325 326 static inline int a_ilog(struct bch_control *bch, unsigned int x) 327 { 328 return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); 329 } 330 331 /* 332 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t 333 */ 334 static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, 335 unsigned int *syn) 336 { 337 int i, j, s; 338 unsigned int m; 339 uint32_t poly; 340 const int t = GF_T(bch); 341 342 s = bch->ecc_bits; 343 344 /* make sure extra bits in last ecc word are cleared */ 345 m = ((unsigned int)s) & 31; 346 if (m) 347 ecc[s/32] &= ~((1u << (32-m))-1); 348 memset(syn, 0, 2*t*sizeof(*syn)); 349 350 /* compute v(a^j) for j=1 .. 2t-1 */ 351 do { 352 poly = *ecc++; 353 s -= 32; 354 while (poly) { 355 i = deg(poly); 356 for (j = 0; j < 2*t; j += 2) 357 syn[j] ^= a_pow(bch, (j+1)*(i+s)); 358 359 poly ^= (1 << i); 360 } 361 } while (s > 0); 362 363 /* v(a^(2j)) = v(a^j)^2 */ 364 for (j = 0; j < t; j++) 365 syn[2*j+1] = gf_sqr(bch, syn[j]); 366 } 367 368 static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) 369 { 370 memcpy(dst, src, GF_POLY_SZ(src->deg)); 371 } 372 373 static int compute_error_locator_polynomial(struct bch_control *bch, 374 const unsigned int *syn) 375 { 376 const unsigned int t = GF_T(bch); 377 const unsigned int n = GF_N(bch); 378 unsigned int i, j, tmp, l, pd = 1, d = syn[0]; 379 struct gf_poly *elp = bch->elp; 380 struct gf_poly *pelp = bch->poly_2t[0]; 381 struct gf_poly *elp_copy = bch->poly_2t[1]; 382 int k, pp = -1; 383 384 memset(pelp, 0, GF_POLY_SZ(2*t)); 385 memset(elp, 0, GF_POLY_SZ(2*t)); 386 387 pelp->deg = 0; 388 pelp->c[0] = 1; 389 elp->deg = 0; 390 elp->c[0] = 1; 391 392 /* use simplified binary Berlekamp-Massey algorithm */ 393 for (i = 0; (i < t) && (elp->deg <= t); i++) { 394 if (d) { 395 k = 2*i-pp; 396 gf_poly_copy(elp_copy, elp); 397 /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ 398 tmp = a_log(bch, d)+n-a_log(bch, pd); 399 for (j = 0; j <= pelp->deg; j++) { 400 if (pelp->c[j]) { 401 l = a_log(bch, pelp->c[j]); 402 elp->c[j+k] ^= a_pow(bch, tmp+l); 403 } 404 } 405 /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ 406 tmp = pelp->deg+k; 407 if (tmp > elp->deg) { 408 elp->deg = tmp; 409 gf_poly_copy(pelp, elp_copy); 410 pd = d; 411 pp = 2*i; 412 } 413 } 414 /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ 415 if (i < t-1) { 416 d = syn[2*i+2]; 417 for (j = 1; j <= elp->deg; j++) 418 d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); 419 } 420 } 421 dbg("elp=%s\n", gf_poly_str(elp)); 422 return (elp->deg > t) ? -1 : (int)elp->deg; 423 } 424 425 /* 426 * solve a m x m linear system in GF(2) with an expected number of solutions, 427 * and return the number of found solutions 428 */ 429 static int solve_linear_system(struct bch_control *bch, unsigned int *rows, 430 unsigned int *sol, int nsol) 431 { 432 const int m = GF_M(bch); 433 unsigned int tmp, mask; 434 int rem, c, r, p, k, param[m]; 435 436 k = 0; 437 mask = 1 << m; 438 439 /* Gaussian elimination */ 440 for (c = 0; c < m; c++) { 441 rem = 0; 442 p = c-k; 443 /* find suitable row for elimination */ 444 for (r = p; r < m; r++) { 445 if (rows[r] & mask) { 446 if (r != p) { 447 tmp = rows[r]; 448 rows[r] = rows[p]; 449 rows[p] = tmp; 450 } 451 rem = r+1; 452 break; 453 } 454 } 455 if (rem) { 456 /* perform elimination on remaining rows */ 457 tmp = rows[p]; 458 for (r = rem; r < m; r++) { 459 if (rows[r] & mask) 460 rows[r] ^= tmp; 461 } 462 } else { 463 /* elimination not needed, store defective row index */ 464 param[k++] = c; 465 } 466 mask >>= 1; 467 } 468 /* rewrite system, inserting fake parameter rows */ 469 if (k > 0) { 470 p = k; 471 for (r = m-1; r >= 0; r--) { 472 if ((r > m-1-k) && rows[r]) 473 /* system has no solution */ 474 return 0; 475 476 rows[r] = (p && (r == param[p-1])) ? 