1 /* 2 * Generic binary BCH encoding/decoding library 3 * 4 * SPDX-License-Identifier: GPL-2.0 5 * 6 * Copyright © 2011 Parrot S.A. 7 * 8 * Author: Ivan Djelic <ivan.djelic@parrot.com> 9 * 10 * Description: 11 * 12 * This library provides runtime configurable encoding/decoding of binary 13 * Bose-Chaudhuri-Hocquenghem (BCH) codes. 14 * 15 * Call init_bch to get a pointer to a newly allocated bch_control structure for 16 * the given m (Galois field order), t (error correction capability) and 17 * (optional) primitive polynomial parameters. 18 * 19 * Call encode_bch to compute and store ecc parity bytes to a given buffer. 20 * Call decode_bch to detect and locate errors in received data. 21 * 22 * On systems supporting hw BCH features, intermediate results may be provided 23 * to decode_bch in order to skip certain steps. See decode_bch() documentation 24 * for details. 25 * 26 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of 27 * parameters m and t; thus allowing extra compiler optimizations and providing 28 * better (up to 2x) encoding performance. Using this option makes sense when 29 * (m,t) are fixed and known in advance, e.g. when using BCH error correction 30 * on a particular NAND flash device. 31 * 32 * Algorithmic details: 33 * 34 * Encoding is performed by processing 32 input bits in parallel, using 4 35 * remainder lookup tables. 36 * 37 * The final stage of decoding involves the following internal steps: 38 * a. Syndrome computation 39 * b. Error locator polynomial computation using Berlekamp-Massey algorithm 40 * c. Error locator root finding (by far the most expensive step) 41 * 42 * In this implementation, step c is not performed using the usual Chien search. 43 * Instead, an alternative approach described in [1] is used. It consists in 44 * factoring the error locator polynomial using the Berlekamp Trace algorithm 45 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial 46 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields 47 * much better performance than Chien search for usual (m,t) values (typically 48 * m >= 13, t < 32, see [1]). 49 * 50 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields 51 * of characteristic 2, in: Western European Workshop on Research in Cryptology 52 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. 53 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over 54 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. 55 */ 56 57 #include <common.h> 58 #include <ubi_uboot.h> 59 60 #include <linux/bitops.h> 61 #include <asm/byteorder.h> 62 #include <linux/bch.h> 63 64 #if defined(CONFIG_BCH_CONST_PARAMS) 65 #define GF_M(_p) (CONFIG_BCH_CONST_M) 66 #define GF_T(_p) (CONFIG_BCH_CONST_T) 67 #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) 68 #else 69 #define GF_M(_p) ((_p)->m) 70 #define GF_T(_p) ((_p)->t) 71 #define GF_N(_p) ((_p)->n) 72 #endif 73 74 #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) 75 #define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) 76 77 #ifndef dbg 78 #define dbg(_fmt, args...) do {} while (0) 79 #endif 80 81 /* 82 * represent a polynomial over GF(2^m) 83 */ 84 struct gf_poly { 85 unsigned int deg; /* polynomial degree */ 86 unsigned int c[0]; /* polynomial terms */ 87 }; 88 89 /* given its degree, compute a polynomial size in bytes */ 90 #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) 91 92 /* polynomial of degree 1 */ 93 struct gf_poly_deg1 { 94 struct gf_poly poly; 95 unsigned int c[2]; 96 }; 97 98 /* 99 * same as encode_bch(), but process input data one byte at a time 100 */ 101 static void encode_bch_unaligned(struct bch_control *bch, 102 const unsigned char *data, unsigned int len, 103 uint32_t *ecc) 104 { 105 int i; 106 const uint32_t *p; 107 const int l = BCH_ECC_WORDS(bch)-1; 108 109 while (len--) { 110 p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); 111 112 for (i = 0; i < l; i++) 113 ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); 114 115 ecc[l] = (ecc[l] << 8)^(*p); 116 } 117 } 118 119 /* 120 * convert ecc bytes to aligned, zero-padded 32-bit ecc words 121 */ 122 static void load_ecc8(struct bch_control *bch, uint32_t *dst, 123 const uint8_t *src) 124 { 125 uint8_t pad[4] = {0, 0, 0, 0}; 126 unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; 127 128 for (i = 0; i < nwords; i++, src += 4) 129 dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; 130 131 memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); 132 dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; 133 } 134 135 /* 136 * convert 32-bit ecc words to ecc bytes 137 */ 138 static void store_ecc8(struct bch_control *bch, uint8_t *dst, 139 const uint32_t *src) 140 { 141 uint8_t pad[4]; 142 unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; 143 144 for (i = 0; i < nwords; i++) { 145 *dst++ = (src[i] >> 24); 146 *dst++ = (src[i] >> 16) & 0xff; 147 *dst++ = (src[i] >> 8) & 0xff; 148 *dst++ = (src[i] >> 0) & 0xff; 149 } 150 pad[0] = (src[nwords] >> 24); 151 pad[1] = (src[nwords] >> 16) & 0xff; 152 pad[2] = (src[nwords] >> 8) & 0xff; 153 pad[3] = (src[nwords] >> 0) & 0xff; 154 memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); 155 } 156 157 /** 158 * encode_bch - calculate BCH ecc parity of data 159 * @bch: BCH control structure 160 * @data: data to encode 161 * @len: data length in bytes 162 * @ecc: ecc parity data, must be initialized by caller 163 * 164 * The @ecc parity array is used both as input and output parameter, in order to 165 * allow incremental computations. It should be of the size indicated by member 166 * @ecc_bytes of @bch, and should be initialized to 0 before the first call. 167 * 168 * The exact number of computed ecc parity bits is given by member @ecc_bits of 169 * @bch; it may be less than m*t for large values of t. 170 */ 171 void encode_bch(struct bch_control *bch, const uint8_t *data, 172 unsigned int len, uint8_t *ecc) 173 { 174 const unsigned int l = BCH_ECC_WORDS(bch)-1; 175 unsigned int i, mlen; 176 unsigned long m; 177 uint32_t w, r[l+1]; 178 const uint32_t * const tab0 = bch->mod8_tab; 179 const uint32_t * const tab1 = tab0 + 256*(l+1); 180 const uint32_t * const tab2 = tab1 + 256*(l+1); 181 const uint32_t * const tab3 = tab2 + 256*(l+1); 182 const uint32_t *pdata, *p0, *p1, *p2, *p3; 183 184 if (ecc) { 185 /* load ecc parity bytes into internal 32-bit buffer */ 186 load_ecc8(bch, bch->ecc_buf, ecc); 187 } else { 188 memset(bch->ecc_buf, 0, sizeof(r)); 189 } 190 191 /* process first unaligned data bytes */ 192 m = ((unsigned long)data) & 3; 193 if (m) { 194 mlen = (len < (4-m)) ? len : 4-m; 195 encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); 196 data += mlen; 197 len -= mlen; 198 } 199 200 /* process 32-bit aligned data words */ 201 pdata = (uint32_t *)data; 202 mlen = len/4; 203 data += 4*mlen; 204 len -= 4*mlen; 205 memcpy(r, bch->ecc_buf, sizeof(r)); 206 207 /* 208 * split each 32-bit word into 4 polynomials of weight 8 as follows: 209 * 210 * 31 ...24 23 ...16 15 ... 8 7 ... 0 211 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt 212 * tttttttt mod g = r0 (precomputed) 213 * zzzzzzzz 00000000 mod g = r1 (precomputed) 214 * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) 215 * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) 216 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 217 */ 218 while (mlen--) { 219 /* input data is read in big-endian format */ 220 w = r[0]^cpu_to_be32(*pdata++); 221 p0 = tab0 + (l+1)*((w >> 0) & 0xff); 222 p1 = tab1 + (l+1)*((w >> 8) & 0xff); 223 p2 = tab2 + (l+1)*((w >> 16) & 0xff); 224 p3 = tab3 + (l+1)*((w >> 24) & 0xff); 225 226 for (i = 0; i < l; i++) 227 r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; 228 229 r[l] = p0[l]^p1[l]^p2[l]^p3[l]; 230 } 231 memcpy(bch->ecc_buf, r, sizeof(r)); 232 233 /* process last unaligned bytes */ 234 if (len) 235 encode_bch_unaligned(bch, data, len, bch->ecc_buf); 236 237 /* store ecc parity bytes into original parity buffer */ 238 if (ecc) 239 store_ecc8(bch, ecc, bch->ecc_buf); 240 } 241 242 static inline int modulo(struct bch_control *bch, unsigned int v) 243 { 244 const unsigned int n = GF_N(bch); 245 while (v >= n) { 246 v -= n; 247 v = (v & n) + (v >> GF_M(bch)); 248 } 249 return v; 250 } 251 252 /* 253 * shorter and faster modulo function, only works when v < 2N. 254 */ 255 static inline int mod_s(struct bch_control *bch, unsigned int v) 256 { 257 const unsigned int n = GF_N(bch); 258 return (v < n) ? v : v-n; 259 } 260 261 static inline int deg(unsigned int poly) 262 { 263 /* polynomial degree is the most-significant bit index */ 264 return fls(poly)-1; 265 } 266 267 static inline int parity(unsigned int x) 268 { 269 /* 270 * public domain code snippet, lifted from 271 * http://www-graphics.stanford.edu/~seander/bithacks.html 272 */ 273 x ^= x >> 1; 274 x ^= x >> 2; 275 x = (x & 0x11111111U) * 0x11111111U; 276 return (x >> 28) & 1; 277 } 278 279 /* Galois field basic operations: multiply, divide, inverse, etc. */ 280 281 static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, 282 unsigned int b) 283 { 284 return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ 285 bch->a_log_tab[b])] : 0; 286 } 287 288 static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) 289 { 290 return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; 291 } 292 293 static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, 294 unsigned int b) 295 { 296 return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ 297 GF_N(bch)-bch->a_log_tab[b])] : 0; 298 } 299 300 static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) 301 { 302 