1 /* 2 * Generic binary BCH encoding/decoding library 3 * 4 * SPDX-License-Identifier: GPL-2.0 5 * 6 * Copyright © 2011 Parrot S.A. 7 * 8 * Author: Ivan Djelic <ivan.djelic@parrot.com> 9 * 10 * Description: 11 * 12 * This library provides runtime configurable encoding/decoding of binary 13 * Bose-Chaudhuri-Hocquenghem (BCH) codes. 14 * 15 * Call init_bch to get a pointer to a newly allocated bch_control structure for 16 * the given m (Galois field order), t (error correction capability) and 17 * (optional) primitive polynomial parameters. 18 * 19 * Call encode_bch to compute and store ecc parity bytes to a given buffer. 20 * Call decode_bch to detect and locate errors in received data. 21 * 22 * On systems supporting hw BCH features, intermediate results may be provided 23 * to decode_bch in order to skip certain steps. See decode_bch() documentation 24 * for details. 25 * 26 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of 27 * parameters m and t; thus allowing extra compiler optimizations and providing 28 * better (up to 2x) encoding performance. Using this option makes sense when 29 * (m,t) are fixed and known in advance, e.g. when using BCH error correction 30 * on a particular NAND flash device. 31 * 32 * Algorithmic details: 33 * 34 * Encoding is performed by processing 32 input bits in parallel, using 4 35 * remainder lookup tables. 36 * 37 * The final stage of decoding involves the following internal steps: 38 * a. Syndrome computation 39 * b. Error locator polynomial computation using Berlekamp-Massey algorithm 40 * c. Error locator root finding (by far the most expensive step) 41 * 42 * In this implementation, step c is not performed using the usual Chien search. 43 * Instead, an alternative approach described in [1] is used. It consists in 44 * factoring the error locator polynomial using the Berlekamp Trace algorithm 45 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial 46 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields 47 * much better performance than Chien search for usual (m,t) values (typically 48 * m >= 13, t < 32, see [1]). 49 * 50 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields 51 * of characteristic 2, in: Western European Workshop on Research in Cryptology 52 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. 53 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over 54 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. 55 */ 56 57 #ifndef USE_HOSTCC 58 #include <common.h> 59 #include <ubi_uboot.h> 60 61 #include <linux/bitops.h> 62 #else 63 #include <errno.h> 64 #include <endian.h> 65 #include <stdint.h> 66 #include <stdlib.h> 67 #include <string.h> 68 69 #undef cpu_to_be32 70 #define cpu_to_be32 htobe32 71 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) 72 #define kmalloc(size, flags) malloc(size) 73 #define kzalloc(size, flags) calloc(1, size) 74 #define kfree free 75 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) 76 #endif 77 78 #include <asm/byteorder.h> 79 #include <linux/bch.h> 80 81 #if defined(CONFIG_BCH_CONST_PARAMS) 82 #define GF_M(_p) (CONFIG_BCH_CONST_M) 83 #define GF_T(_p) (CONFIG_BCH_CONST_T) 84 #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) 85 #else 86 #define GF_M(_p) ((_p)->m) 87 #define GF_T(_p) ((_p)->t) 88 #define GF_N(_p) ((_p)->n) 89 #endif 90 91 #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) 92 #define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) 93 94 #ifndef dbg 95 #define dbg(_fmt, args...) do {} while (0) 96 #endif 97 98 /* 99 * represent a polynomial over GF(2^m) 100 */ 101 struct gf_poly { 102 unsigned int deg; /* polynomial degree */ 103 unsigned int c[0]; /* polynomial terms */ 104 }; 105 106 /* given its degree, compute a polynomial size in bytes */ 107 #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) 108 109 /* polynomial of degree 1 */ 110 struct gf_poly_deg1 { 111 struct gf_poly poly; 112 unsigned int c[2]; 113 }; 114 115 #ifdef USE_HOSTCC 116 static int fls(int x) 117 { 118 int r = 32; 119 120 if (!x) 121 return 0; 122 if (!(x & 0xffff0000u)) { 123 x <<= 16; 124 r -= 16; 125 } 126 if (!(x & 0xff000000u)) { 127 x <<= 8; 128 r -= 8; 129 } 130 if (!(x & 0xf0000000u)) { 131 x <<= 4; 132 r -= 4; 133 } 134 if (!(x & 0xc0000000u)) { 135 x <<= 2; 136 r -= 2; 137 } 138 if (!