477 p--, 1u << (m-r) : rows[r-p]; 478 } 479 } 480 481 if (nsol != (1 << k)) 482 /* unexpected number of solutions */ 483 return 0; 484 485 for (p = 0; p < nsol; p++) { 486 /* set parameters for p-th solution */ 487 for (c = 0; c < k; c++) 488 rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); 489 490 /* compute unique solution */ 491 tmp = 0; 492 for (r = m-1; r >= 0; r--) { 493 mask = rows[r] & (tmp|1); 494 tmp |= parity(mask) << (m-r); 495 } 496 sol[p] = tmp >> 1; 497 } 498 return nsol; 499 } 500 501 /* 502 * this function builds and solves a linear system for finding roots of a degree 503 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). 504 */ 505 static int find_affine4_roots(struct bch_control *bch, unsigned int a, 506 unsigned int b, unsigned int c, 507 unsigned int *roots) 508 { 509 int i, j, k; 510 const int m = GF_M(bch); 511 unsigned int mask = 0xff, t, rows[16] = {0,}; 512 513 j = a_log(bch, b); 514 k = a_log(bch, a); 515 rows[0] = c; 516 517 /* buid linear system to solve X^4+aX^2+bX+c = 0 */ 518 for (i = 0; i < m; i++) { 519 rows[i+1] = bch->a_pow_tab[4*i]^ 520 (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ 521 (b ? bch->a_pow_tab[mod_s(bch, j)] : 0); 522 j++; 523 k += 2; 524 } 525 /* 526 * transpose 16x16 matrix before passing it to linear solver 527 * warning: this code assumes m < 16 528 */ 529 for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { 530 for (k = 0; k < 16; k = (k+j+1) & ~j) { 531 t = ((rows[k] >> j)^rows[k+j]) & mask; 532 rows[k] ^= (t << j); 533 rows[k+j] ^= t; 534 } 535 } 536 return solve_linear_system(bch, rows, roots, 4); 537 } 538 539 /* 540 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) 541 */ 542 static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, 543 unsigned int *roots) 544 { 545 int n = 0; 546 547 if (poly->c[0]) 548 /* poly[X] = bX+c with c!=0, root=c/b */ 549 roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ 550 bch->a_log_tab[poly->c[1]]); 551 return n; 552 } 553 554 /* 555 * compute roots of a degree 2 polynomial over GF(2^m) 556 */ 557 static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, 558 unsigned int *roots) 559 { 560 int n = 0, i, l0, l1, l2; 561 unsigned int u, v, r; 562 563 if (poly->c[0] && poly->c[1]) { 564 565 l0 = bch->a_log_tab[poly->c[0]]; 566 l1 = bch->a_log_tab[poly->c[1]]; 567 l2 = bch->a_log_tab[poly->c[2]]; 568 569 /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ 570 u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); 571 /* 572 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): 573 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = 574 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) 575 * i.e. r and r+1 are roots iff Tr(u)=0 576 */ 577 r = 0; 578 v = u; 579 while (v) { 580 i = deg(v); 581 r ^= bch->xi_tab[i]; 582 v ^= (1 << i); 583 } 584 /* verify root */ 585 if ((gf_sqr(bch, r)^r) == u) { 586 /* reverse z=a/bX transformation and compute log(1/r) */ 587 roots[n++] = modulo(bch, 2*GF_N(bch)-l1- 588 bch->a_log_tab[r]+l2); 589 roots[n++] = modulo(bch, 2*GF_N(bch)-l1- 590 bch->a_log_tab[r^1]+l2); 591 } 592 } 593 return n; 594 } 595 596 /* 597 * compute roots of a degree 3 polynomial over GF(2^m) 598 */ 599 static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, 600 unsigned int *roots) 601 { 602 int i, n = 0; 603 unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; 604 605 if (poly->c[0]) { 606 /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ 607 e3 = poly->c[3]; 608 c2 = gf_div(bch, poly->c[0], e3); 609 b2 = gf_div(bch, poly->c[1], e3); 610 a2 = gf_div(bch, poly->c[2], e3); 611 612 /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ 613 c = gf_mul(bch, a2, c2); /* c = a2c2 */ 614 b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */ 615 a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */ 616 617 /* find the 4 roots of this affine polynomial */ 618 if (find_affine4_roots(bch, a, b, c, tmp) == 4) { 619 /* remove a2 from final list of roots */ 620 for (i = 0; i < 4; i++) { 621 if (tmp[i] != a2) 622 roots[n++] = a_ilog(bch, tmp[i]); 623 } 624 } 625 } 626 return n; 627 } 628 629 /* 630 * compute roots of a degree 4 polynomial over GF(2^m) 631 */ 632 static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, 633 unsigned int *roots) 634 { 635 int i, l, n = 0; 636 unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; 637 638 if (poly->c[0] == 0) 639 return 0; 640 641 /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ 642 e4 = poly->c[4]; 643 d = gf_div(bch, poly->c[0], e4); 644 c = gf_div(bch, poly->c[1], e4); 645 b = gf_div(bch, poly->c[2], e4); 646 a = gf_div(bch, poly->c[3], e4); 647 648 /* use Y=1/X transformation to get an affine polynomial */ 649 if (a) { 650 /* first, eliminate cX by using z=X+e with ae^2+c=0 */ 651 if (c) { 652 /* compute e such that e^2 = c/a */ 653 f = gf_div(bch, c, a); 654 l = a_log(bch, f); 655 l += (l & 1) ? GF_N(bch) : 0; 656 e = a_pow(bch, l/2); 657 /* 658 * use transformation z=X+e: 659 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d 660 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d 661 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d 662 * z^4 + az^3 + b'z^2 + d' 663 */ 664 d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; 665 b = gf_mul(bch, a, e)^b; 666 } 667 /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ 668 if (d == 0) 669 /* assume all roots have multiplicity 1 */ 670 return 0; 671 672 c2 = gf_inv(bch, d); 673 b2 = gf_div(bch, a, d); 674 a2 = gf_div(bch, b, d); 675 } else { 676 /* polynomial is already affine */ 677 c2 = d; 678 b2 = c; 679 a2 = b; 680 } 681 /* find the 4 roots of this affine polynomial */ 682 if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { 683 for (i = 0; i < 4; i++) { 684 /* post-process roots (reverse transformations) */ 685 f = a ? gf_inv(bch, roots[i]) : roots[i]; 686 roots[i] = a_ilog(bch, f^e); 687 } 688 n = 4; 689 } 690 return n; 691 } 692 693 /* 694 * build monic, log-based representation of a polynomial 695 */ 696 static void gf_poly_logrep(struct bch_control *bch, 697 const struct gf_poly *a, int *rep) 698 { 699 int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); 700 701 /* represent 0 values with -1; warning, rep[d] is not set to 1 */ 702 for (i = 0; i < d; i++) 703 rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; 704 } 705 706 /* 707 * compute polynomial Euclidean division remainder in GF(2^m)[X] 708 */ 709 static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, 710 const struct gf_poly *b, int *rep) 711 { 712 int la, p, m; 713 unsigned int i, j, *c = a->c; 714 const unsigned int d = b->deg; 715 716 if (a->deg < d) 717 return; 718 719 /* reuse or compute log representation of denominator */ 720 if (!rep) { 721 rep = bch->cache; 722 gf_poly_logrep(bch, b, rep); 723 } 724 725 for (j = a->deg; j >= d; j--) { 726 if (c[j]) { 727 la = a_log(bch, c[j]); 728 p = j-d; 