return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; 303 } 304 305 static inline unsigned int a_pow(struct bch_control *bch, int i) 306 { 307 return bch->a_pow_tab[modulo(bch, i)]; 308 } 309 310 static inline int a_log(struct bch_control *bch, unsigned int x) 311 { 312 return bch->a_log_tab[x]; 313 } 314 315 static inline int a_ilog(struct bch_control *bch, unsigned int x) 316 { 317 return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); 318 } 319 320 /* 321 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t 322 */ 323 static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, 324 unsigned int *syn) 325 { 326 int i, j, s; 327 unsigned int m; 328 uint32_t poly; 329 const int t = GF_T(bch); 330 331 s = bch->ecc_bits; 332 333 /* make sure extra bits in last ecc word are cleared */ 334 m = ((unsigned int)s) & 31; 335 if (m) 336 ecc[s/32] &= ~((1u << (32-m))-1); 337 memset(syn, 0, 2*t*sizeof(*syn)); 338 339 /* compute v(a^j) for j=1 .. 2t-1 */ 340 do { 341 poly = *ecc++; 342 s -= 32; 343 while (poly) { 344 i = deg(poly); 345 for (j = 0; j < 2*t; j += 2) 346 syn[j] ^= a_pow(bch, (j+1)*(i+s)); 347 348 poly ^= (1 << i); 349 } 350 } while (s > 0); 351 352 /* v(a^(2j)) = v(a^j)^2 */ 353 for (j = 0; j < t; j++) 354 syn[2*j+1] = gf_sqr(bch, syn[j]); 355 } 356 357 static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) 358 { 359 memcpy(dst, src, GF_POLY_SZ(src->deg)); 360 } 361 362 static int compute_error_locator_polynomial(struct bch_control *bch, 363 const unsigned int *syn) 364 { 365 const unsigned int t = GF_T(bch); 366 const unsigned int n = GF_N(bch); 367 unsigned int i, j, tmp, l, pd = 1, d = syn[0]; 368 struct gf_poly *elp = bch->elp; 369 struct gf_poly *pelp = bch->poly_2t[0]; 370 struct gf_poly *elp_copy = bch->poly_2t[1]; 371 int k, pp = -1; 372 373 memset(pelp, 0, GF_POLY_SZ(2*t)); 374 memset(elp, 0, GF_POLY_SZ(2*t)); 375 376 pelp->deg = 0; 377 pelp->c[0] = 1; 378 elp->deg = 0; 379 elp->c[0] = 1; 380 381 /* use simplified binary Berlekamp-Massey algorithm */ 382 for (i = 0; (i < t) && (elp->deg <= t); i++) { 383 if (d) { 384 k = 2*i-pp; 385 gf_poly_copy(elp_copy, elp); 386 /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ 387 tmp = a_log(bch, d)+n-a_log(bch, pd); 388 for (j = 0; j <= pelp->deg; j++) { 389 if (pelp->c[j]) { 390 l = a_log(bch, pelp->c[j]); 391 elp->c[j+k] ^= a_pow(bch, tmp+l); 392 } 393 } 394 /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ 395 tmp = pelp->deg+k; 396 if (tmp > elp->deg) { 397 elp->deg = tmp; 398 gf_poly_copy(pelp, elp_copy); 399 pd = d; 400 pp = 2*i; 401 } 402 } 403 /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ 404 if (i < t-1) { 405 d = syn[2*i+2]; 406 for (j = 1; j <= elp->deg; j++) 407 d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); 408 } 409 } 410 dbg("elp=%s\n", gf_poly_str(elp)); 411 return (elp->deg > t) ? -1 : (int)elp->deg; 412 } 413 414 /* 415 * solve a m x m linear system in GF(2) with an expected number of solutions, 416 * and return the number of found solutions 417 */ 418 static int solve_linear_system(struct bch_control *bch, unsigned int *rows, 419 unsigned int *sol, int nsol) 420 { 421 const int m = GF_M(bch); 422 unsigned int tmp, mask; 423 int rem, c, r, p, k, param[m]; 424 425 k = 0; 426 mask = 1 << m; 427 428 /* Gaussian elimination */ 429 for (c = 0; c < m; c++) { 430 rem = 0; 431 p = c-k; 432 /* find suitable row for elimination */ 433 for (r = p; r < m; r++) { 434 if (rows[r] & mask) { 435 if (r != p) { 436 tmp = rows[r]; 437 rows[r] = rows[p]; 438 rows[p] = tmp; 439 } 440 rem = r+1; 441 break; 442 } 443 } 444 if (rem) { 445 /* perform elimination on remaining rows */ 446 tmp = rows[p]; 447 for (r = rem; r < m; r++) { 448 if (rows[r] & mask) 449 rows[r] ^= tmp; 450 } 451 } else { 452 /* elimination not needed, store defective row index */ 453 param[k++] = c; 454 } 455 mask >>= 1; 456 } 457 /* rewrite system, inserting fake parameter rows */ 458 if (k > 0) { 459 p = k; 460 for (r = m-1; r >= 0; r--) { 461 if ((r > m-1-k) && rows[r]) 462 /* system has no solution */ 463 return 0; 464 465 rows[r] = (p && (r == param[p-1])) ? 466 p--, 1u << (m-r) : rows[r-p]; 467 } 468 } 469 470 if (nsol != (1 << k)) 471 /* unexpected number of solutions */ 472 return 0; 473 474 for (p = 0; p < nsol; p++) { 475 /* set parameters for p-th solution */ 476 for (c = 0; c < k; c++) 477 rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); 478 479 /* compute unique solution */ 480 tmp = 0; 481 for (r = m-1; r >= 0; r--) { 482 mask = rows[r] & (tmp|1); 483 tmp |= parity(mask) << (m-r); 484 } 485 sol[p] = tmp >> 1; 486 } 487 return nsol; 488 } 489 490 /* 491 * this function builds and solves a linear system for finding roots of a degree 492 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). 