(x & 0x80000000u)) { 139 x <<= 1; 140 r -= 1; 141 } 142 return r; 143 } 144 #endif 145 146 /* 147 * same as encode_bch(), but process input data one byte at a time 148 */ 149 static void encode_bch_unaligned(struct bch_control *bch, 150 const unsigned char *data, unsigned int len, 151 uint32_t *ecc) 152 { 153 int i; 154 const uint32_t *p; 155 const int l = BCH_ECC_WORDS(bch)-1; 156 157 while (len--) { 158 p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); 159 160 for (i = 0; i < l; i++) 161 ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); 162 163 ecc[l] = (ecc[l] << 8)^(*p); 164 } 165 } 166 167 /* 168 * convert ecc bytes to aligned, zero-padded 32-bit ecc words 169 */ 170 static void load_ecc8(struct bch_control *bch, uint32_t *dst, 171 const uint8_t *src) 172 { 173 uint8_t pad[4] = {0, 0, 0, 0}; 174 unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; 175 176 for (i = 0; i < nwords; i++, src += 4) 177 dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; 178 179 memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); 180 dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; 181 } 182 183 /* 184 * convert 32-bit ecc words to ecc bytes 185 */ 186 static void store_ecc8(struct bch_control *bch, uint8_t *dst, 187 const uint32_t *src) 188 { 189 uint8_t pad[4]; 190 unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; 191 192 for (i = 0; i < nwords; i++) { 193 *dst++ = (src[i] >> 24); 194 *dst++ = (src[i] >> 16) & 0xff; 195 *dst++ = (src[i] >> 8) & 0xff; 196 *dst++ = (src[i] >> 0) & 0xff; 197 } 198 pad[0] = (src[nwords] >> 24); 199 pad[1] = (src[nwords] >> 16) & 0xff; 200 pad[2] = (src[nwords] >> 8) & 0xff; 201 pad[3] = (src[nwords] >> 0) & 0xff; 202 memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); 203 } 204 205 /** 206 * encode_bch - calculate BCH ecc parity of data 207 * @bch: BCH control structure 208 * @data: data to encode 209 * @len: data length in bytes 210 * @ecc: ecc parity data, must be initialized by caller 211 * 212 * The @ecc parity array is used both as input and output parameter, in order to 213 * allow incremental computations. It should be of the size indicated by member 214 * @ecc_bytes of @bch, and should be initialized to 0 before the first call. 215 * 216 * The exact number of computed ecc parity bits is given by member @ecc_bits of 217 * @bch; it may be less than m*t for large values of t. 218 */ 219 void encode_bch(struct bch_control *bch, const uint8_t *data, 220 unsigned int len, uint8_t *ecc) 221 { 222 const unsigned int l = BCH_ECC_WORDS(bch)-1; 223 unsigned int i, mlen; 224 unsigned long m; 225 uint32_t w, r[l+1]; 226 const uint32_t * const tab0 = bch->mod8_tab; 227 const uint32_t * const tab1 = tab0 + 256*(l+1); 228 const uint32_t * const tab2 = tab1 + 256*(l+1); 229 const uint32_t * const tab3 = tab2 + 256*(l+1); 230 const uint32_t *pdata, *p0, *p1, *p2, *p3; 231 232 if (ecc) { 233 /* load ecc parity bytes into internal 32-bit buffer */ 234 load_ecc8(bch, bch->ecc_buf, ecc); 235 } else { 236 memset(bch->ecc_buf, 0, sizeof(r)); 237 } 238 239 /* process first unaligned data bytes */ 240 m = ((unsigned long)data) & 3; 241 if (m) { 242 mlen = (len < (4-m)) ? len : 4-m; 243 encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); 244 data += mlen; 245 len -= mlen; 246 } 247 248 /* process 32-bit aligned data words */ 249 pdata = (uint32_t *)data; 250 mlen = len/4; 251 data += 4*mlen; 252 len -= 4*mlen; 253 memcpy(r, bch->ecc_buf, sizeof(r)); 254 255 /* 256 * split each 32-bit word into 4 polynomials of weight 8 as follows: 257 * 258 * 31 ...24 23 ...16 15 ... 8 7 ... 0 259 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt 260 * tttttttt mod g = r0 (precomputed) 261 * zzzzzzzz 00000000 mod g = r1 (precomputed) 262 * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) 263 * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) 264 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 265 */ 266 while (mlen--) { 267 /* input data is read in big-endian format */ 268 w = r[0]^cpu_to_be32(*pdata++); 269 p0 = tab0 + (l+1)*((w >> 0) & 0xff); 270 p1 = tab1 + (l+1)*((w >> 8) & 0xff); 271 p2 = tab2 + (l+1)*((w >> 16) & 0xff); 272 p3 = tab3 + (l+1)*((w >> 24) & 0xff); 273 274 for (i = 0; i < l; i++) 275 r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; 276 277 r[l] = p0[l]^p1[l]^p2[l]^p3[l]; 278 } 279 memcpy(bch->ecc_buf, r, sizeof(r)); 280 281 /* process last unaligned bytes */ 282 if (len) 283 encode_bch_unaligned(bch, data, len, bch->ecc_buf); 284 285 /* store ecc parity bytes into original parity buffer */ 286 if (ecc) 287 store_ecc8(bch, ecc, bch->ecc_buf); 288 } 289 290 static inline int modulo(struct bch_control *bch, unsigned int v) 291 { 292 const unsigned int n = GF_N(bch); 293 while (v >= n) { 294 v -= n; 295 v = (v & n) + (v >> GF_M(bch)); 296 } 297 return v; 298 } 299 300 /* 301 * shorter and faster modulo function, only works when v < 2N. 302 */ 303 static inline int mod_s(struct bch_control *bch, unsigned int v) 304 { 305 const unsigned int n = GF_N(bch); 306 return (v < n) ? v : v-n; 307 } 308 309 static inline int deg(unsigned int poly) 310 { 311 /* polynomial degree is the most-significant bit index */ 312 return fls(poly)-1; 313 } 314 315 static inline int parity(unsigned int x) 316 { 317 /* 318 * public domain code snippet, lifted from 319 * http://www-graphics.stanford.edu/~seander/bithacks.html 320 */ 321 x ^= x >> 1; 322 x ^= x >> 2; 323 x = (x & 0x11111111U) * 0x11111111U; 324 return (x >> 28) & 1; 325 } 326 327 /* Galois field basic operations: multiply, divide, inverse, etc. */ 328 329 static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, 330 unsigned int b) 331 { 332 return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ 333 bch->a_log_tab[b])] : 0; 334 } 335 336 static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) 337 { 338 return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; 339 } 340 341 static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, 342 unsigned int b) 343 { 344 return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ 345 GF_N(bch)-bch->a_log_tab[b])] : 0; 346 } 347 348 static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) 349 { 350 return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; 351 } 352 353 static inline unsigned int a_pow(struct bch_control *bch, int i) 354 { 355 return bch->a_pow_tab[modulo(bch, i)]; 356 } 357 358 static inline int a_log(struct bch_control *bch, unsigned int x) 359 { 360 return bch->a_log_tab[x]; 361 } 362 363 static inline int a_ilog(struct bch_control *bch, unsigned int x) 364 { 365 return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); 366 } 367 368 /* 369 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t 370 */ 371 static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, 372 unsigned int *syn) 373 { 374 int i, j, s; 375 unsigned int m; 376 uint32_t poly; 377 const int t = GF_T(bch); 378 379 s = bch->ecc_bits; 380 381 /* make sure extra bits in last ecc word are cleared */ 382 m = ((unsigned int)s) & 31; 383 if (m) 384 ecc[s/32] &= ~((1u << (32-m))-1); 385 memset(syn, 0, 2*t*sizeof(*syn)); 386 387 /* compute v(a^j) for j=1 .. 2t-1 */ 388 do { 389 poly = *ecc++; 390 s -= 32; 391 while (poly) { 392 i = deg(poly); 393 for (j = 0; j < 2*t; j += 2) 394 syn[j] ^= a_pow(bch, (j+1)*(i+s)); 395 396 poly ^= (1 << i); 397 } 398 } while (s > 0); 399 400 /* v(a^(2j)) = v(a^j)^2 */ 401 for (j = 0; j < t; j++) 402 syn[2*j+1] = gf_sqr(bch, syn[j]); 403 } 404 405 static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) 406 { 407 memcpy(dst, src, GF_POLY_SZ(src->deg)); 408 } 409 410 static int compute_error_locator_polynomial(struct bch_control *bch, 411 const unsigned int *syn) 412 { 413 const unsigned int t = GF_T(bch); 414 const unsigned int n = GF_N(bch); 415 unsigned int i, j, tmp, l, pd = 1, d = syn[0]; 416 struct gf_poly *elp = bch->elp; 417 struct gf_poly *pelp = bch->poly_2t[0]; 418 struct gf_poly *elp_copy = bch->poly_2t[1]; 419 int k, pp = -1; 420 421 memset(pelp, 0, GF_POLY_SZ(2*t)); 422 memset(elp, 0, GF_POLY_SZ(2*t)); 423 424 pelp->deg = 0; 425 pelp->c[0] = 1; 426 elp->deg = 0; 427 elp->c[0] = 1; 428 429 /* use simplified binary Berlekamp-Massey algorithm */ 430 for (i = 0; (i < t) && (elp->deg <= t); i++) { 431 if (d) { 432 k = 2*i-pp; 433 gf_poly_copy(elp_copy, elp); 434 /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ 435 tmp = a_log(bch, d)+n-a_log(bch, pd); 436 for (j = 0; j <= pelp->deg; j++) { 437 if (pelp->c[j]) { 438 l = a_log(bch, pelp->c[j]); 439 elp->c[j+k] ^= a_pow(bch, tmp+l); 440 } 441 } 442 /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ 443 tmp = pelp->deg+k; 444 if (tmp > elp->deg) { 445 elp->deg = tmp; 446 gf_poly_copy(pelp, elp_copy); 447 pd = d; 448 pp = 2*i; 449 } 450 } 451 /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ 452 if (i < t-1) { 453 d = syn[2*i+2]; 454 for (j = 1; j <= elp->deg; j++) 455 d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); 456 } 457 } 458 dbg("elp=%s\n", gf_poly_str(elp)); 459 return (elp->deg > t) ? -1 : (int)elp->deg; 460 } 461 462 /* 463 * solve a m x m linear system in GF(2) with an expected number of solutions, 464 * and return the number of found solutions 465 */ 466 static int solve_linear_system(struct bch_control *bch, unsigned int *rows, 467 unsigned int *sol, int nsol) 468 { 469 const int m = GF_M(bch); 470 unsigned int tmp, mask; 471 int rem, c, r, p, k, param[m]; 472 473 k = 0; 474 mask = 1 << m; 475 476 /* Gaussian elimination */ 477 for (c = 0; c < m; c++) { 478 rem = 0; 479 p = c-k; 480 /* find suitable row for elimination */ 481 for (r = p; r < m; r++) { 482 if (rows[r] & mask) { 483 if (r != p) { 484 tmp = rows[r]; 485 rows[r] = rows[p]; 486 rows[p] = tmp; 487 } 488 rem = r+1; 489 break; 490 } 491 } 492 if (rem) { 493 /* perform elimination on remaining rows */ 494 tmp = rows[p]; 495 for (r = rem; r < m; r++) { 496 if (rows[r] & mask) 497 rows[r] ^= tmp; 498 } 499 } else { 500 /* elimination not needed, store defective row index */ 501 param[k++] = c; 502 } 503 mask >>= 1; 504 } 505 /* rewrite system, inserting fake parameter rows */ 506 if (k > 0) { 507 p = k; 508 for (r = m-1; r >= 0; r--) { 509 if ((r > m-1-k) && rows[r]) 510 /* system has no solution */ 511 return 0; 512 513 rows[r] = (p && (r == param[p-1])) ? 