729 for (i = 0; i < d; i++, p++) { 730 m = rep[i]; 731 if (m >= 0) 732 c[p] ^= bch->a_pow_tab[mod_s(bch, 733 m+la)]; 734 } 735 } 736 } 737 a->deg = d-1; 738 while (!c[a->deg] && a->deg) 739 a->deg--; 740 } 741 742 /* 743 * compute polynomial Euclidean division quotient in GF(2^m)[X] 744 */ 745 static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, 746 const struct gf_poly *b, struct gf_poly *q) 747 { 748 if (a->deg >= b->deg) { 749 q->deg = a->deg-b->deg; 750 /* compute a mod b (modifies a) */ 751 gf_poly_mod(bch, a, b, NULL); 752 /* quotient is stored in upper part of polynomial a */ 753 memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); 754 } else { 755 q->deg = 0; 756 q->c[0] = 0; 757 } 758 } 759 760 /* 761 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] 762 */ 763 static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, 764 struct gf_poly *b) 765 { 766 struct gf_poly *tmp; 767 768 dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); 769 770 if (a->deg < b->deg) { 771 tmp = b; 772 b = a; 773 a = tmp; 774 } 775 776 while (b->deg > 0) { 777 gf_poly_mod(bch, a, b, NULL); 778 tmp = b; 779 b = a; 780 a = tmp; 781 } 782 783 dbg("%s\n", gf_poly_str(a)); 784 785 return a; 786 } 787 788 /* 789 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f 790 * This is used in Berlekamp Trace algorithm for splitting polynomials 791 */ 792 static void compute_trace_bk_mod(struct bch_control *bch, int k, 793 const struct gf_poly *f, struct gf_poly *z, 794 struct gf_poly *out) 795 { 796 const int m = GF_M(bch); 797 int i, j; 798 799 /* z contains z^2j mod f */ 800 z->deg = 1; 801 z->c[0] = 0; 802 z->c[1] = bch->a_pow_tab[k]; 803 804 out->deg = 0; 805 memset(out, 0, GF_POLY_SZ(f->deg)); 806 807 /* compute f log representation only once */ 808 gf_poly_logrep(bch, f, bch->cache); 809 810 for (i = 0; i < m; i++) { 811 /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ 812 for (j = z->deg; j >= 0; j--) { 813 out->c[j] ^= z->c[j]; 814 z->c[2*j] = gf_sqr(bch, z->c[j]); 815 z->c[2*j+1] = 0; 816 } 817 if (z->deg > out->deg) 818 out->deg = z->deg; 819 820 if (i < m-1) { 821 z->deg *= 2; 822 /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ 823 gf_poly_mod(bch, z, f, bch->cache); 824 } 825 } 826 while (!out->c[out->deg] && out->deg) 827 out->deg--; 828 829 dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); 830 } 831 832 /* 833 * factor a polynomial using Berlekamp Trace algorithm (BTA) 834 */ 835 static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, 836 struct gf_poly **g, struct gf_poly **h) 837 { 838 struct gf_poly *f2 = bch->poly_2t[0]; 839 struct gf_poly *q = bch->poly_2t[1]; 840 struct gf_poly *tk = bch->poly_2t[2]; 841 struct gf_poly *z = bch->poly_2t[3]; 842 struct gf_poly *gcd; 843 844 dbg("factoring %s...\n", gf_poly_str(f)); 845 846 *g = f; 847 *h = NULL; 848 849 /* tk = Tr(a^k.X) mod f */ 850 compute_trace_bk_mod(bch, k, f, z, tk); 851 852 if (tk->deg > 0) { 853 /* compute g = gcd(f, tk) (destructive operation) */ 854 gf_poly_copy(f2, f); 855 gcd = gf_poly_gcd(bch, f2, tk); 856 if (gcd->deg < f->deg) { 857 /* compute h=f/gcd(f,tk); this will modify f and q */ 858 gf_poly_div(bch, f, gcd, q); 859 /* store g and h in-place (clobbering f) */ 860 *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; 861 gf_poly_copy(*g, gcd); 862 gf_poly_copy(*h, q); 863 } 864 } 865 } 866 867 /* 868 * find roots of a polynomial, using BTZ algorithm; see the beginning of this 869 * file for details 870 */ 871 static int find_poly_roots(struct bch_control *bch, unsigned int k, 872 struct