493 */ 494 static int find_affine4_roots(struct bch_control *bch, unsigned int a, 495 unsigned int b, unsigned int c, 496 unsigned int *roots) 497 { 498 int i, j, k; 499 const int m = GF_M(bch); 500 unsigned int mask = 0xff, t, rows[16] = {0,}; 501 502 j = a_log(bch, b); 503 k = a_log(bch, a); 504 rows[0] = c; 505 506 /* buid linear system to solve X^4+aX^2+bX+c = 0 */ 507 for (i = 0; i < m; i++) { 508 rows[i+1] = bch->a_pow_tab[4*i]^ 509 (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ 510 (b ? bch->a_pow_tab[mod_s(bch, j)] : 0); 511 j++; 512 k += 2; 513 } 514 /* 515 * transpose 16x16 matrix before passing it to linear solver 516 * warning: this code assumes m < 16 517 */ 518 for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { 519 for (k = 0; k < 16; k = (k+j+1) & ~j) { 520 t = ((rows[k] >> j)^rows[k+j]) & mask; 521 rows[k] ^= (t << j); 522 rows[k+j] ^= t; 523 } 524 } 525 return solve_linear_system(bch, rows, roots, 4); 526 } 527 528 /* 529 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) 530 */ 531 static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, 532 unsigned int *roots) 533 { 534 int n = 0; 535 536 if (poly->c[0]) 537 /* poly[X] = bX+c with c!=0, root=c/b */ 538 roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ 539 bch->a_log_tab[poly->c[1]]); 540 return n; 541 } 542 543 /* 544 * compute roots of a degree 2 polynomial over GF(2^m) 545 */ 546 static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, 547 unsigned int *roots) 548 { 549 int n = 0, i, l0, l1, l2; 550 unsigned int u, v, r; 551 552 if (poly->c[0] && poly->c[1]) { 553 554 l0 = bch->a_log_tab[poly->c[0]]; 555 l1 = bch->a_log_tab[poly->c[1]]; 556 l2 = bch->a_log_tab[poly->c[2]]; 557 558 /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ 559 u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); 560 /* 561 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): 562 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = 563 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) 564 * i.e. r and r+1 are roots iff Tr(u)=0 565 */ 566 r = 0; 567 v = u; 568 while (v) { 569 i = deg(v); 570 r ^= bch->xi_tab[i]; 571 v ^= (1 << i); 572 } 573 /* verify root */ 574 if ((gf_sqr(bch, r)^r) == u) { 575 /* reverse z=a/bX transformation and compute log(1/r) */ 576 roots[n++] = modulo(bch, 2*GF_N(bch)-l1- 577 bch->a_log_tab[r]+l2); 578 roots[n++] = modulo(bch, 2*GF_N(bch)-l1- 579 bch->a_log_tab[r^1]+l2); 580 } 581 } 582 return n; 583 } 584 585 /* 586 * compute roots of a degree 3 polynomial over GF(2^m) 587 */ 588 static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, 589 unsigned int *roots) 590 { 591 int i, n = 0; 592 unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; 593 594 if (poly->c[0]) { 595 /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ 596 e3 = poly->c[3]; 597 c2 = gf_div(bch, poly->c[0], e3); 598 b2 = gf_div(bch, poly->c[1], e3); 599 a2 = gf_div(bch, poly->c[2], e3); 600 601 /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ 602 c = gf_mul(bch, a2, c2); /* c = a2c2 */ 603 b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */ 604 a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */ 605 606 /* find the 4 roots of this affine polynomial */ 607 if (find_affine4_roots(bch, a, b, c, tmp) == 4) { 608 /* remove a2 from final list of roots */ 609 for (i = 0; i < 4; i++) { 610 if (tmp[i] != a2) 611 roots[n++] = a_ilog(bch, tmp[i]); 612 } 613 } 614 } 615 return n; 616 } 617 618 /* 619 * compute roots of a degree 4 polynomial over GF(2^m) 620 */ 621 static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, 622 unsigned int *roots) 623 { 624 int i, l, n = 0; 625 unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; 626 627 if (poly->c[0] == 0) 628 return 0; 629 630 /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ 631 e4 = poly->c[4]; 632 d = gf_div(bch, poly->c[0], e4); 633 c = gf_div(bch, poly->c[1], e4); 634 b = gf_div(bch, poly->c[2], e4); 635 a = gf_div(bch, poly->c[3], e4); 636 637 /* use Y=1/X transformation to get an affine polynomial */ 638 if (a) { 639 /* first, eliminate cX by using z=X+e with ae^2+c=0 */ 640 if (c) { 641 /* compute e such that e^2 = c/a */ 642 f = gf_div(bch, c, a); 643 l = a_log(bch, f); 644 l += (l & 1) ? GF_N(bch) : 0; 645 e = a_pow(bch, l/2); 646 /* 647 * use transformation z=X+e: 648 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d 649 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d 650 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d 651 * z^4 + az^3 + b'z^2 + d' 652 */ 653 d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; 654 b = gf_mul(bch, a, e)^b; 655 } 656 /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ 657 if (d == 0) 658 /* assume all roots have multiplicity 1 */ 659 return 0; 660 661 c2 = gf_inv(bch, d); 662 b2 = gf_div(bch, a, d); 663 a2 = gf_div(bch, b, d); 