514 p--, 1u << (m-r) : rows[r-p]; 515 } 516 } 517 518 if (nsol != (1 << k)) 519 /* unexpected number of solutions */ 520 return 0; 521 522 for (p = 0; p < nsol; p++) { 523 /* set parameters for p-th solution */ 524 for (c = 0; c < k; c++) 525 rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); 526 527 /* compute unique solution */ 528 tmp = 0; 529 for (r = m-1; r >= 0; r--) { 530 mask = rows[r] & (tmp|1); 531 tmp |= parity(mask) << (m-r); 532 } 533 sol[p] = tmp >> 1; 534 } 535 return nsol; 536 } 537 538 /* 539 * this function builds and solves a linear system for finding roots of a degree 540 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). 541 */ 542 static int find_affine4_roots(struct bch_control *bch, unsigned int a, 543 unsigned int b, unsigned int c, 544 unsigned int *roots) 545 { 546 int i, j, k; 547 const int m = GF_M(bch); 548 unsigned int mask = 0xff, t, rows[16] = {0,}; 549 550 j = a_log(bch, b); 551 k = a_log(bch, a); 552 rows[0] = c; 553 554 /* buid linear system to solve X^4+aX^2+bX+c = 0 */ 555 for (i = 0; i < m; i++) { 556 rows[i+1] = bch->a_pow_tab[4*i]^ 557 (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ 558 (b ? bch->a_pow_tab[mod_s(bch, j)] : 0); 559 j++; 560 k += 2; 561 } 562 /* 563 * transpose 16x16 matrix before passing it to linear solver 564 * warning: this code assumes m < 16 565 */ 566 for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { 567 for (k = 0; k < 16; k = (k+j+1) & ~j) { 568 t = ((rows[k] >> j)^rows[k+j]) & mask; 569 rows[k] ^= (t << j); 570 rows[k+j] ^= t; 571 } 572 } 573 return solve_linear_system(bch, rows, roots, 4); 574 } 575 576 /* 577 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) 578 */ 579 static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, 580 unsigned int *roots) 581 { 582 int n = 0; 583 584 if (poly->c[0]) 585 /* poly[X] = bX+c with c!=0, root=c/b */ 586 roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ 587 bch->a_log_tab[poly->c[1]]); 588 return n; 589 } 590 591 /* 592 * compute roots of a degree 2 polynomial over GF(2^m) 593 */ 594 static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, 595 unsigned int *roots) 596 { 597 int n = 0, i, l0, l1, l2; 598 unsigned int u, v, r; 599 600 if (poly->c[0] && poly->c[1]) { 601 602 l0 = bch->a_log_tab[poly->c[0]]; 603 l1 = bch->a_log_tab[poly->c[1]]; 604 l2 = bch->a_log_tab[poly->c[2]]; 605 606 /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ 607 u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); 608 /* 609 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): 610 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = 611 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) 612 * i.e. r and r+1 are roots iff Tr(u)=0 613 */ 614 r = 0; 615 v = u; 616 while (v) { 617 i = deg(v); 618 r ^= bch->xi_tab[i]; 619 v ^= (1 << i); 620 } 621 /* verify root */ 622 if ((gf_sqr(bch, r)^r) == u) { 623 /* reverse z=a/bX transformation and compute log(1/r) */ 624 roots[n++] = modulo(bch, 2*GF_N(bch)-l1- 625 bch->a_log_tab[r]+l2); 626 roots[n++] = modulo(bch, 2*GF_N(bch)-l1- 627 bch->a_log_tab[r^1]+l2); 628 } 629 } 630 return n; 631 } 632 633 /* 634 * compute roots of a degree 3 polynomial over GF(2^m) 635 */ 636 static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, 637 unsigned int *roots) 638 { 639 int i, n = 0; 640 unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; 641 642 if (poly->c[0]) { 643 /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ 644 e3 = poly->c[3]; 645 c2 = gf_div(bch, poly->c[0], e3); 646 b2 = gf_div(bch, poly->c[1], e3); 647 a2 = gf_div(bch, poly->c[2], e3); 648 649 /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ 650 c = gf_mul(bch, a2, c2); /* c = a2c2 */ 651 b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */ 652 a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */ 653 654 /* find the 4 roots of this affine polynomial */ 655 if (find_affine4_roots(bch, a, b, c, tmp) == 4) { 656 /* remove a2 from final list of roots */ 657 for (i = 0; i < 4; i++) { 658 if (tmp[i] != a2) 659 roots[n++] = a_ilog(bch, tmp[i]); 660 } 661 } 662 } 663 return n; 664 } 665 666 /* 667 * compute roots of a degree 4 polynomial over GF(2^m) 668 */ 669 static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, 670 unsigned int *roots) 671 { 672 int i, l, n = 0; 673 unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; 674 675 if (poly->c[0] == 0) 676 return 0; 677 678 /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ 679 e4 = poly->c[4]; 680 d = gf_div(bch, poly->c[0], e4); 681 c = gf_div(bch, poly->c[1], e4); 682 b = gf_div(bch, poly->c[2], e4); 683 a = gf_div(bch, poly->c[3], e4); 684 685 /* use Y=1/X transformation to get an affine polynomial */ 686 if (a) { 687 /* first, eliminate cX by using z=X+e with ae^2+c=0 */ 688 if (c) { 689 /* compute e such that e^2 = c/a */ 690 f = gf_div(bch, c, a); 691 l = a_log(bch, f); 692 l += (l & 1) ? GF_N(bch) : 0; 693 e = a_pow(bch, l/2); 694 /* 695 * use transformation z=X+e: 696 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d 697 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d 