gf_poly *poly, unsigned int *roots) 873 { 874 int cnt; 875 struct gf_poly *f1, *f2; 876 877 switch (poly->deg) { 878 /* handle low degree polynomials with ad hoc techniques */ 879 case 1: 880 cnt = find_poly_deg1_roots(bch, poly, roots); 881 break; 882 case 2: 883 cnt = find_poly_deg2_roots(bch, poly, roots); 884 break; 885 case 3: 886 cnt = find_poly_deg3_roots(bch, poly, roots); 887 break; 888 case 4: 889 cnt = find_poly_deg4_roots(bch, poly, roots); 890 break; 891 default: 892 /* factor polynomial using Berlekamp Trace Algorithm (BTA) */ 893 cnt = 0; 894 if (poly->deg && (k <= GF_M(bch))) { 895 factor_polynomial(bch, k, poly, &f1, &f2); 896 if (f1) 897 cnt += find_poly_roots(bch, k+1, f1, roots); 898 if (f2) 899 cnt += find_poly_roots(bch, k+1, f2, roots+cnt); 900 } 901 break; 902 } 903 return cnt; 904 } 905 906 #if defined(USE_CHIEN_SEARCH) 907 /* 908 * exhaustive root search (Chien) implementation - not used, included only for 909 * reference/comparison tests 910 */ 911 static int chien_search(struct bch_control *bch, unsigned int len, 912 struct gf_poly *p, unsigned int *roots) 913 { 914 int m; 915 unsigned int i, j, syn, syn0, count = 0; 916 const unsigned int k = 8*len+bch->ecc_bits; 917 918 /* use a log-based representation of polynomial */ 919 gf_poly_logrep(bch, p, bch->cache); 920 bch->cache[p->deg] = 0; 921 syn0 = gf_div(bch, p->c[0], p->c[p->deg]); 922 923 for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { 924 /* compute elp(a^i) */ 925 for (j = 1, syn = syn0; j <= p->deg; j++) { 926 m = bch->cache[j]; 927 if (m >= 0) 928 syn ^= a_pow(bch, m+j*i); 929 } 930 if (syn == 0) { 931 roots[count++] = GF_N(bch)-i; 932 if (count == p->deg) 933 break; 934 } 935 } 936 return (count == p->deg) ? count : 0; 937 } 938 #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) 939 #endif /* USE_CHIEN_SEARCH */ 940 941 /** 942 * decode_bch - decode received codeword and find bit error locations 943 * @bch: BCH control structure 944 * @data: received data, ignored if @calc_ecc is provided 945 * @len: data length in bytes, must always be provided 946 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc 947 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data 948 * @syn: hw computed syndrome data (if NULL, syndrome is calculated) 949 * @errloc: output array of error locations 950 * 951 * Returns: 952 * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if 953 * invalid parameters were provided 954 * 955 * Depending on the available hw BCH support and the need to compute @calc_ecc 956 * separately (using encode_bch()), this function should be called with one of 957 * the following parameter configurations - 958 * 959 * by providing @data and @recv_ecc only: 960 * decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) 961 * 962 * by providing @recv_ecc and @calc_ecc: 963 * decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) 964 * 965 * by providing ecc = recv_ecc XOR calc_ecc: 966 * decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc) 967 * 968 * by providing syndrome results @syn: 969 * decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc) 970 * 971 * Once decode_bch() has successfully returned with a positive value, error 972 * locations returned in array @errloc should be interpreted as follows - 973 * 974 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for 975 * data correction) 976 * 977 * if (errloc[n] < 8*len), then n-th error is located in data and can be 978 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); 979 * 980 * Note that this function does not perform any data correction by itself, it 981 * merely indicates error locations. 