664 } else { 665 /* polynomial is already affine */ 666 c2 = d; 667 b2 = c; 668 a2 = b; 669 } 670 /* find the 4 roots of this affine polynomial */ 671 if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { 672 for (i = 0; i < 4; i++) { 673 /* post-process roots (reverse transformations) */ 674 f = a ? gf_inv(bch, roots[i]) : roots[i]; 675 roots[i] = a_ilog(bch, f^e); 676 } 677 n = 4; 678 } 679 return n; 680 } 681 682 /* 683 * build monic, log-based representation of a polynomial 684 */ 685 static void gf_poly_logrep(struct bch_control *bch, 686 const struct gf_poly *a, int *rep) 687 { 688 int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); 689 690 /* represent 0 values with -1; warning, rep[d] is not set to 1 */ 691 for (i = 0; i < d; i++) 692 rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; 693 } 694 695 /* 696 * compute polynomial Euclidean division remainder in GF(2^m)[X] 697 */ 698 static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, 699 const struct gf_poly *b, int *rep) 700 { 701 int la, p, m; 702 unsigned int i, j, *c = a->c; 703 const unsigned int d = b->deg; 704 705 if (a->deg < d) 706 return; 707 708 /* reuse or compute log representation of denominator */ 709 if (!rep) { 710 rep = bch->cache; 711 gf_poly_logrep(bch, b, rep); 712 } 713 714 for (j = a->deg; j >= d; j--) { 715 if (c[j]) { 716 la = a_log(bch, c[j]); 717 p = j-d; 718 for (i = 0; i < d; i++, p++) { 719 m = rep[i]; 720 if (m >= 0) 721 c[p] ^= bch->a_pow_tab[mod_s(bch, 722 m+la)]; 723 } 724 } 725 } 726 a->deg = d-1; 727 while (!c[a->deg] && a->deg) 728 a->deg--; 729 } 730 731 /* 732 * compute polynomial Euclidean division quotient in GF(2^m)[X] 733 */ 734 static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, 735 const struct gf_poly *b, struct gf_poly *q) 736 { 737 if (a->deg >= b->deg) { 738 q->deg = a->deg-b->deg; 739 /* compute a mod b (modifies a) */ 740 gf_poly_mod(bch, a, b, NULL); 741 /* quotient is stored in upper part of polynomial a */ 742 memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); 743 } else { 744 q->deg = 0; 745 q->c[0] = 0; 746 } 747 } 748 749 /* 750 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] 751 */ 752 static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, 753 struct gf_poly *b) 754 { 755 struct gf_poly *tmp; 756 757 dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); 758 759 if (a->deg < b->deg) { 760 tmp = b; 761 b = a; 762 a = tmp; 763 } 764 765 while (b->deg > 0) { 766 gf_poly_mod(bch, a, b, NULL); 767 tmp = b; 768 b = a; 769 a = tmp; 770 } 771 772 dbg("%s\n", gf_poly_str(a)); 773 774 return a; 775 } 776 777 /* 778 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f 779 * This is used in Berlekamp Trace algorithm for splitting polynomials 780 */ 781 static void compute_trace_bk_mod(struct bch_control *bch, int k, 782 const struct gf_poly *f, struct gf_poly *z, 783 struct gf_poly *out) 784 { 785 const int m = GF_M(bch); 786 int i, j; 787 788 /* z contains z^2j mod f */ 789 z->deg = 1; 790 z->c[0] = 0; 791 z->c[1] = bch->a_pow_tab[k]; 792 793 out->deg = 0; 794 memset(out, 0, GF_POLY_SZ(f->deg)); 795 796 /* compute f log representation only once */ 797 gf_poly_logrep(bch, f, bch->cache); 798 799 for (i = 0; i < m; i++) { 800 /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ 801 for (j = z->deg; j >= 0; j--) { 802 out->c[j] ^= z->c[j]; 803 z->c[2*j] = gf_sqr(bch, z->c[j]); 804 z->c[2*j+1] = 0; 805 } 806 if (z->deg > out->deg) 807 out->deg = z->deg; 808 809 if (i < m-1) { 810 z->deg *= 2; 811 /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ 812 gf_poly_mod(bch, z, f, bch->cache); 813 } 814 } 815 while (!out->c[out->deg] && out->deg) 816 out->deg--; 817 818 dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); 819 } 820 821 /* 822 * factor a polynomial using Berlekamp Trace algorithm (BTA) 823 */ 824 static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, 825 struct gf_poly **g, struct gf_poly **h) 826 { 827 struct gf_poly *f2 = bch->poly_2t[0]; 828 struct gf_poly *q = bch->poly_2t[1]; 829 struct gf_poly *tk = bch->poly_2t[2]; 830 struct gf_poly *z = bch->poly_2t[3]; 831 struct gf_poly *gcd; 832 833 dbg("factoring %s...