1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic binary BCH encoding/decoding library 4 * 5 * Copyright © 2011 Parrot S.A. 6 * 7 * Author: Ivan Djelic <ivan.djelic@parrot.com> 8 * 9 * Description: 10 * 11 * This library provides runtime configurable encoding/decoding of binary 12 * Bose-Chaudhuri-Hocquenghem (BCH) codes. 13 * 14 * Call init_bch to get a pointer to a newly allocated bch_control structure for 15 * the given m (Galois field order), t (error correction capability) and 16 * (optional) primitive polynomial parameters. 17 * 18 * Call encode_bch to compute and store ecc parity bytes to a given buffer. 19 * Call decode_bch to detect and locate errors in received data. 20 * 21 * On systems supporting hw BCH features, intermediate results may be provided 22 * to decode_bch in order to skip certain steps. See decode_bch() documentation 23 * for details. 24 * 25 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of 26 * parameters m and t; thus allowing extra compiler optimizations and providing 27 * better (up to 2x) encoding performance. Using this option makes sense when 28 * (m,t) are fixed and known in advance, e.g. when using BCH error correction 29 * on a particular NAND flash device. 30 * 31 * Algorithmic details: 32 * 33 * Encoding is performed by processing 32 input bits in parallel, using 4 34 * remainder lookup tables. 35 * 36 * The final stage of decoding involves the following internal steps: 37 * a. Syndrome computation 38 * b. Error locator polynomial computation using Berlekamp-Massey algorithm 39 * c. Error locator root finding (by far the most expensive step) 40 * 41 * In this implementation, step c is not performed using the usual Chien search. 42 * Instead, an alternative approach described in [1] is used. It consists in 43 * factoring the error locator polynomial using the Berlekamp Trace algorithm 44 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial 45 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields 46 * much better performance than Chien search for usual (m,t) values (typically 47 * m >= 13, t < 32, see [1]). 48 * 49 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields 50 * of characteristic 2, in: Western European Workshop on Research in Cryptology 51 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. 52 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over 53 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. 54 */ 55 56 #ifndef USE_HOSTCC 57 #include <common.h> 58 #include <ubi_uboot.h> 59 60 #include <linux/bitops.h> 61 #else 62 #include <errno.h> 63 #if defined(__FreeBSD__) 64 #include <sys/endian.h> 65 #else 66 #include <endian.h> 67 #endif 68 #include <stdint.h> 69 #include <stdlib.h> 70 #include <string.h> 71 72 #undef cpu_to_be32 73 #define cpu_to_be32 htobe32 74 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) 75 #define kmalloc(size, flags) malloc(size) 76 #define kzalloc(size, flags) calloc(1, size) 77 #define kfree free 78 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) 79 #endif 80 81 #include <asm/byteorder.h> 82 #include <linux/bch.h> 83 84 #if defined(CONFIG_BCH_CONST_PARAMS) 85 #define GF_M(_p) (CONFIG_BCH_CONST_M) 86 #define GF_T(_p) (CONFIG_BCH_CONST_T) 87 #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) 88 #else 89 #define GF_M(_p) ((_p)->m) 90 #define GF_T(_p) ((_p)->t) 91 #define GF_N(_p) ((_p)->n) 92 #endif 93 94 #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) 95 #define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) 96 97 #ifndef dbg 98 #define dbg(_fmt, args...) do {} while (0) 99 #endif 100 101 /* 102 * represent a polynomial over GF(2^m) 103 */ 104 struct gf_poly { 105 unsigned int deg; /* polynomial degree */ 106 unsigned int c[0]; /* polynomial terms */ 107 }; 108 109 /* given its degree, compute a polynomial size in bytes */ 110 #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) 111 112 /* polynomial of degree 1 */ 113 struct gf_poly_deg1 { 114 struct gf_poly poly; 115 unsigned int c[2]; 116 }; 117 118 #ifdef USE_HOSTCC 119 #if !defined(__DragonFly__) && !defined(__FreeBSD__) 120 static int fls(int x) 121 { 122 int r = 32; 123 124 if (!x) 125 return 0; 126 if (!(x & 0xffff0000u)) { 127 x <<= 16; 128 r -= 16; 129 } 130 if (!(x & 0xff000000u)) { 131 x <<= 8; 132 r -= 8; 133 } 134 if (!(x & 0xf0000000u)) { 135 x <<= 4; 136 r -= 4; 137 } 138 if (!(x & 0xc0000000u)) { 139 x <<= 2; 140 r -= 2; 141 } 142 if (!