982 */ 983 int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, 984 const uint8_t *recv_ecc, const uint8_t *calc_ecc, 985 const unsigned int *syn, unsigned int *errloc) 986 { 987 const unsigned int ecc_words = BCH_ECC_WORDS(bch); 988 unsigned int nbits; 989 int i, err, nroots; 990 uint32_t sum; 991 992 /* sanity check: make sure data length can be handled */ 993 if (8*len > (bch->n-bch->ecc_bits)) 994 return -EINVAL; 995 996 /* if caller does not provide syndromes, compute them */ 997 if (!syn) { 998 if (!calc_ecc) { 999 /* compute received data ecc into an internal buffer */ 1000 if (!data || !recv_ecc) 1001 return -EINVAL; 1002 encode_bch(bch, data, len, NULL); 1003 } else { 1004 /* load provided calculated ecc */ 1005 load_ecc8(bch, bch->ecc_buf, calc_ecc); 1006 } 1007 /* load received ecc or assume it was XORed in calc_ecc */ 1008 if (recv_ecc) { 1009 load_ecc8(bch, bch->ecc_buf2, recv_ecc); 1010 /* XOR received and calculated ecc */ 1011 for (i = 0, sum = 0; i < (int)ecc_words; i++) { 1012 bch->ecc_buf[i] ^= bch->ecc_buf2[i]; 1013 sum |= bch->ecc_buf[i]; 1014 } 1015 if (!sum) 1016 /* no error found */ 1017 return 0; 1018 } 1019 compute_syndromes(bch, bch->ecc_buf, bch->syn); 1020 syn = bch->syn; 1021 } 1022 1023 err = compute_error_locator_polynomial(bch, syn); 1024 if (err > 0) { 1025 nroots = find_poly_roots(bch, 1, bch->elp, errloc); 1026 if (err != nroots) 1027 err = -1; 1028 } 1029 if (err > 0) { 1030 /* post-process raw error locations for easier correction */ 1031 nbits = (len*8)+bch->ecc_bits; 1032 for (i = 0; i < err; i++) { 1033 if (errloc[i] >= nbits) { 1034 err = -1; 1035 break; 1036 } 1037 errloc[i] = nbits-1-errloc[i]; 1038 errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7)); 1039 } 1040 } 1041 return (err >= 0) ? err : -EBADMSG; 1042 } 1043 1044 /* 1045 * generate Galois field lookup tables 1046 */ 1047 static int build_gf_tables(struct bch_control *bch, unsigned int poly) 1048 { 1049 unsigned int i, x = 1; 1050 const unsigned int k = 1 << deg(poly); 1051 1052 /* primitive polynomial must be of degree m */ 1053 if (k != (1u << GF_M(bch))) 1054 return -1; 1055 1056 for (i = 0; i < GF_N(bch); i++) { 1057 bch->a_pow_tab[i] = x; 1058 bch->a_log_tab[x] = i; 1059 if (i && (x == 1)) 1060 /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ 1061 return -1; 1062 x <<= 1; 1063 if (x & k) 1064 x ^= poly; 1065 } 1066 bch->a_pow_tab[GF_N(bch)] = 1; 1067 bch->a_log_tab[0] = 0; 1068 1069 return 0; 1070 } 1071 1072 /* 1073 * compute generator polynomial remainder tables for fast encoding 1074 */ 1075 static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) 1076 { 1077 int i, j, b, d; 1078 uint32_t data, hi, lo, *tab; 1079 const int l = BCH_ECC_WORDS(bch); 1080 const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); 1081 const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); 1082 1083 memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); 1084 1085 for (i = 0; i < 256; i++) { 1086 /* p(X)=i is a small polynomial of weight <= 8 */ 1087 for (b = 0; b < 4; b++) { 1088 /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ 1089 tab = bch->mod8_tab + (b*256+i)*l; 1090 data = i << (8*b); 1091 while (data) { 1092 d = deg(data); 1093 /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ 1094 data ^= g[0] >> (31-d); 1095 for (j = 0; j < ecclen; j++) { 1096 hi = (d < 31) ? g[j] << (d+1) : 0; 1097 lo = (j+1 < plen) ? 