xref: /openbmc/u-boot/lib/bch.c (revision 83f1c2ef)
1 /*
2  * Generic binary BCH encoding/decoding library
3  *
4  * SPDX-License-Identifier:	GPL-2.0
5  *
6  * Copyright © 2011 Parrot S.A.
7  *
8  * Author: Ivan Djelic <ivan.djelic@parrot.com>
9  *
10  * Description:
11  *
12  * This library provides runtime configurable encoding/decoding of binary
13  * Bose-Chaudhuri-Hocquenghem (BCH) codes.
14  *
15  * Call init_bch to get a pointer to a newly allocated bch_control structure for
16  * the given m (Galois field order), t (error correction capability) and
17  * (optional) primitive polynomial parameters.
18  *
19  * Call encode_bch to compute and store ecc parity bytes to a given buffer.
20  * Call decode_bch to detect and locate errors in received data.
21  *
22  * On systems supporting hw BCH features, intermediate results may be provided
23  * to decode_bch in order to skip certain steps. See decode_bch() documentation
24  * for details.
25  *
26  * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
27  * parameters m and t; thus allowing extra compiler optimizations and providing
28  * better (up to 2x) encoding performance. Using this option makes sense when
29  * (m,t) are fixed and known in advance, e.g. when using BCH error correction
30  * on a particular NAND flash device.
31  *
32  * Algorithmic details:
33  *
34  * Encoding is performed by processing 32 input bits in parallel, using 4
35  * remainder lookup tables.
36  *
37  * The final stage of decoding involves the following internal steps:
38  * a. Syndrome computation
39  * b. Error locator polynomial computation using Berlekamp-Massey algorithm
40  * c. Error locator root finding (by far the most expensive step)
41  *
42  * In this implementation, step c is not performed using the usual Chien search.
43  * Instead, an alternative approach described in [1] is used. It consists in
44  * factoring the error locator polynomial using the Berlekamp Trace algorithm
45  * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
46  * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
47  * much better performance than Chien search for usual (m,t) values (typically
48  * m >= 13, t < 32, see [1]).
49  *
50  * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
51  * of characteristic 2, in: Western European Workshop on Research in Cryptology
52  * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
53  * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
54  * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
55  */
56 
57 #ifndef USE_HOSTCC
58 #include <common.h>
59 #include <ubi_uboot.h>
60 
61 #include <linux/bitops.h>
62 #else
63 #include <errno.h>
64 #include <endian.h>
65 #include <stdint.h>
66 #include <stdlib.h>
67 #include <string.h>
68 
69 #undef cpu_to_be32
70 #define cpu_to_be32 htobe32
71 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
72 #define kmalloc(size, flags)	malloc(size)
73 #define kzalloc(size, flags)	calloc(1, size)
74 #define kfree free
75 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
76 #endif
77 
78 #include <asm/byteorder.h>
79 #include <linux/bch.h>
80 
81 #if defined(CONFIG_BCH_CONST_PARAMS)
82 #define GF_M(_p)               (CONFIG_BCH_CONST_M)
83 #define GF_T(_p)               (CONFIG_BCH_CONST_T)
84 #define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
85 #else
86 #define GF_M(_p)               ((_p)->m)
87 #define GF_T(_p)               ((_p)->t)
88 #define GF_N(_p)               ((_p)->n)
89 #endif
90 
91 #define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
92 #define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
93 
94 #ifndef dbg
95 #define dbg(_fmt, args...)     do {} while (0)
96 #endif
97 
98 /*
99  * represent a polynomial over GF(2^m)
100  */
101 struct gf_poly {
102 	unsigned int deg;    /* polynomial degree */
103 	unsigned int c[0];   /* polynomial terms */
104 };
105 
106 /* given its degree, compute a polynomial size in bytes */
107 #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
108 
109 /* polynomial of degree 1 */
110 struct gf_poly_deg1 {
111 	struct gf_poly poly;
112 	unsigned int   c[2];
113 };
114 
115 #ifdef USE_HOSTCC
116 static int fls(int x)
117 {
118 	int r = 32;
119 
120 	if (!x)
121 		return 0;
122 	if (!(x & 0xffff0000u)) {
123 		x <<= 16;
124 		r -= 16;
125 	}
126 	if (!(x & 0xff000000u)) {
127 		x <<= 8;
128 		r -= 8;
129 	}
130 	if (!(x & 0xf0000000u)) {
131 		x <<= 4;
132 		r -= 4;
133 	}
134 	if (!(x & 0xc0000000u)) {
135 		x <<= 2;
136 		r -= 2;
137 	}
138 	if (!(x & 0x80000000u)) {
139 		x <<= 1;
140 		r -= 1;
141 	}
142 	return r;
143 }
144 #endif
145 
146 /*
147  * same as encode_bch(), but process input data one byte at a time
148  */
149 static void encode_bch_unaligned(struct bch_control *bch,
150 				 const unsigned char *data, unsigned int len,
151 				 uint32_t *ecc)
152 {
153 	int i;
154 	const uint32_t *p;
155 	const int l = BCH_ECC_WORDS(bch)-1;
156 
157 	while (len--) {
158 		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
159 
160 		for (i = 0; i < l; i++)