698 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d 699 * z^4 + az^3 + b'z^2 + d' 700 */ 701 d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; 702 b = gf_mul(bch, a, e)^b; 703 } 704 /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ 705 if (d == 0) 706 /* assume all roots have multiplicity 1 */ 707 return 0; 708 709 c2 = gf_inv(bch, d); 710 b2 = gf_div(bch, a, d); 711 a2 = gf_div(bch, b, d); 712 } else { 713 /* polynomial is already affine */ 714 c2 = d; 715 b2 = c; 716 a2 = b; 717 } 718 /* find the 4 roots of this affine polynomial */ 719 if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { 720 for (i = 0; i < 4; i++) { 721 /* post-process roots (reverse transformations) */ 722 f = a ? gf_inv(bch, roots[i]) : roots[i]; 723 roots[i] = a_ilog(bch, f^e); 724 } 725 n = 4; 726 } 727 return n; 728 } 729 730 /* 731 * build monic, log-based representation of a polynomial 732 */ 733 static void gf_poly_logrep(struct bch_control *bch, 734 const struct gf_poly *a, int *rep) 735 { 736 int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); 737 738 /* represent 0 values with -1; warning, rep[d] is not set to 1 */ 739 for (i = 0; i < d; i++) 740 rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; 741 } 742 743 /* 744 * compute polynomial Euclidean division remainder in GF(2^m)[X] 745 */ 746 static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, 747 const struct gf_poly *b, int *rep) 748 { 749 int la, p, m; 750 unsigned int i, j, *c = a->c; 751 const unsigned int d = b->deg; 752 753 if (a->deg < d) 754 return; 755 756 /* reuse or compute log representation of denominator */ 757 if (!rep) { 758 rep = bch->cache; 759 gf_poly_logrep(bch, b, rep); 760 } 761 762 for (j = a->deg; j >= d; j--) { 763 if (c[j]) { 764 la = a_log(bch, c[j]); 765 p = j-d; 766 for (i = 0; i < d; i++, p++) { 767 m = rep[i]; 768 if (m >= 0) 769 c[p] ^= bch->a_pow_tab[mod_s(bch, 770 m+la)]; 771 } 772 } 773 } 774 a->deg = d-1; 775 while (!c[a->deg] && a->deg) 776 a->deg--; 777 } 778 779 /* 780 * compute polynomial Euclidean division quotient in GF(2^m)[X] 781 */ 782 static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, 783 const struct gf_poly *b, struct gf_poly *q) 784 { 785 if (a->deg >= b->deg) { 786 q->deg = a->deg-b->deg; 787 /* compute a mod b (modifies a) */ 788 gf_poly_mod(bch, a, b, NULL); 789 /* quotient is stored in upper part of polynomial a */ 790 memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); 791 } else { 792 q->deg = 0; 793 q->c[0] = 0; 794 } 795 } 796 797 /* 798 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] 799 */ 800 static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, 801 struct gf_poly *b) 802 { 803 struct gf_poly *tmp; 804 805 dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); 806 807 if (a->deg < b->deg) { 808 tmp = b; 809 b = a; 810 a = tmp; 811 } 812 813 while (b->deg > 0) { 814 gf_poly_mod(bch, a, b, NULL); 815 tmp = b; 816 b = a; 817 a = tmp; 818 } 819 820 dbg("%s\n", gf_poly_str(a)); 821 822 return a; 823 } 824 825 /* 826 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f 827 * This is used in Berlekamp Trace algorithm for splitting polynomials 828 */ 829 static void compute_trace_bk_mod(struct bch_control *bch, int k, 830 const struct gf_poly *f, struct gf_poly *z, 831 struct gf_poly *out) 832 { 833 const int m = GF_M(bch); 834 int i, j; 835 836 /* z contains z^2j mod f */ 837 z->deg = 1; 838 z->c[0] = 0; 839 z->c[1] = bch->a_pow_tab[k]; 840 841 out->deg = 0; 842 memset(out, 0, GF_POLY_SZ(f->deg)); 843 844 /* compute f log representation only once */ 845 gf_poly_logrep(bch, f, bch->cache); 846 847 for (i = 0; i < m; i++) { 848 /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ 849 for (j = z->deg; j >= 0; j--) { 850 out->c[j] ^= z->c[j]; 851 z->c[2*j] = gf_sqr(bch, z->c[j]); 852 z->c[2*j+1] = 0; 853 } 854 if (z->deg > out->deg) 855 out->deg = z->deg; 856 857 if (i < m-1) { 858 z->deg *= 2; 859 /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ 860 gf_poly_mod(bch, z, f, bch->cache); 861 } 862 } 863 while (!out->c[out->deg] && out->deg) 864 out->deg--; 865 866 dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); 867 } 868 869 /* 870 * factor a polynomial using Berlekamp Trace algorithm (BTA) 871 */ 872 static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, 873 struct gf_poly **g, struct gf_poly **h) 874 { 875 struct gf_poly *f2 = bch->poly_2t[0]; 876 struct gf_poly *q = bch->poly_2t[1]; 877 struct gf_poly *tk = bch->poly_2t[2]; 878 struct gf_poly *z = bch->poly_2t[3]; 879 struct gf_poly *gcd; 880 881 dbg("factoring %s...