\n", gf_poly_str(f)); 834 835 *g = f; 836 *h = NULL; 837 838 /* tk = Tr(a^k.X) mod f */ 839 compute_trace_bk_mod(bch, k, f, z, tk); 840 841 if (tk->deg > 0) { 842 /* compute g = gcd(f, tk) (destructive operation) */ 843 gf_poly_copy(f2, f); 844 gcd = gf_poly_gcd(bch, f2, tk); 845 if (gcd->deg < f->deg) { 846 /* compute h=f/gcd(f,tk); this will modify f and q */ 847 gf_poly_div(bch, f, gcd, q); 848 /* store g and h in-place (clobbering f) */ 849 *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; 850 gf_poly_copy(*g, gcd); 851 gf_poly_copy(*h, q); 852 } 853 } 854 } 855 856 /* 857 * find roots of a polynomial, using BTZ algorithm; see the beginning of this 858 * file for details 859 */ 860 static int find_poly_roots(struct bch_control *bch, unsigned int k, 861 struct gf_poly *poly, unsigned int *roots) 862 { 863 int cnt; 864 struct gf_poly *f1, *f2; 865 866 switch (poly->deg) { 867 /* handle low degree polynomials with ad hoc techniques */ 868 case 1: 869 cnt = find_poly_deg1_roots(bch, poly, roots); 870 break; 871 case 2: 872 cnt = find_poly_deg2_roots(bch, poly, roots); 873 break; 874 case 3: 875 cnt = find_poly_deg3_roots(bch, poly, roots); 876 break; 877 case 4: 878 cnt = find_poly_deg4_roots(bch, poly, roots); 879 break; 880 default: 881 /* factor polynomial using Berlekamp Trace Algorithm (BTA) */ 882 cnt = 0; 883 if (poly->deg && (k <= GF_M(bch))) { 884 factor_polynomial(bch, k, poly, &f1, &f2); 885 if (f1) 886 cnt += find_poly_roots(bch, k+1, f1, roots); 887 if (f2) 888 cnt += find_poly_roots(bch, k+1, f2, roots+cnt); 889 } 890 break; 891 } 892 return cnt; 893 } 894 895 #if defined(USE_CHIEN_SEARCH) 896 /* 897 * exhaustive root search (Chien) implementation - not used, included only for 898 * reference/comparison tests 899 */ 900 static int chien_search(struct bch_control *bch, unsigned int len, 901 struct gf_poly *p, unsigned int *roots) 902 { 903 int m; 904 unsigned int i, j, syn, syn0, count = 0; 905 const unsigned int k = 8*len+bch->ecc_bits; 906 907 /* use a log-based representation of polynomial */ 908 gf_poly_logrep(bch, p, bch->cache); 909 bch->cache[p->deg] = 0; 910 syn0 = gf_div(bch, p->c[0], p->c[p->deg]); 911 912 for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { 913 /* compute elp(a^i) */ 914 for (j = 1, syn = syn0; j <= p->deg; j++) { 915 m = bch->cache[j]; 916 if (m >= 0) 917 syn ^= a_pow(bch, m+j*i); 918 } 919 if (syn == 0) { 920 roots[count++] = GF_N(bch)-i; 921 if (count == p->deg) 922 break; 923 } 924 } 925 return (count == p->deg) ? count : 0; 926 } 927 #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) 928 #endif /* USE_CHIEN_SEARCH */ 929 930 /** 931 * decode_bch - decode received codeword and find bit error locations 932 * @bch: BCH control structure 933 * @data: received data, ignored if @calc_ecc is provided 934 * @len: data length in bytes, must always be provided 935 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc 936 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data 937 * @syn: hw computed syndrome data (if NULL, syndrome is calculated) 938 * @errloc: output array of error locations 939 * 940 * Returns: 941 * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if 942 * invalid parameters were provided 943 * 944 * Depending on the available hw BCH support and the need to compute @calc_ecc 945 * separately (using encode_bch()), this function should be called with one of 946 * the following parameter configurations - 947 * 948 * by providing @data and @recv_ecc only: 949 * decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) 950 * 951 * by providing @recv_ecc and @calc_ecc: 952 * decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) 953 * 954 * by providing ecc = recv_ecc XOR calc_ecc: 955 * decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc) 956 * 957 * by providing syndrome results @syn: 958 * decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc) 959 * 960 * Once decode_bch() has successfully returned with a positive value, error 961 * locations returned in array @errloc should be interpreted as follows - 962 * 963 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for 964 * data correction) 965 * 966 * if (errloc[n] < 8*len), then n-th error is located in data and can be 967 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); 968 * 969 * Note that this function does not perform any data correction by itself, it 970 * merely indicates error locations. 971 */ 972 int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, 973 const uint8_t *recv_ecc, const uint8_t *calc_ecc, 974 const unsigned int *syn, unsigned int *errloc) 975 { 976 const unsigned int ecc_words = BCH_ECC_WORDS(bch); 977 unsigned int nbits; 978 int i, err, nroots; 979 uint32_t sum; 980 981 /* sanity check: make sure data length can be handled */ 982 if (8*len > (bch->n-bch->ecc_bits)) 983 return -EINVAL; 984 985 /* if caller does not provide syndromes, compute them */ 986 if (!syn) { 987 if (!calc_ecc) { 988 /* compute received data ecc into an internal buffer */ 989 if (!data || !recv_ecc) 990 return -EINVAL; 991 encode_bch(bch, data, len, NULL); 992 } else { 993 /* load provided calculated ecc */ 994 load_ecc8(bch, bch->ecc_buf, calc_ecc); 995 } 996 /* load received ecc or assume it was XORed in calc_ecc */ 997 if (recv_ecc) { 998 load_ecc8(bch, bch->ecc_buf2, recv_ecc); 999 /* XOR received and calculated ecc */ 1000 for (i = 0, sum = 0; i < (int)ecc_words; i++) { 