1098 g[j+1] >> (31-d) : 0; 1099 tab[j] ^= hi|lo; 1100 } 1101 } 1102 } 1103 } 1104 } 1105 1106 /* 1107 * build a base for factoring degree 2 polynomials 1108 */ 1109 static int build_deg2_base(struct bch_control *bch) 1110 { 1111 const int m = GF_M(bch); 1112 int i, j, r; 1113 unsigned int sum, x, y, remaining, ak = 0, xi[m]; 1114 1115 /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ 1116 for (i = 0; i < m; i++) { 1117 for (j = 0, sum = 0; j < m; j++) 1118 sum ^= a_pow(bch, i*(1 << j)); 1119 1120 if (sum) { 1121 ak = bch->a_pow_tab[i]; 1122 break; 1123 } 1124 } 1125 /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ 1126 remaining = m; 1127 memset(xi, 0, sizeof(xi)); 1128 1129 for (x = 0; (x <= GF_N(bch)) && remaining; x++) { 1130 y = gf_sqr(bch, x)^x; 1131 for (i = 0; i < 2; i++) { 1132 r = a_log(bch, y); 1133 if (y && (r < m) && !xi[r]) { 1134 bch->xi_tab[r] = x; 1135 xi[r] = 1; 1136 remaining--; 1137 dbg("x%d = %x\n", r, x); 1138 break; 1139 } 1140 y ^= ak; 1141 } 1142 } 1143 /* should not happen but check anyway */ 1144 return remaining ? -1 : 0; 1145 } 1146 1147 static void *bch_alloc(size_t size, int *err) 1148 { 1149 void *ptr; 1150 1151 ptr = kmalloc(size, GFP_KERNEL); 1152 if (ptr == NULL) 1153 *err = 1; 1154 return ptr; 1155 } 1156 1157 /* 1158 * compute generator polynomial for given (m,t) parameters. 1159 */ 1160 static uint32_t *compute_generator_polynomial(struct bch_control *bch) 1161 { 1162 const unsigned int m = GF_M(bch); 1163 const unsigned int t = GF_T(bch); 1164 int n, err = 0; 1165 unsigned int i, j, nbits, r, word, *roots; 1166 struct gf_poly *g; 1167 uint32_t *genpoly; 1168 1169 g = bch_alloc(GF_POLY_SZ(m*t), &err); 1170 roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); 1171 genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); 1172 1173 if (err) { 1174 kfree(genpoly); 1175 genpoly = NULL; 1176 goto finish; 1177 } 1178 1179 /* enumerate all roots of g(X) */ 1180 memset(roots , 0, (bch->n+1)*sizeof(*roots)); 1181 for (i = 0; i < t; i++) { 1182 for (j = 0, r = 2*i+1; j < m; j++) { 1183 roots[r] = 1; 1184 r = mod_s(bch, 2*r); 1185 } 1186 } 1187 /* build generator polynomial g(X) */ 1188 g->deg = 0; 1189 g->c[0] = 1; 1190 for (i = 0; i < GF_N(bch); i++) { 1191 if (roots[i]) { 1192 /* multiply g(X) by (X+root) */ 1193 r = bch->a_pow_tab[i]; 1194 g->c[g->deg+1] = 1; 1195 for (j = g->deg; j > 0; j--) 1196 g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; 1197 1198 g->c[0] = gf_mul(bch, g->c[0], r); 1199 g->deg++; 1200 } 1201 } 1202 /* store left-justified binary representation of g(X) */ 1203 n = g->deg+1; 1204 i = 0; 1205 1206 while (n > 0) { 1207 nbits = (n > 32) ? 32 : n; 1208 for (j = 0, word = 0; j < nbits; j++) { 1209 if (g->c[n-1-j]) 1210 word |= 1u << (31-j); 1211 } 1212 genpoly[i++] = word; 1213 n -= nbits; 1214 } 1215 bch->ecc_bits = g->deg; 1216 1217 finish: 1218 kfree(g); 1219 kfree(roots); 1220 1221 return genpoly; 1222 } 1223 1224 /** 1225 * init_bch - initialize a BCH encoder/decoder 1226 * @m: Galois field order, should be in the range 5-15 1227 * @t: maximum error correction capability, in bits 1228 * @prim_poly: user-provided primitive polynomial (or 0 to use default) 1229 * 1230 * Returns: 1231 * a newly allocated BCH control structure if successful, NULL otherwise 1232 * 1233 * This initialization can take some time, as lookup tables are built for fast 1234 * encoding/decoding; make sure not to call this function from a time critical 1235 * path. Usually, init_bch() should be called on module/driver init and 1236 * free_bch() should be called to release memory on exit. 1237 * 1238 * You may provide your own primitive polynomial of degree @m in argument 1239 * @prim_poly, or let init_bch() use its default polynomial. 