(x & 0x80000000u)) { 143 x <<= 1; 144 r -= 1; 145 } 146 return r; 147 } 148 #endif 149 #endif 150 151 /* 152 * same as encode_bch(), but process input data one byte at a time 153 */ 154 static void encode_bch_unaligned(struct bch_control *bch, 155 const unsigned char *data, unsigned int len, 156 uint32_t *ecc) 157 { 158 int i; 159 const uint32_t *p; 160 const int l = BCH_ECC_WORDS(bch)-1; 161 162 while (len--) { 163 p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); 164 165 for (i = 0; i < l; i++) 166 ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); 167 168 ecc[l] = (ecc[l] << 8)^(*p); 169 } 170 } 171 172 /* 173 * convert ecc bytes to aligned, zero-padded 32-bit ecc words 174 */ 175 static void load_ecc8(struct bch_control *bch, uint32_t *dst, 176 const uint8_t *src) 177 { 178 uint8_t pad[4] = {0, 0, 0, 0}; 179 unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; 180 181 for (i = 0; i < nwords; i++, src += 4) 182 dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; 183 184 memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); 185 dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; 186 } 187 188 /* 189 * convert 32-bit ecc words to ecc bytes 190 */ 191 static void store_ecc8(struct bch_control *bch, uint8_t *dst, 192 const uint32_t *src) 193 { 194 uint8_t pad[4]; 195 unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; 196 197 for (i = 0; i < nwords; i++) { 198 *dst++ = (src[i] >> 24); 199 *dst++ = (src[i] >> 16) & 0xff; 200 *dst++ = (src[i] >> 8) & 0xff; 201 *dst++ = (src[i] >> 0) & 0xff; 202 } 203 pad[0] = (src[nwords] >> 24); 204 pad[1] = (src[nwords] >> 16) & 0xff; 205 pad[2] = (src[nwords] >> 8) & 0xff; 206 pad[3] = (src[nwords] >> 0) & 0xff; 207 memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); 208 } 209 210 /** 211 * encode_bch - calculate BCH ecc parity of data 212 * @bch: BCH control structure 213 * @data: data to encode 214 * @len: data length in bytes 215 * @ecc: ecc parity data, must be initialized by caller 216 * 217 * The @ecc parity array is used both as input and output parameter, in order to 218 * allow incremental computations. It should be of the size indicated by member 219 * @ecc_bytes of @bch, and should be initialized to 0 before the first call. 220 * 221 * The exact number of computed ecc parity bits is given by member @ecc_bits of 222 * @bch; it may be less than m*t for large values of t. 223 */ 224 void encode_bch(struct bch_control *bch, const uint8_t *data, 225 unsigned int len, uint8_t *ecc) 226 { 227 const unsigned int l = BCH_ECC_WORDS(bch)-1; 228 unsigned int i, mlen; 229 unsigned long m; 230 uint32_t w, r[l+1]; 231 const uint32_t * const tab0 = bch->mod8_tab; 232 const uint32_t * const tab1 = tab0 + 256*(l+1); 233 const uint32_t * const tab2 = tab1 + 256*(l+1); 234 const uint32_t * const tab3 = tab2 + 256*(l+1); 235 const uint32_t *pdata, *p0, *p1, *p2, *p3; 236 237 if (ecc) { 238 /* load ecc parity bytes into internal 32-bit buffer */ 239 load_ecc8(bch, bch->ecc_buf, ecc); 240 } else { 241 memset(bch->ecc_buf, 0, sizeof(r)); 242 } 243 244 /* process first unaligned data bytes */ 245 m = ((unsigned long)data) & 3; 246 if (m) { 247 mlen = (len < (4-m)) ? len : 4-m; 248 encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); 249 data += mlen; 250 len -= mlen; 251 } 252 253 /* process 32-bit aligned data words */ 254 pdata = (uint32_t *)data; 255 mlen = len/4; 256 data += 4*mlen; 257 len -= 4*mlen; 258 memcpy(r, bch->ecc_buf, sizeof(r)); 259 260 /* 261 * split each 32-bit word into 4 polynomials of weight 8 as follows: 262 * 263 * 31 ...24 23 ...16 15 ... 8 7 ... 0 264 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt 265 * tttttttt mod g = r0 (precomputed) 266 * zzzzzzzz 00000000 mod g = r1 (precomputed) 267 * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) 268 * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) 269 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 270 */ 271 while (mlen--) { 272 /* input data is read in big-endian format */ 273 w = r[0]^cpu_to_be32(*pdata++); 274 p0 = tab0 + (l+1)*((w >> 0) & 0xff); 275 p1 = tab1 + (l+1)*((w >> 8) & 0xff); 276 p2 = tab2 + (l+1)*((w >> 16) & 0xff); 277 p3 = tab3 + (l+1)*((w >> 24) & 0xff); 278 279 for (i = 0; i < l; i++) 280 r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; 281 282 r[l] = p0[l]^p1[l]^p2[l]^p3[l]; 283 } 284 memcpy(bch->ecc_buf, r, sizeof(r)); 285 286 /* process last unaligned bytes */ 287 if (len) 288 encode_bch_unaligned(bch, data, len, bch->ecc_buf); 289 290 /* store ecc parity bytes into original parity buffer */ 291 if (ecc) 292 store_ecc8(bch, ecc, bch->ecc_buf); 293 } 294 295 static inline int modulo(struct bch_control *bch, unsigned int v) 296 { 297 const unsigned int n = GF_N(bch); 298 while (v >= n) { 299 v -= n; 300 v = (v & n) + (v >> GF_M(bch)); 301 } 302 return v; 303 } 304 305 /* 306 * shorter and faster modulo function, only works when v < 2N. 307 */ 308 static inline int mod_s(struct bch_control *bch, unsigned int v) 309 { 310 const unsigned int n = GF_N(bch); 311 return (v < n) ? v : v-n; 312 } 313 314 static inline int deg(unsigned int poly) 315 { 316 /* polynomial degree is the most-significant bit index */ 317 return fls(poly)-1; 318 } 319 320 static inline int parity(unsigned int x) 321 { 322 /* 323 * public domain code snippet, lifted from 324 * http://www-graphics.stanford.edu/~seander/bithacks.html 325 */ 326 x ^= x >> 1; 327 x ^= x >> 2; 328 x = (x & 