1001 bch->ecc_buf[i] ^= bch->ecc_buf2[i]; 1002 sum |= bch->ecc_buf[i]; 1003 } 1004 if (!sum) 1005 /* no error found */ 1006 return 0; 1007 } 1008 compute_syndromes(bch, bch->ecc_buf, bch->syn); 1009 syn = bch->syn; 1010 } 1011 1012 err = compute_error_locator_polynomial(bch, syn); 1013 if (err > 0) { 1014 nroots = find_poly_roots(bch, 1, bch->elp, errloc); 1015 if (err != nroots) 1016 err = -1; 1017 } 1018 if (err > 0) { 1019 /* post-process raw error locations for easier correction */ 1020 nbits = (len*8)+bch->ecc_bits; 1021 for (i = 0; i < err; i++) { 1022 if (errloc[i] >= nbits) { 1023 err = -1; 1024 break; 1025 } 1026 errloc[i] = nbits-1-errloc[i]; 1027 errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7)); 1028 } 1029 } 1030 return (err >= 0) ? err : -EBADMSG; 1031 } 1032 1033 /* 1034 * generate Galois field lookup tables 1035 */ 1036 static int build_gf_tables(struct bch_control *bch, unsigned int poly) 1037 { 1038 unsigned int i, x = 1; 1039 const unsigned int k = 1 << deg(poly); 1040 1041 /* primitive polynomial must be of degree m */ 1042 if (k != (1u << GF_M(bch))) 1043 return -1; 1044 1045 for (i = 0; i < GF_N(bch); i++) { 1046 bch->a_pow_tab[i] = x; 1047 bch->a_log_tab[x] = i; 1048 if (i && (x == 1)) 1049 /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ 1050 return -1; 1051 x <<= 1; 1052 if (x & k) 1053 x ^= poly; 1054 } 1055 bch->a_pow_tab[GF_N(bch)] = 1; 1056 bch->a_log_tab[0] = 0; 1057 1058 return 0; 1059 } 1060 1061 /* 1062 * compute generator polynomial remainder tables for fast encoding 1063 */ 1064 static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) 1065 { 1066 int i, j, b, d; 1067 uint32_t data, hi, lo, *tab; 1068 const int l = BCH_ECC_WORDS(bch); 1069 const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); 1070 const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); 1071 1072 memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); 1073 1074 for (i = 0; i < 256; i++) { 1075 /* p(X)=i is a small polynomial of weight <= 8 */ 1076 for (b = 0; b < 4; b++) { 1077 /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ 1078 tab = bch->mod8_tab + (b*256+i)*l; 1079 data = i << (8*b); 1080 while (data) { 1081 d = deg(data); 1082 /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ 1083 data ^= g[0] >> (31-d); 1084 for (j = 0; j < ecclen; j++) { 1085 hi = (d < 31) ? g[j] << (d+1) : 0; 1086 lo = (j+1 < plen) ? 1087 g[j+1] >> (31-d) : 0; 1088 tab[j] ^= hi|lo; 1089 } 1090 } 1091 } 1092 } 1093 } 1094 1095 /* 1096 * build a base for factoring degree 2 polynomials 1097 */ 1098 static int build_deg2_base(struct bch_control *bch) 1099 { 1100 const int m = GF_M(bch); 1101 int i, j, r; 1102 unsigned int sum, x, y, remaining, ak = 0, xi[m]; 1103 1104 /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ 1105 for (i = 0; i < m; i++) { 1106 for (j = 0, sum = 0; j < m; j++) 1107 sum ^= a_pow(bch, i*(1 << j)); 1108 1109 if (sum) { 1110 ak = bch->a_pow_tab[i]; 1111 break; 1112 } 1113 } 1114 /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ 1115 remaining = m; 1116 memset(xi, 0, sizeof(xi)); 1117 1118 for (x = 0; (x <= GF_N(bch)) && remaining; x++) { 1119 y = gf_sqr(bch, x)^x; 1120 for (i = 0; i < 2; i++) { 1121 r = a_log(bch, y); 1122 if (y && (r < m) && !xi[r]) { 1123 bch->xi_tab[r] = x; 1124 xi[r] = 1; 1125 remaining--; 1126 dbg("x%d = %x\n", r, x); 1127 break; 1128 } 1129 y ^= ak; 1130 } 1131 } 1132 /* should not happen but check anyway */ 1133 return remaining ? -1 : 0; 1134 } 1135 1136 static void *bch_alloc(size_t size, int *err) 1137 { 1138 void *ptr; 1139 1140 ptr = kmalloc(size, GFP_KERNEL); 1141 if (ptr == NULL) 1142 *err = 1; 1143 return ptr; 1144 } 1145 1146 /* 1147 * compute generator polynomial for given (m,t) parameters. 1148 */ 1149 static uint32_t *compute_generator_polynomial(struct bch_control *bch) 1150 { 1151 const unsigned int m = GF_M(bch); 1152 const unsigned int t = GF_T(bch); 1153 int n, err = 0; 1154 unsigned int i, j, nbits, r, word, *roots; 1155 struct gf_poly *g; 1156 uint32_t *genpoly; 1157 1158 g = bch_alloc(GF_POLY_SZ(m*t), &err); 1159 roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); 1160 genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); 1161 1162 if (err) { 1163 kfree(genpoly); 1164 genpoly = NULL; 1165 goto finish; 1166 } 1167 1168 /* enumerate all roots of g(X) */ 1169 memset(roots , 0, (bch->n+1)*sizeof(*roots)); 1170 for (i = 0; i < t; i++) { 1171 for (j = 0, r = 2*i+1; j < m; j++) { 1172 roots[r] = 1; 1173 r = mod_s(bch, 2*r); 1174 } 1175 } 1176 /* build generator polynomial g(X) */ 1177 g->deg = 0; 1178 g->c[0] = 1; 1179 for (i = 0; i < GF_N(bch); i++) { 1180 if (roots[i]) { 1181 /* multiply g(X) by (X+root) */ 1182 r = bch->a_pow_tab[i]; 1183 g->c[g->deg+1] = 1; 1184 for (j = g->deg; j > 0; j--) 1185 g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; 1186 1187 g->c[0] = gf_mul(bch, g->c[0], r); 1188 g->deg++; 1189 } 1190 } 1191 /* store left-justified binary representation of g(X) */ 1192 n = g->deg+1; 1193 i = 0; 1194 1195 while (n > 0) { 1196 nbits = (n > 32) ? 