\n", gf_poly_str(f)); 882 883 *g = f; 884 *h = NULL; 885 886 /* tk = Tr(a^k.X) mod f */ 887 compute_trace_bk_mod(bch, k, f, z, tk); 888 889 if (tk->deg > 0) { 890 /* compute g = gcd(f, tk) (destructive operation) */ 891 gf_poly_copy(f2, f); 892 gcd = gf_poly_gcd(bch, f2, tk); 893 if (gcd->deg < f->deg) { 894 /* compute h=f/gcd(f,tk); this will modify f and q */ 895 gf_poly_div(bch, f, gcd, q); 896 /* store g and h in-place (clobbering f) */ 897 *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; 898 gf_poly_copy(*g, gcd); 899 gf_poly_copy(*h, q); 900 } 901 } 902 } 903 904 /* 905 * find roots of a polynomial, using BTZ algorithm; see the beginning of this 906 * file for details 907 */ 908 static int find_poly_roots(struct bch_control *bch, unsigned int k, 909 struct gf_poly *poly, unsigned int *roots) 910 { 911 int cnt; 912 struct gf_poly *f1, *f2; 913 914 switch (poly->deg) { 915 /* handle low degree polynomials with ad hoc techniques */ 916 case 1: 917 cnt = find_poly_deg1_roots(bch, poly, roots); 918 break; 919 case 2: 920 cnt = find_poly_deg2_roots(bch, poly, roots); 921 break; 922 case 3: 923 cnt = find_poly_deg3_roots(bch, poly, roots); 924 break; 925 case 4: 926 cnt = find_poly_deg4_roots(bch, poly, roots); 927 break; 928 default: 929 /* factor polynomial using Berlekamp Trace Algorithm (BTA) */ 930 cnt = 0; 931 if (poly->deg && (k <= GF_M(bch))) { 932 factor_polynomial(bch, k, poly, &f1, &f2); 933 if (f1) 934 cnt += find_poly_roots(bch, k+1, f1, roots); 935 if (f2) 936 cnt += find_poly_roots(bch, k+1, f2, roots+cnt); 937 } 938 break; 939 } 940 return cnt; 941 } 942 943 #if defined(USE_CHIEN_SEARCH) 944 /* 945 * exhaustive root search (Chien) implementation - not used, included only for 946 * reference/comparison tests 947 */ 948 static int chien_search(struct bch_control *bch, unsigned int len, 949 struct gf_poly *p, unsigned int *roots) 950 { 951 int m; 952 unsigned int i, j, syn, syn0, count = 0; 953 const unsigned int k = 8*len+bch->ecc_bits; 954 955 /* use a log-based representation of polynomial */ 956 gf_poly_logrep(bch, p, bch->cache); 957 bch->cache[p->deg] = 0; 958 syn0 = gf_div(bch, p->c[0], p->c[p->deg]); 959 960 for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { 961 /* compute elp(a^i) */ 962 for (j = 1, syn = syn0; j <= p->deg; j++) { 963 m = bch->cache[j]; 964 if (m >= 0) 965 syn ^= a_pow(bch, m+j*i); 966 } 967 if (syn == 0) { 968 roots[count++] = GF_N(bch)-i; 969 if (count == p->deg) 970 break; 971 } 972 } 973 return (count == p->deg) ? count : 0; 974 } 975 #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) 976 #endif /* USE_CHIEN_SEARCH */ 977 978 /** 979 * decode_bch - decode received codeword and find bit error locations 980 * @bch: BCH control structure 981 * @data: received data, ignored if @calc_ecc is provided 982 * @len: data length in bytes, must always be provided 983 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc 984 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data 985 * @syn: hw computed syndrome data (if NULL, syndrome is calculated) 986 * @errloc: output array of error locations 987 * 988 * Returns: 989 * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if 990 * invalid parameters were provided 991 * 992 * Depending on the available hw BCH support and the need to compute @calc_ecc 993 * separately (using encode_bch()), this function should be called with one of 994 * the following parameter configurations - 995 * 996 * by providing @data and @recv_ecc only: 997 * decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) 998 * 999 * by providing @recv_ecc and @calc_ecc: 1000 * decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) 1001 * 1002 * by providing ecc = recv_ecc XOR calc_ecc: 1003 * decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc) 1004 * 1005 * by providing syndrome results @syn: 1006 * decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc) 1007 * 1008 * Once decode_bch() has successfully returned with a positive value, error 1009 * locations returned in array @errloc should be interpreted as follows - 1010 * 1011 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for 1012 * data correction) 1013 * 1014 * if (errloc[n] < 8*len), then n-th error is located in data and can be 1015 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); 1016 * 1017 * Note that this function does not perform any data correction by itself, it 1018 * merely indicates error locations. 1019 */ 1020 int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, 1021 const uint8_t *recv_ecc, const uint8_t *calc_ecc, 1022 const unsigned int *syn, unsigned int *errloc) 1023 { 1024 const unsigned int ecc_words = BCH_ECC_WORDS(bch); 1025 unsigned int nbits; 1026 int i, err, nroots; 1027 uint32_t sum; 1028 1029 /* sanity check: make sure data length can be handled */ 1030 if (8*len > (bch->n-bch->ecc_bits)) 1031 return -EINVAL; 1032 1033 /* if caller does not provide syndromes, compute them */ 1034 if (!syn) { 1035 if (!calc_ecc) { 1036 /* compute received data ecc into an internal buffer */ 1037 if (!data || !recv_ecc) 1038 return -EINVAL; 1039 encode_bch(bch, data, len, NULL); 1040 } else { 1041 /* load provided calculated ecc */ 1042 load_ecc8(bch, bch->ecc_buf, calc_ecc); 