0x11111111U) * 0x11111111U; 329 return (x >> 28) & 1; 330 } 331 332 /* Galois field basic operations: multiply, divide, inverse, etc. */ 333 334 static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, 335 unsigned int b) 336 { 337 return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ 338 bch->a_log_tab[b])] : 0; 339 } 340 341 static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) 342 { 343 return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; 344 } 345 346 static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, 347 unsigned int b) 348 { 349 return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ 350 GF_N(bch)-bch->a_log_tab[b])] : 0; 351 } 352 353 static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) 354 { 355 return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; 356 } 357 358 static inline unsigned int a_pow(struct bch_control *bch, int i) 359 { 360 return bch->a_pow_tab[modulo(bch, i)]; 361 } 362 363 static inline int a_log(struct bch_control *bch, unsigned int x) 364 { 365 return bch->a_log_tab[x]; 366 } 367 368 static inline int a_ilog(struct bch_control *bch, unsigned int x) 369 { 370 return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); 371 } 372 373 /* 374 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t 375 */ 376 static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, 377 unsigned int *syn) 378 { 379 int i, j, s; 380 unsigned int m; 381 uint32_t poly; 382 const int t = GF_T(bch); 383 384 s = bch->ecc_bits; 385 386 /* make sure extra bits in last ecc word are cleared */ 387 m = ((unsigned int)s) & 31; 388 if (m) 389 ecc[s/32] &= ~((1u << (32-m))-1); 390 memset(syn, 0, 2*t*sizeof(*syn)); 391 392 /* compute v(a^j) for j=1 .. 2t-1 */ 393 do { 394 poly = *ecc++; 395 s -= 32; 396 while (poly) { 397 i = deg(poly); 398 for (j = 0; j < 2*t; j += 2) 399 syn[j] ^= a_pow(bch, (j+1)*(i+s)); 400 401 poly ^= (1 << i); 402 } 403 } while (s > 0); 404 405 /* v(a^(2j)) = v(a^j)^2 */ 406 for (j = 0; j < t; j++) 407 syn[2*j+1] = gf_sqr(bch, syn[j]); 408 } 409 410 static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) 411 { 412 memcpy(dst, src, GF_POLY_SZ(src->deg)); 413 } 414 415 static int compute_error_locator_polynomial(struct bch_control *bch, 416 const unsigned int *syn) 417 { 418 const unsigned int t = GF_T(bch); 419 const unsigned int n = GF_N(bch); 420 unsigned int i, j, tmp, l, pd = 1, d = syn[0]; 421 struct gf_poly *elp = bch->elp; 422 struct gf_poly *pelp = bch->poly_2t[0]; 423 struct gf_poly *elp_copy = bch->poly_2t[1]; 424 int k, pp = -1; 425 426 memset(pelp, 0, GF_POLY_SZ(2*t)); 427 memset(elp, 0, GF_POLY_SZ(2*t)); 428 429 pelp->deg = 0; 430 pelp->c[0] = 1; 431 elp->deg = 0; 432 elp->c[0] = 1; 433 434 /* use simplified binary Berlekamp-Massey algorithm */ 435 for (i = 0; (i < t) && (elp->deg <= t); i++) { 436 if (d) { 437 k = 2*i-pp; 438 gf_poly_copy(elp_copy, elp); 439 /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ 440 tmp = a_log(bch, d)+n-a_log(bch, pd); 441 for (j = 0; j <= pelp->deg; j++) { 442 if (pelp->c[j]) { 443 l = a_log(bch, pelp->c[j]); 444 elp->c[j+k] ^= a_pow(bch, tmp+l); 445 } 446 } 447 /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ 448 tmp = pelp->deg+k; 449 if (tmp > elp->deg) { 450 elp->deg = tmp; 451 gf_poly_copy(pelp, elp_copy); 452 pd = d; 453 pp = 2*i; 454 } 455 } 456 /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ 457 if (i < t-1) { 458 d = syn[2*i+2]; 459 for (j = 1; j <= elp->deg; j++) 460 d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); 461 } 462 } 463 dbg("elp=%s\n", gf_poly_str(elp)); 464 return (elp->deg > t) ? -1 : (int)elp->deg; 465 } 466 467 /* 468 * solve a m x m linear system in GF(2) with an expected number of solutions, 469 * and return the number of found solutions 470 */ 471 static int solve_linear_system(struct bch_control *bch, unsigned int *rows, 472 unsigned int *sol, int nsol) 473 { 474 const int m = GF_M(bch); 475 unsigned int tmp, mask; 476 int rem, c, r, p, k, param[m]; 477 478 k = 0; 479 mask = 1 << m; 480 481 /* Gaussian elimination */ 482 for (c = 0; c < m; c++) { 483 rem = 0; 484 p = c-k; 485 /* find suitable row for elimination */ 486 for (r = p; r < m; r++) { 487 if (rows[r] & mask) { 488 if (r != p) { 489 tmp = rows[r]; 490 rows[r] = rows[p]; 491 rows[p] = tmp; 492 } 493 rem = r+1; 494 break; 495 } 496 } 497 if (rem) { 498 /* perform elimination on remaining rows */ 499 tmp = rows[p]; 500 for (r = rem; r < m; r++) { 501 if (rows[r] & mask) 502 rows[r] ^= tmp; 503 } 504 } else { 505 /* elimination not needed, store defective row index */ 506 param[k++] = c; 507 } 508 mask >>= 1; 509 } 510 /* rewrite system, inserting fake parameter rows */ 511 if (k > 0) { 512 p = k; 513 for (r = m-1; r >= 0; r--) { 514 if ((r > m-1-k) && rows[r]) 515 /* system has no solution */ 516 return 0; 517 518 rows[r] = (p && (r == param[p-1])) ? 