32 : n; 1197 for (j = 0, word = 0; j < nbits; j++) { 1198 if (g->c[n-1-j]) 1199 word |= 1u << (31-j); 1200 } 1201 genpoly[i++] = word; 1202 n -= nbits; 1203 } 1204 bch->ecc_bits = g->deg; 1205 1206 finish: 1207 kfree(g); 1208 kfree(roots); 1209 1210 return genpoly; 1211 } 1212 1213 /** 1214 * init_bch - initialize a BCH encoder/decoder 1215 * @m: Galois field order, should be in the range 5-15 1216 * @t: maximum error correction capability, in bits 1217 * @prim_poly: user-provided primitive polynomial (or 0 to use default) 1218 * 1219 * Returns: 1220 * a newly allocated BCH control structure if successful, NULL otherwise 1221 * 1222 * This initialization can take some time, as lookup tables are built for fast 1223 * encoding/decoding; make sure not to call this function from a time critical 1224 * path. Usually, init_bch() should be called on module/driver init and 1225 * free_bch() should be called to release memory on exit. 1226 * 1227 * You may provide your own primitive polynomial of degree @m in argument 1228 * @prim_poly, or let init_bch() use its default polynomial. 1229 * 1230 * Once init_bch() has successfully returned a pointer to a newly allocated 1231 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of 1232 * the structure. 1233 */ 1234 struct bch_control *init_bch(int m, int t, unsigned int prim_poly) 1235 { 1236 int err = 0; 1237 unsigned int i, words; 1238 uint32_t *genpoly; 1239 struct bch_control *bch = NULL; 1240 1241 const int min_m = 5; 1242 const int max_m = 15; 1243 1244 /* default primitive polynomials */ 1245 static const unsigned int prim_poly_tab[] = { 1246 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, 1247 0x402b, 0x8003, 1248 }; 1249 1250 #if defined(CONFIG_BCH_CONST_PARAMS) 1251 if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { 1252 printk(KERN_ERR "bch encoder/decoder was configured to support " 1253 "parameters m=%d, t=%d only!\n", 1254 CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); 1255 goto fail; 1256 } 1257 #endif 1258 if ((m < min_m) || (m > max_m)) 1259 /* 1260 * values of m greater than 15 are not currently supported; 1261 * supporting m > 15 would require changing table base type 1262 * (uint16_t) and a small patch in matrix transposition 1263 */ 1264 goto fail; 1265 1266 /* sanity checks */ 1267 if ((t < 1) || (m*t >= ((1 << m)-1))) 1268 /* invalid t value */ 1269 goto fail; 1270 1271 /* select a primitive polynomial for generating GF(2^m) */ 1272 if (prim_poly == 0) 1273 prim_poly = prim_poly_tab[m-min_m]; 1274 1275 bch = kzalloc(sizeof(*bch), GFP_KERNEL); 1276 if (bch == NULL) 1277 goto fail; 1278 1279 bch->m = m; 1280 bch->t = t; 1281 bch->n = (1 << m)-1; 1282 words = DIV_ROUND_UP(m*t, 32); 1283 bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); 1284 bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); 1285 bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); 1286 bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); 1287 bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err); 1288 bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); 1289 bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err); 1290 bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err); 1291 bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err); 1292 bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); 1293 1294 for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) 1295 bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); 1296 1297 if (err) 1298 goto fail; 1299 1300 err = build_gf_tables(bch, prim_poly); 1301 if (err) 1302 goto fail; 1303 1304 /* use generator polynomial for computing encoding tables */ 1305 genpoly = compute_generator_polynomial(bch); 1306 if (genpoly == NULL) 1307 goto fail; 1308 1309 build_mod8_tables(bch, genpoly); 1310 kfree(genpoly); 1311 1312 err = build_deg2_base(bch); 1313 if (err) 1314 goto fail; 1315 1316 return bch; 1317 1318 fail: 1319 free_bch(bch); 1320 return NULL; 1321 } 1322 1323 /** 1324 * free_bch - free the BCH control structure 1325 * @bch: BCH control structure to release 1326 */ 1327 void free_bch(struct bch_control *bch) 1328 { 1329 unsigned int i; 1330 1331 if (bch) { 1332 kfree(bch->a_pow_tab); 1333 kfree(bch->a_log_tab); 1334 kfree(bch->mod8_tab); 1335 kfree(bch->ecc_buf); 1336 kfree(bch->ecc_buf2); 1337 kfree(bch->xi_tab); 1338 kfree(bch->syn); 1339 kfree(bch->cache); 1340 kfree(bch->elp); 1341 1342 for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) 1343 kfree(bch->poly_2t[i]); 1344 1345 kfree(bch); 1346 } 1347 } 1348