1043 } 1044 /* load received ecc or assume it was XORed in calc_ecc */ 1045 if (recv_ecc) { 1046 load_ecc8(bch, bch->ecc_buf2, recv_ecc); 1047 /* XOR received and calculated ecc */ 1048 for (i = 0, sum = 0; i < (int)ecc_words; i++) { 1049 bch->ecc_buf[i] ^= bch->ecc_buf2[i]; 1050 sum |= bch->ecc_buf[i]; 1051 } 1052 if (!sum) 1053 /* no error found */ 1054 return 0; 1055 } 1056 compute_syndromes(bch, bch->ecc_buf, bch->syn); 1057 syn = bch->syn; 1058 } 1059 1060 err = compute_error_locator_polynomial(bch, syn); 1061 if (err > 0) { 1062 nroots = find_poly_roots(bch, 1, bch->elp, errloc); 1063 if (err != nroots) 1064 err = -1; 1065 } 1066 if (err > 0) { 1067 /* post-process raw error locations for easier correction */ 1068 nbits = (len*8)+bch->ecc_bits; 1069 for (i = 0; i < err; i++) { 1070 if (errloc[i] >= nbits) { 1071 err = -1; 1072 break; 1073 } 1074 errloc[i] = nbits-1-errloc[i]; 1075 errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7)); 1076 } 1077 } 1078 return (err >= 0) ? err : -EBADMSG; 1079 } 1080 1081 /* 1082 * generate Galois field lookup tables 1083 */ 1084 static int build_gf_tables(struct bch_control *bch, unsigned int poly) 1085 { 1086 unsigned int i, x = 1; 1087 const unsigned int k = 1 << deg(poly); 1088 1089 /* primitive polynomial must be of degree m */ 1090 if (k != (1u << GF_M(bch))) 1091 return -1; 1092 1093 for (i = 0; i < GF_N(bch); i++) { 1094 bch->a_pow_tab[i] = x; 1095 bch->a_log_tab[x] = i; 1096 if (i && (x == 1)) 1097 /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ 1098 return -1; 1099 x <<= 1; 1100 if (x & k) 1101 x ^= poly; 1102 } 1103 bch->a_pow_tab[GF_N(bch)] = 1; 1104 bch->a_log_tab[0] = 0; 1105 1106 return 0; 1107 } 1108 1109 /* 1110 * compute generator polynomial remainder tables for fast encoding 1111 */ 1112 static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) 1113 { 1114 int i, j, b, d; 1115 uint32_t data, hi, lo, *tab; 1116 const int l = BCH_ECC_WORDS(bch); 1117 const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); 1118 const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); 1119 1120 memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); 1121 1122 for (i = 0; i < 256; i++) { 1123 /* p(X)=i is a small polynomial of weight <= 8 */ 1124 for (b = 0; b < 4; b++) { 1125 /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ 1126 tab = bch->mod8_tab + (b*256+i)*l; 1127 data = i << (8*b); 1128 while (data) { 1129 d = deg(data); 1130 /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ 1131 data ^= g[0] >> (31-d); 1132 for (j = 0; j < ecclen; j++) { 1133 hi = (d < 31) ? g[j] << (d+1) : 0; 1134 lo = (j+1 < plen) ? 1135 g[j+1] >> (31-d) : 0; 1136 tab[j] ^= hi|lo; 1137 } 1138 } 1139 } 1140 } 1141 } 1142 1143 /* 1144 * build a base for factoring degree 2 polynomials 1145 */ 1146 static int build_deg2_base(struct bch_control *bch) 1147 { 1148 const int m = GF_M(bch); 1149 int i, j, r; 1150 unsigned int sum, x, y, remaining, ak = 0, xi[m]; 1151 1152 /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ 1153 for (i = 0; i < m; i++) { 1154 for (j = 0, sum = 0; j < m; j++) 1155 sum ^= a_pow(bch, i*(1 << j)); 1156 1157 if (sum) { 1158 ak = bch->a_pow_tab[i]; 1159 break; 1160 } 1161 } 1162 /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ 1163 remaining = m; 1164 memset(xi, 0, sizeof(xi)); 1165 1166 for (x = 0; (x <= GF_N(bch)) && remaining; x++) { 1167 y = gf_sqr(bch, x)^x; 1168 for (i = 0; i < 2; i++) { 1169 r = a_log(bch, y); 1170 if (y && (r < m) && !xi[r]) { 1171 bch->xi_tab[r] = x; 1172 xi[r] = 1; 1173 remaining--; 1174 dbg("x%d = %x\n", r, x); 1175 break; 1176 } 1177 y ^= ak; 1178 } 1179 } 1180 /* should not happen but check anyway */ 1181 return remaining ? -1 : 0; 1182 } 1183 1184 static void *bch_alloc(size_t size, int *err) 1185 { 1186 void *ptr; 1187 1188 ptr = kmalloc(size, GFP_KERNEL); 1189 if (ptr == NULL) 1190 *err = 1; 1191 return ptr; 1192 } 1193 1194 /* 1195 * compute generator polynomial for given (m,t) parameters. 1196 */ 1197 static uint32_t *compute_generator_polynomial(struct bch_control *bch) 1198 { 1199 const unsigned int m = GF_M(bch); 1200 const unsigned int t = GF_T(bch); 1201 int n, err = 0; 1202 unsigned int i, j, nbits, r, word, *roots; 1203 struct gf_poly *g; 1204 uint32_t *genpoly; 1205 1206 g = bch_alloc(GF_POLY_SZ(m*t), &err); 1207 roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); 1208 genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); 1209 1210 if (err) { 1211 kfree(genpoly); 1212 genpoly = NULL; 1213 goto finish; 1214 } 1215 1216 /* enumerate all roots of g(X) */ 1217 memset(roots , 0, (bch->n+1)*sizeof(*roots)); 1218 for (i = 0; i < t; i++) { 1219 for (j = 0, r = 2*i+1; j < m; j++) { 1220 roots[r] = 1; 1221 r = mod_s(bch, 2*r); 1222 } 1223 } 1224 /* build generator polynomial g(X) */ 1225 g->deg = 0; 1226 g->c[0] = 1; 1227 for (i = 0; i < GF_N(bch); i++) { 1228 if (roots[i]) { 1229 /* multiply g(X) by (X+root) */ 1230 r = bch->a_pow_tab[i]; 1231 g->c[g->deg+1] = 1; 1232 for (j = g->deg; j > 0; j--) 1233 g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; 1234 1235 g->c[0] = gf_mul(bch, g->c[0], r); 1236 g->deg++; 1237 } 1238 } 1239 /* store left-justified binary representation of g(X) */ 1240 n = g->deg+1; 1241 i = 0; 1242 1243 while (n > 0) { 1244 nbits = (n > 32) ? 