519 p--, 1u << (m-r) : rows[r-p]; 520 } 521 } 522 523 if (nsol != (1 << k)) 524 /* unexpected number of solutions */ 525 return 0; 526 527 for (p = 0; p < nsol; p++) { 528 /* set parameters for p-th solution */ 529 for (c = 0; c < k; c++) 530 rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); 531 532 /* compute unique solution */ 533 tmp = 0; 534 for (r = m-1; r >= 0; r--) { 535 mask = rows[r] & (tmp|1); 536 tmp |= parity(mask) << (m-r); 537 } 538 sol[p] = tmp >> 1; 539 } 540 return nsol; 541 } 542 543 /* 544 * this function builds and solves a linear system for finding roots of a degree 545 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). 546 */ 547 static int find_affine4_roots(struct bch_control *bch, unsigned int a, 548 unsigned int b, unsigned int c, 549 unsigned int *roots) 550 { 551 int i, j, k; 552 const int m = GF_M(bch); 553 unsigned int mask = 0xff, t, rows[16] = {0,}; 554 555 j = a_log(bch, b); 556 k = a_log(bch, a); 557 rows[0] = c; 558 559 /* buid linear system to solve X^4+aX^2+bX+c = 0 */ 560 for (i = 0; i < m; i++) { 561 rows[i+1] = bch->a_pow_tab[4*i]^ 562 (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ 563 (b ? bch->a_pow_tab[mod_s(bch, j)] : 0); 564 j++; 565 k += 2; 566 } 567 /* 568 * transpose 16x16 matrix before passing it to linear solver 569 * warning: this code assumes m < 16 570 */ 571 for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { 572 for (k = 0; k < 16; k = (k+j+1) & ~j) { 573 t = ((rows[k] >> j)^rows[k+j]) & mask; 574 rows[k] ^= (t << j); 575 rows[k+j] ^= t; 576 } 577 } 578 return solve_linear_system(bch, rows, roots, 4); 579 } 580 581 /* 582 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) 583 */ 584 static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, 585 unsigned int *roots) 586 { 587 int n = 0; 588 589 if (poly->c[0]) 590 /* poly[X] = bX+c with c!=0, root=c/b */ 591 roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ 592 bch->a_log_tab[poly->c[1]]); 593 return n; 594 } 595 596 /* 597 * compute roots of a degree 2 polynomial over GF(2^m) 598 */ 599 static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, 600 unsigned int *roots) 601 { 602 int n = 0, i, l0, l1, l2; 603 unsigned int u, v, r; 604 605 if (poly->c[0] && poly->c[1]) { 606 607 l0 = bch->a_log_tab[poly->c[0]]; 608 l1 = bch->a_log_tab[poly->c[1]]; 609 l2 = bch->a_log_tab[poly->c[2]]; 610 611 /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ 612 u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); 613 /* 614 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): 615 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = 616 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) 617 * i.e. r and r+1 are roots iff Tr(u)=0 618 */ 619 r = 0; 620 v = u; 621 while (v) { 622 i = deg(v); 623 r ^= bch->xi_tab[i]; 624 v ^= (1 << i); 625 } 626 /* verify root */ 627 if ((gf_sqr(bch, r)^r) == u) { 628 /* reverse z=a/bX transformation and compute log(1/r) */ 629 roots[n++] = modulo(bch, 2*GF_N(bch)-l1- 630 bch->a_log_tab[r]+l2); 631 roots[n++] = modulo(bch, 2*GF_N(bch)-l1- 632 bch->a_log_tab[r^1]+l2); 633 } 634 } 635 return n; 636 } 637 638 /* 639 * compute roots of a degree 3 polynomial over GF(2^m) 640 */ 641 static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, 642 unsigned int *roots) 643 { 644 int i, n = 0; 645 unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; 646 647 if (poly->c[0]) { 648 /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ 649 e3 = poly->c[3]; 650 c2 = gf_div(bch, poly->c[0], e3); 651 b2 = gf_div(bch, poly->c[1], e3); 652 a2 = gf_div(bch, poly->c[2], e3); 653 654 /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ 655 c = gf_mul(bch, a2, c2); /* c = a2c2 */ 656 b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */ 657 a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */ 658 659 /* find the 4 roots of this affine polynomial */ 660 if (find_affine4_roots(bch, a, b, c, tmp) == 4) { 661 /* remove a2 from final list of roots */ 662 for (i = 0; i < 4; i++) { 663 if (tmp[i] != a2) 664 roots[n++] = a_ilog(bch, tmp[i]); 665 } 666 } 667 } 668 return n; 669 } 670 671 /* 672 * compute roots of a degree 4 polynomial over GF(2^m) 673 */ 674 static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, 675 unsigned int *roots) 676 { 677 int i, l, n = 0; 678 unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; 679 680 if (poly->c[0] == 0) 681 return 0; 682 683 /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ 684 e4 = poly->c[4]; 685 d = gf_div(bch, poly->c[0], e4); 686 c = gf_div(bch, poly->c[1], e4); 687 b = gf_div(bch, poly->c[2], e4); 688 a = gf_div(bch, poly->c[3], e4); 689 690 /* use Y=1/X transformation to get an affine polynomial */ 691 if (a) { 692 /* first, eliminate cX by using z=X+e with ae^2+c=0 */ 693 if (c) { 694 /* compute e such that e^2 = c/a */ 695 f = gf_div(bch, c, a); 696 l = a_log(bch, f); 697 l += (l & 1) ? GF_N(bch) : 0; 698 e = a_pow(bch, l/2); 699 /* 700 * use transformation z=X+e: 701 