1240 * 1241 * Once init_bch() has successfully returned a pointer to a newly allocated 1242 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of 1243 * the structure. 1244 */ 1245 struct bch_control *init_bch(int m, int t, unsigned int prim_poly) 1246 { 1247 int err = 0; 1248 unsigned int i, words; 1249 uint32_t *genpoly; 1250 struct bch_control *bch = NULL; 1251 1252 const int min_m = 5; 1253 const int max_m = 15; 1254 1255 /* default primitive polynomials */ 1256 static const unsigned int prim_poly_tab[] = { 1257 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, 1258 0x402b, 0x8003, 1259 }; 1260 1261 #if defined(CONFIG_BCH_CONST_PARAMS) 1262 if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { 1263 printk(KERN_ERR "bch encoder/decoder was configured to support " 1264 "parameters m=%d, t=%d only!\n", 1265 CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); 1266 goto fail; 1267 } 1268 #endif 1269 if ((m < min_m) || (m > max_m)) 1270 /* 1271 * values of m greater than 15 are not currently supported; 1272 * supporting m > 15 would require changing table base type 1273 * (uint16_t) and a small patch in matrix transposition 1274 */ 1275 goto fail; 1276 1277 /* sanity checks */ 1278 if ((t < 1) || (m*t >= ((1 << m)-1))) 1279 /* invalid t value */ 1280 goto fail; 1281 1282 /* select a primitive polynomial for generating GF(2^m) */ 1283 if (prim_poly == 0) 1284 prim_poly = prim_poly_tab[m-min_m]; 1285 1286 bch = kzalloc(sizeof(*bch), GFP_KERNEL); 1287 if (bch == NULL) 1288 goto fail; 1289 1290 bch->m = m; 1291 bch->t = t; 1292 bch->n = (1 << m)-1; 1293 words = DIV_ROUND_UP(m*t, 32); 1294 bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); 1295 bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); 1296 bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); 1297 bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); 1298 bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err); 1299 bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); 1300 bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err); 1301 bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err); 1302 bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err); 1303 bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); 1304 1305 for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) 1306 bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); 1307 1308 if (err) 1309 goto fail; 1310 1311 err = build_gf_tables(bch, prim_poly); 1312 if (err) 1313 goto fail; 1314 1315 /* use generator polynomial for computing encoding tables */ 1316 genpoly = compute_generator_polynomial(bch); 1317 if (genpoly == NULL) 1318 goto fail; 1319 1320 build_mod8_tables(bch, genpoly); 1321 kfree(genpoly); 1322 1323 err = build_deg2_base(bch); 1324 if (err) 1325 goto fail; 1326 1327 return bch; 1328 1329 fail: 1330 free_bch(bch); 1331 return NULL; 1332 } 1333 1334 /** 1335 * free_bch - free the BCH control structure 1336 * @bch: BCH control structure to release 1337 */ 1338 void free_bch(struct bch_control *bch) 1339 { 1340 unsigned int i; 1341 1342 if (bch) { 1343 kfree(bch->a_pow_tab); 1344 kfree(bch->a_log_tab); 1345 kfree(bch->mod8_tab); 1346 kfree(bch->ecc_buf); 1347 kfree(bch->ecc_buf2); 1348 kfree(bch->xi_tab); 1349 kfree(bch->syn); 1350 kfree(bch->cache); 1351 kfree(bch->elp); 1352 1353 for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) 1354 kfree(bch->poly_2t[i]); 1355 1356 kfree(bch); 1357 } 1358 } 1359