32 : n; 1245 for (j = 0, word = 0; j < nbits; j++) { 1246 if (g->c[n-1-j]) 1247 word |= 1u << (31-j); 1248 } 1249 genpoly[i++] = word; 1250 n -= nbits; 1251 } 1252 bch->ecc_bits = g->deg; 1253 1254 finish: 1255 kfree(g); 1256 kfree(roots); 1257 1258 return genpoly; 1259 } 1260 1261 /** 1262 * init_bch - initialize a BCH encoder/decoder 1263 * @m: Galois field order, should be in the range 5-15 1264 * @t: maximum error correction capability, in bits 1265 * @prim_poly: user-provided primitive polynomial (or 0 to use default) 1266 * 1267 * Returns: 1268 * a newly allocated BCH control structure if successful, NULL otherwise 1269 * 1270 * This initialization can take some time, as lookup tables are built for fast 1271 * encoding/decoding; make sure not to call this function from a time critical 1272 * path. Usually, init_bch() should be called on module/driver init and 1273 * free_bch() should be called to release memory on exit. 1274 * 1275 * You may provide your own primitive polynomial of degree @m in argument 1276 * @prim_poly, or let init_bch() use its default polynomial. 1277 * 1278 * Once init_bch() has successfully returned a pointer to a newly allocated 1279 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of 1280 * the structure. 1281 */ 1282 struct bch_control *init_bch(int m, int t, unsigned int prim_poly) 1283 { 1284 int err = 0; 1285 unsigned int i, words; 1286 uint32_t *genpoly; 1287 struct bch_control *bch = NULL; 1288 1289 const int min_m = 5; 1290 const int max_m = 15; 1291 1292 /* default primitive polynomials */ 1293 static const unsigned int prim_poly_tab[] = { 1294 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, 1295 0x402b, 0x8003, 1296 }; 1297 1298 #if defined(CONFIG_BCH_CONST_PARAMS) 1299 if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { 1300 printk(KERN_ERR "bch encoder/decoder was configured to support " 1301 "parameters m=%d, t=%d only!\n", 1302 CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); 1303 goto fail; 1304 } 1305 #endif 1306 if ((m < min_m) || (m > max_m)) 1307 /* 1308 * values of m greater than 15 are not currently supported; 1309 * supporting m > 15 would require changing table base type 1310 * (uint16_t) and a small patch in matrix transposition 1311 */ 1312 goto fail; 1313 1314 /* sanity checks */ 1315 if ((t < 1) || (m*t >= ((1 << m)-1))) 1316 /* invalid t value */ 1317 goto fail; 1318 1319 /* select a primitive polynomial for generating GF(2^m) */ 1320 if (prim_poly == 0) 1321 prim_poly = prim_poly_tab[m-min_m]; 1322 1323 bch = kzalloc(sizeof(*bch), GFP_KERNEL); 1324 if (bch == NULL) 1325 goto fail; 1326 1327 bch->m = m; 1328 bch->t = t; 1329 bch->n = (1 << m)-1; 1330 words = DIV_ROUND_UP(m*t, 32); 1331 bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); 1332 bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); 1333 bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); 1334 bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); 1335 bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err); 1336 bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); 1337 bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err); 1338 bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err); 1339 bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err); 1340 bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); 1341 1342 for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) 1343 bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); 1344 1345 if (err) 1346 goto fail; 1347 1348 err = build_gf_tables(bch, prim_poly); 1349 if (err) 1350 goto fail; 1351 1352 /* use generator polynomial for computing encoding tables */ 1353 genpoly = compute_generator_polynomial(bch); 1354 if (genpoly == NULL) 1355 goto fail; 1356 1357 build_mod8_tables(bch, genpoly); 1358 kfree(genpoly); 1359 1360 err = build_deg2_base(bch); 1361 if (err) 1362 goto fail; 1363 1364 return bch; 1365 1366 fail: 1367 free_bch(bch); 1368 return NULL; 1369 } 1370 1371 /** 1372 * free_bch - free the BCH control structure 1373 * @bch: BCH control structure to release 1374 */ 1375 void free_bch(struct bch_control *bch) 1376 { 1377 unsigned int i; 1378 1379 if (bch) { 1380 kfree(bch->a_pow_tab); 1381 kfree(bch->a_log_tab); 1382 kfree(bch->mod8_tab); 1383 kfree(bch->ecc_buf); 1384 kfree(bch->ecc_buf2); 1385 kfree(bch->xi_tab); 1386 kfree(bch->syn); 1387 kfree(bch->cache); 1388 kfree(bch->elp); 1389 1390 for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) 1391 kfree(bch->poly_2t[i]); 1392 1393 kfree(bch); 1394 } 1395 } 1396