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d 702 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d 703 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d 704 * z^4 + az^3 + b'z^2 + d' 705 */ 706 d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; 707 b = gf_mul(bch, a, e)^b; 708 } 709 /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ 710 if (d == 0) 711 /* assume all roots have multiplicity 1 */ 712 return 0; 713 714 c2 = gf_inv(bch, d); 715 b2 = gf_div(bch, a, d); 716 a2 = gf_div(bch, b, d); 717 } else { 718 /* polynomial is already affine */ 719 c2 = d; 720 b2 = c; 721 a2 = b; 722 } 723 /* find the 4 roots of this affine polynomial */ 724 if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { 725 for (i = 0; i < 4; i++) { 726 /* post-process roots (reverse transformations) */ 727 f = a ? gf_inv(bch, roots[i]) : roots[i]; 728 roots[i] = a_ilog(bch, f^e); 729 } 730 n = 4; 731 } 732 return n; 733 } 734 735 /* 736 * build monic, log-based representation of a polynomial 737 */ 738 static void gf_poly_logrep(struct bch_control *bch, 739 const struct gf_poly *a, int *rep) 740 { 741 int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); 742 743 /* represent 0 values with -1; warning, rep[d] is not set to 1 */ 744 for (i = 0; i < d; i++) 745 rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; 746 } 747 748 /* 749 * compute polynomial Euclidean division remainder in GF(2^m)[X] 750 */ 751 static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, 752 const struct gf_poly *b, int *rep) 753 { 754 int la, p, m; 755 unsigned int i, j, *c = a->c; 756 const unsigned int d = b->deg; 757 758 if (a->deg < d) 759 return; 760 761 /* reuse or compute log representation of denominator */ 762 if (!rep) { 763 rep = bch->cache; 764 gf_poly_logrep(bch, b, rep); 765 } 766 767 for (j = a->deg; j >= d; j--) { 768 if (c[j]) { 769 la = a_log(bch, c[j]); 770 p = j-d; 771 for (i = 0; i < d; i++, p++) { 772 m = rep[i]; 773 if (m >= 0) 774 c[p] ^= bch->a_pow_tab[mod_s(bch, 775 m+la)]; 776 } 777 } 778 } 779 a->deg = d-1; 780 while (!c[a->deg] && a->deg) 781 a->deg--; 782 } 783 784 /* 785 * compute polynomial Euclidean division quotient in GF(2^m)[X] 786 */ 787 static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, 788 const struct gf_poly *b, struct gf_poly *q) 789 { 790 if (a->deg >= b->deg) { 791 q->deg = a->deg-b->deg; 792 /* compute a mod b (modifies a) */ 793 gf_poly_mod(bch, a, b, NULL); 794 /* quotient is stored in upper part of polynomial a */ 795 memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); 796 } else { 797 q->deg = 0; 798 q->c[0] = 0; 799 } 800 } 801 802 /* 803 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] 804 */ 805 static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, 806 struct gf_poly *b) 807 { 808 struct gf_poly *tmp; 809 810 dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); 811 812 if (a->deg < b->deg) { 813 tmp = b; 814 b = a; 815 a = tmp; 816 } 817 818 while (b->deg > 0) { 819 gf_poly_mod(bch, a, b, NULL); 820 tmp = b; 821 b = a; 822 a = tmp; 823 } 824 825 dbg("%s\n", gf_poly_str(a)); 826 827 return a; 828 } 829 830 /* 831 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f 832 * This is used in Berlekamp Trace algorithm for splitting polynomials 833 */ 834 static void compute_trace_bk_mod(struct bch_control *bch, int k, 835 const struct gf_poly *f, struct gf_poly *z, 836 struct gf_poly *out) 837 { 838 const int m = GF_M(bch); 839 int i, j; 840 841 /* z contains z^2j mod f */ 842 z->deg = 1; 843 z->c[0] = 0; 844 z->c[1] = bch->a_pow_tab[k]; 845 846 out->deg = 0; 847 memset(out, 0, GF_POLY_SZ(f->deg)); 848 849 /* compute f log representation only once */ 850 gf_poly_logrep(bch, f, bch->cache); 851 852 for (i = 0; i < m; i++) { 853 /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ 854 for (j = z->deg; j >= 0; j--) { 855 out->c[j] ^= z->c[j]; 856 z->c[2*j] = gf_sqr(bch, z->c[j]); 857 z->c[2*j+1] = 0; 858 } 859 if (z->deg > out->deg) 860 out->deg = z->deg; 861 862 if (i < m-1) { 863 z->deg *= 2; 864 /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ 865 gf_poly_mod(bch, z, f, bch->cache); 866 } 867 } 868 while (!out->c[out->deg] && out->deg) 869 out->deg--; 870 871 dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); 872 } 873 874 /* 875 * factor a polynomial using Berlekamp Trace algorithm (BTA) 876 */ 877 static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, 878 struct gf_poly **g, struct gf_poly **h) 879 { 880 struct gf_poly *f2 = bch->poly_2t[0]; 881 struct gf_poly *q = bch->poly_2t[1]; 882 struct gf_poly *tk = bch->poly_2t[2]; 883 struct gf_poly *z = bch->poly_2t[3]; 884 struct gf_poly *gcd; 885 886 dbg("factoring %s...\n", gf_poly_str(f)); 887 888 *g = f; 889 *h = NULL; 890 891 /* tk = Tr(a^k.X) mod f */ 892 compute_trace_bk_mod(bch, k, f, z, tk); 893 894 if (tk->deg > 0) { 895 /* compute g = gcd(f, tk) (destructive operation) */ 896 gf_poly_copy(f2, f); 897 gcd = gf_poly_gcd(bch, f2, tk); 898 if (gcd->deg < f->deg) { 899 /* compute h=f/gcd(f,tk); this will modify f and q */ 900 gf_poly_div(bch, f, gcd, q); 901 /* store g and h in-place (clobbering f) */ 902 *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; 903 gf_poly_copy(*g, gcd); 904 gf_poly_copy(*h, q); 905 } 906 } 907 } 908 909 /* 910 * find roots of a polynomial, using BTZ algorithm; see the beginning of this 911 * file for details 912 */ 913 static int find_poly_roots(struct bch_control *bch, unsigned int k, 914 struct gf_poly *poly, unsigned int *roots) 915 { 916 int cnt; 917 struct gf_poly *f1, *f2; 918 919 switch (poly->deg) { 920 /* handle low degree polynomials with ad hoc techniques */ 921 case 1: 922 cnt = find_poly_deg1_roots(bch, poly, roots); 923 break; 924 case 2: 925 cnt = find_poly_deg2_roots(bch, poly, roots); 926 break; 927 case 3: 928 cnt = find_poly_deg3_roots(bch, poly, roots); 929 break; 930 case 4: 931 cnt = find_poly_deg4_roots(bch, poly, roots); 932 break; 933 default: 934 /* factor polynomial using Berlekamp Trace Algorithm (BTA) */ 935 cnt = 0; 936 if (poly->deg && (k <= GF_M(bch))) { 937 factor_polynomial(bch, k, poly, &f1, &f2); 938 if (f1) 939 cnt += find_poly_roots(bch, k+1, f1, roots); 940 if (f2) 941 cnt += find_poly_roots(bch, k+1, f2, roots+cnt); 942 } 943 break; 944 } 945 return cnt; 946 } 947 948 #if defined(USE_CHIEN_SEARCH) 949 /* 950 * exhaustive root search (Chien) implementation - not used, included only for 951 * reference/comparison tests 952 */ 953 static int chien_search(struct bch_control *bch, unsigned int len, 954 struct gf_poly *p, unsigned int *roots) 955 { 956 int m; 957 unsigned int i, j, syn, syn0, count = 0; 958 const unsigned int k = 8*len+bch->ecc_bits; 959 960 /* use a log-based representation of polynomial */ 961 gf_poly_logrep(bch, p, bch->cache); 962 bch->cache[p->deg] = 0; 963 syn0 = gf_div(bch, p->c[0], p->c[p->deg]); 964 965 for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { 966 /* compute elp(a^i) */ 967 for (j = 1, syn = syn0; j <= p->deg; j++) { 968 m = bch->cache[j]; 969 if (m >= 0) 970 syn ^= a_pow(bch, m+j*i); 971 } 972 if (syn == 0) { 973 roots[count++] = GF_N(bch)-i; 974 if (count == p->deg) 975 break; 976 } 977 } 978 return (count == p->deg) ? count : 0; 979 } 980 #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) 981 #endif /* USE_CHIEN_SEARCH */ 982 983 /** 984 * decode_bch - decode received codeword and find bit error locations 985 * @bch: BCH control structure 986 * @data: received data, ignored if @calc_ecc is provided 987 * @len: data length in bytes, must always be provided 988 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc 989 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data 990 * @syn: hw computed syndrome data (if NULL, syndrome is calculated) 991 * @errloc: output array of error locations 992 * 993 * Returns: 994 * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if 995 * invalid parameters were provided 996 * 997 * Depending on the available hw BCH support and the need to compute @calc_ecc 998 * separately (using encode_bch()), this function should be called with one of 999 * the following parameter configurations - 1000 * 1001 * by providing @data and @recv_ecc only: 1002 * decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) 1003 * 1004 * by providing @recv_ecc and @calc_ecc: 1005 * decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) 1006 * 1007 * by providing ecc = recv_ecc XOR calc_ecc: 1008 * decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc) 1009 * 1010 * by providing syndrome results @syn: 1011 * decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc) 1012 * 1013 * Once decode_bch() has successfully returned with a positive value, error 1014 * locations returned in array @errloc should be interpreted as follows - 1015 * 1016 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for 1017 * data correction) 1018 * 1019 * if (errloc[n] < 8*len), then n-th error is located in data and can be 1020 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); 1021 * 1022 * Note that this function does not perform any data correction by itself, it 1023 * merely indicates error locations. 1024 */ 1025 int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, 1026 const uint8_t *recv_ecc, const uint8_t *calc_ecc, 1027 const unsigned int *syn, unsigned int *errloc) 1028 { 1029 const unsigned int ecc_words = BCH_ECC_WORDS(bch); 1030 unsigned int nbits; 1031 int i, err, nroots; 1032 uint32_t sum; 1033 1034 /* sanity check: make sure data length can be handled */ 1035 if (8*len > (bch->n-bch->ecc_bits)) 1036 return -EINVAL; 1037 1038 /* if caller does not provide syndromes, compute them */ 1039 if (!syn) { 1040 if (!calc_ecc) { 1041 /* compute received data ecc into an internal buffer */ 1042 if (!data || !recv_ecc) 1043 return -EINVAL; 1044 encode_bch(bch, data, len, NULL); 1045 } else { 1046 /* load provided calculated ecc */ 1047 load_ecc8(bch, bch->ecc_buf, calc_ecc); 1048 } 1049 /* load received ecc or assume it was XORed in calc_ecc */ 1050 if (recv_ecc) { 1051 load_ecc8(bch, bch->ecc_buf2, recv_ecc); 1052 /* XOR received and calculated ecc */ 1053 for (i = 0, sum = 0; i < (int)ecc_words; i++) { 1054 bch->ecc_buf[i] ^= bch->ecc_buf2[i]; 1055 sum |= bch->ecc_buf[i]; 1056 } 1057 if (!sum) 1058 /* no error found */ 1059 return 0; 1060 } 1061 compute_syndromes(bch, bch->ecc_buf, bch->syn); 1062 syn = bch->syn; 1063 } 1064 1065 err = compute_error_locator_polynomial(bch, syn); 1066 if (err > 0) { 1067 nroots = find_poly_roots(bch, 1, bch->elp, errloc); 1068 if (err != nroots) 1069 err = -1; 1070 } 1071 if (err > 0) { 1072 /* post-process raw error locations for easier correction */ 1073 nbits = (len*8)+bch->ecc_bits; 1074 for (i = 0; i < err; i++) { 1075 if (errloc[i] >= nbits) { 1076 err = -1; 1077 break; 1078 } 1079 errloc[i] = nbits-1-errloc[i]; 1080 errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7)); 1081 } 1082 } 1083 return (err >= 0) ? err : -EBADMSG; 1084 } 1085 1086 /* 1087 * generate Galois field lookup tables 1088 */ 1089 static int build_gf_tables(struct bch_control *bch, unsigned int poly) 1090 { 1091 unsigned int i, x = 1; 1092 const unsigned int k = 1 << deg(poly); 1093 1094 /* primitive polynomial must be of degree m */ 1095 if (k != (1u << GF_M(bch))) 1096 return -1; 1097 1098 for (i = 0; i < GF_N(bch); i++) { 1099 bch->a_pow_tab[i] = x; 1100 bch->a_log_tab[x] = i; 1101 if (i && (x == 1)) 1102 /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ 1103 return -1; 1104 x <<= 1; 1105 if (x & k) 1106 x ^= poly; 1107 } 1108 bch->a_pow_tab[GF_N(bch)] = 1; 1109 bch->a_log_tab[0] = 0; 1110 1111 return 0; 1112 } 1113 1114 /* 1115 * compute generator polynomial remainder tables for fast encoding 1116 */ 1117 static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) 1118 { 1119 int i, j, b, d; 1120 uint32_t data, hi, lo, *tab; 1121 const int l = BCH_ECC_WORDS(bch); 1122 const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); 1123 const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); 1124 1125 memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); 1126 1127 for (i = 0; i < 256; i++) { 1128 /* p(X)=i is a small polynomial of weight <= 8 */ 1129 for (b = 0; b < 4; b++) { 1130 /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ 1131 tab = bch->mod8_tab + (b*256+i)*l; 1132 data = i << (8*b); 1133 while (data) { 1134 d = deg(data); 1135 /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ 1136 data ^= g[0] >> (31-d); 1137 for (j = 0; j < ecclen; j++) { 1138 hi = (d < 31) ? g[j] << (d+1) : 0; 1139 lo = (j+1 < plen) ? 1140 g[j+1] >> (31-d) : 0; 1141 tab[j] ^= hi|lo; 1142 } 1143 } 1144 } 1145 } 1146 } 1147 1148 /* 1149 * build a base for factoring degree 2 polynomials 1150 */ 1151 static int build_deg2_base(struct bch_control *bch) 1152 { 1153 const int m = GF_M(bch); 1154 int i, j, r; 1155 unsigned int sum, x, y, remaining, ak = 0, xi[m]; 1156 1157 /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ 1158 for (i = 0; i < m; i++) { 1159 for (j = 0, sum = 0; j < m; j++) 1160 sum ^= a_pow(bch, i*(1 << j)); 1161 1162 if (sum) { 1163 ak = bch->a_pow_tab[i]; 1164 break; 1165 } 1166 } 1167 /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ 1168 remaining = m; 1169 memset(xi, 0, sizeof(xi)); 1170 1171 for (x = 0; (x <= GF_N(bch)) && remaining; x++) { 1172 y = gf_sqr(bch, x)^x; 1173 for (i = 0; i < 2; i++) { 1174 r = a_log(bch, y); 1175 if (y && (r < m) && !xi[r]) { 1176 bch->xi_tab[r] = x; 1177 xi[r] = 1; 1178 remaining--; 1179 dbg("x%d = %x\n", r, x); 1180 break; 1181 } 1182 y ^= ak; 1183 } 1184 } 1185 /* should not happen but check anyway */ 1186 return remaining ? -1 : 0; 1187 } 1188 1189 static void *bch_alloc(size_t size, int *err) 1190 { 1191 void *ptr; 1192 1193 ptr = kmalloc(size, GFP_KERNEL); 1194 if (ptr == NULL) 1195 *err = 1; 1196 return ptr; 1197 } 1198 1199 /* 1200 * compute generator polynomial for given (m,t) parameters. 1201 */ 1202 static uint32_t *compute_generator_polynomial(struct bch_control *bch) 1203 { 1204 const unsigned int m = GF_M(bch); 1205 const unsigned int t = GF_T(bch); 1206 int n, err = 0; 1207 unsigned int i, j, nbits, r, word, *roots; 1208 struct gf_poly *g; 1209 uint32_t *genpoly; 1210 1211 g = bch_alloc(GF_POLY_SZ(m*t), &err); 1212 roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); 1213 genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); 1214 1215 if (err) { 1216 kfree(genpoly); 1217 genpoly = NULL; 1218 goto finish; 1219 } 1220 1221 /* enumerate all roots of g(X) */ 1222 memset(roots , 0, (bch->n+1)*sizeof(*roots)); 1223 for (i = 0; i < t; i++) { 1224 for (j = 0, r = 2*i+1; j < m; j++) { 1225 roots[r] = 1; 1226 r = mod_s(bch, 2*r); 1227 } 1228 } 1229 /* build generator polynomial g(X) */ 1230 g->deg = 0; 1231 g->c[0] = 1; 1232 for (i = 0; i < GF_N(bch); i++) { 1233 if (roots[i]) { 1234 /* multiply g(X) by (X+root) */ 1235 r = bch->a_pow_tab[i]; 1236 g->c[g->deg+1] = 1; 1237 for (j = g->deg; j > 0; j--) 1238 g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; 1239 1240 g->c[0] = gf_mul(bch, g->c[0], r); 1241 g->deg++; 1242 } 1243 } 1244 /* store left-justified binary representation of g(X) */ 1245 n = g->deg+1; 1246 i = 0; 1247 1248 while (n > 0) { 1249 nbits = (n > 32) ? 32 : n; 1250 for (j = 0, word = 0; j < nbits; j++) { 1251 if (g->c[n-1-j]) 1252 word |= 1u << (31-j); 1253 } 1254 genpoly[i++] = word; 1255 n -= nbits; 1256 } 1257 bch->ecc_bits = g->deg; 1258 1259 finish: 1260 kfree(g); 1261 kfree(roots); 1262 1263 return genpoly; 1264 } 1265 1266 /** 1267 * init_bch - initialize a BCH encoder/decoder 1268 * @m: Galois field order, should be in the range 5-15 1269 * @t: maximum error correction capability, in bits 1270 * @prim_poly: user-provided primitive polynomial (or 0 to use default) 1271 * 1272 * Returns: 1273 * a newly allocated BCH control structure if successful, NULL otherwise 1274 * 1275 * This initialization can take some time, as lookup tables are built for fast 1276 * encoding/decoding; make sure not to call this function from a time critical 1277 * path. Usually, init_bch() should be called on module/driver init and 1278 * free_bch() should be called to release memory on exit. 1279 * 1280 * You may provide your own primitive polynomial of degree @m in argument 1281 * @prim_poly, or let init_bch() use its default polynomial. 1282 * 1283 * Once init_bch() has successfully returned a pointer to a newly allocated 1284 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of 1285 * the structure. 1286 */ 1287 struct bch_control *init_bch(int m, int t, unsigned int prim_poly) 1288 { 1289 int err = 0; 1290 unsigned int i, words; 1291 uint32_t *genpoly; 1292 struct bch_control *bch = NULL; 1293 1294 const int min_m = 5; 1295 const int max_m = 15; 1296 1297 /* default primitive polynomials */ 1298 static const unsigned int prim_poly_tab[] = { 1299 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, 1300 0x402b, 0x8003, 1301 }; 1302 1303 #if defined(CONFIG_BCH_CONST_PARAMS) 1304 if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { 1305 printk(KERN_ERR "bch encoder/decoder was configured to support " 1306 "parameters m=%d, t=%d only!\n", 1307 CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); 1308 goto fail; 1309 } 1310 #endif 1311 if ((m < min_m) || (m > max_m)) 1312 /* 1313 * values of m greater than 15 are not currently supported; 1314 * supporting m > 15 would require changing table base type 1315 * (uint16_t) and a small patch in matrix transposition 1316 */ 1317 goto fail; 1318 1319 /* sanity checks */ 1320 if ((t < 1) || (m*t >= ((1 << m)-1))) 1321 /* invalid t value */ 1322 goto fail; 1323 1324 /* select a primitive polynomial for generating GF(2^m) */ 1325 if (prim_poly == 0) 1326 prim_poly = prim_poly_tab[m-min_m]; 1327 1328 bch = kzalloc(sizeof(*bch), GFP_KERNEL); 1329 if (bch == NULL) 1330 goto fail; 1331 1332 bch->m = m; 1333 bch->t = t; 1334 bch->n = (1 << m)-1; 1335 words = DIV_ROUND_UP(m*t, 32); 1336 bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); 1337 bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); 1338 bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); 1339 bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); 1340 bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err); 1341 bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); 1342 bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err); 1343 bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err); 1344 bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err); 1345 bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); 1346 1347 for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) 1348 bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); 1349 1350 if (err) 1351 goto fail; 1352 1353 err = build_gf_tables(bch, prim_poly); 1354 if (err) 1355 goto fail; 1356 1357 /* use generator polynomial for computing encoding tables */ 1358 genpoly = compute_generator_polynomial(bch); 1359 if (genpoly == NULL) 1360 goto fail; 1361 1362 build_mod8_tables(bch, genpoly); 1363 kfree(genpoly); 1364 1365 err = build_deg2_base(bch); 1366 if (err) 1367 goto fail; 1368 1369 return bch; 1370 1371 fail: 1372 free_bch(bch); 1373 return NULL; 1374 } 1375 1376 /** 1377 * free_bch - free the BCH control structure 1378 * @bch: BCH control structure to release 1379 */ 1380 void free_bch(struct bch_control *bch) 1381 { 1382 unsigned int i; 1383 1384 if (bch) { 1385 kfree(bch->a_pow_tab); 1386 kfree(bch->a_log_tab); 1387 kfree(bch->mod8_tab); 1388 kfree(bch->ecc_buf); 1389 kfree(bch->ecc_buf2); 1390 kfree(bch->xi_tab); 1391 kfree(bch->syn); 1392 kfree(bch->cache); 1393 kfree(bch->elp); 1394 1395 for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) 1396 kfree(bch->poly_2t[i]); 1397 1398 kfree(bch); 1399 } 1400 } 1401