161 			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
162 
163 		ecc[l] = (ecc[l] << 8)^(*p);
164 	}
165 }
166 
167 /*
168  * convert ecc bytes to aligned, zero-padded 32-bit ecc words
169  */
170 static void load_ecc8(struct bch_control *bch, uint32_t *dst,
171 		      const uint8_t *src)
172 {
173 	uint8_t pad[4] = {0, 0, 0, 0};
174 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
175 
176 	for (i = 0; i < nwords; i++, src += 4)
177 		dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
178 
179 	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
180 	dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
181 }
182 
183 /*
184  * convert 32-bit ecc words to ecc bytes
185  */
186 static void store_ecc8(struct bch_control *bch, uint8_t *dst,
187 		       const uint32_t *src)
188 {
189 	uint8_t pad[4];
190 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
191 
192 	for (i = 0; i < nwords; i++) {
193 		*dst++ = (src[i] >> 24);
194 		*dst++ = (src[i] >> 16) & 0xff;
195 		*dst++ = (src[i] >>  8) & 0xff;
196 		*dst++ = (src[i] >>  0) & 0xff;
197 	}
198 	pad[0] = (src[nwords] >> 24);
199 	pad[1] = (src[nwords] >> 16) & 0xff;
200 	pad[2] = (src[nwords] >>  8) & 0xff;
201 	pad[3] = (src[nwords] >>  0) & 0xff;
202 	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
203 }
204 
205 /**
206  * encode_bch - calculate BCH ecc parity of data
207  * @bch:   BCH control structure
208  * @data:  data to encode
209  * @len:   data length in bytes
210  * @ecc:   ecc parity data, must be initialized by caller
211  *
212  * The @ecc parity array is used both as input and output parameter, in order to
213  * allow incremental computations. It should be of the size indicated by member
214  * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
215  *
216  * The exact number of computed ecc parity bits is given by member @ecc_bits of
217  * @bch; it may be less than m*t for large values of t.
218  */
219 void encode_bch(struct bch_control *bch, const uint8_t *data,
220 		unsigned int len, uint8_t *ecc)
221 {
222 	const unsigned int l = BCH_ECC_WORDS(bch)-1;
223 	unsigned int i, mlen;
224 	unsigned long m;
225 	uint32_t w, r[l+1];
226 	const uint32_t * const tab0 = bch->mod8_tab;
227 	const uint32_t * const tab1 = tab0 + 256*(l+1);
228 	const uint32_t * const tab2 = tab1 + 256*(l+1);
229 	const uint32_t * const tab3 = tab2 + 256*(l+1);
230 	const uint32_t *pdata, *p0, *p1, *p2, *p3;
231 
232 	if (ecc) {
233 		/* load ecc parity bytes into internal 32-bit buffer */
234 		load_ecc8(bch, bch->ecc_buf, ecc);
235 	} else {
236 		memset(bch->ecc_buf, 0, sizeof(r));
237 	}
238 
239 	/* process first unaligned data bytes */
240 	m = ((unsigned long)data) & 3;
241 	if (m) {
242 		mlen = (len < (4-m)) ? len : 4-m;
243 		encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
244 		data += mlen;
245 		len  -= mlen;
246 	}
247 
248 	/* process 32-bit aligned data words */
249 	pdata = (uint32_t *)data;
250 	mlen  = len/4;
251 	data += 4*mlen;
252 	len  -= 4*mlen;
253 	memcpy(r, bch->ecc_buf, sizeof(r));
254 
255 	/*
256 	 * split each 32-bit word into 4 polynomials of weight 8 as follows:
257 	 *
258 	 * 31 ...24  23 ...16  15 ... 8  7 ... 0
259 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
260 	 *                               tttttttt  mod g = r0 (precomputed)
261 	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
262 	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
263 	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
264 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
265 	 */
266 	while (mlen--) {
267 		/* input data is read in big-endian format */
268 		w = r[0]^cpu_to_be32(*pdata++);
269 		p0 = tab0 + (l+1)*((w >>  0) & 0xff);
270 		p1 = tab1 + (l+1)*((w >>  8) & 0xff);
271 		p2 = tab2 + (l+1)*((w >> 16) & 0xff);
272 		p3 = tab3 + (l+1)*((w >> 24) & 0xff);
273 
274 		for (i = 0; i < l; i++)
275 			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
276 
277 		r[l] = p0[l]^p1[l]^p2[l]^p3[l];
278 	}
279 	memcpy(bch->ecc_buf, r, sizeof(r));
280 
281 	/* process last unaligned bytes */
282 	if (len)
283 		encode_bch_unaligned(bch, data, len, bch->ecc_buf);
284 
285 	/* store ecc parity bytes into original parity buffer */
286 	if (ecc)
287 		store_ecc8(bch, ecc, bch->ecc_buf);
288 }
289 
290 static inline int modulo(struct bch_control *bch, unsigned int v)
291 {
292 	const unsigned int n = GF_N(bch);
293 	while (v >= n) {
294 		v -= n;
295 		v = (v & n) + (v >> GF_M(bch));
296 	}
297 	return v;
298 }
299 
300 /*
301  * shorter and faster modulo function, only works when v < 2N.
302  */
303 static inline int mod_s(struct bch_control *bch, unsigned int v)
304 {
305 	const unsigned int n = GF_N(bch);
306 	return (v < n) ? v : v-n;
307 }
308 
309 static inline int deg(unsigned int poly)
310 {
311 	/* polynomial degree is the most-significant bit index */
312 	return fls(poly)-1;
313 }
314 
315 static inline int parity(unsigned int x)
316 {
317 	/*
318 	 * public domain code snippet, lifted from
319 	 * http://www-graphics.stanford.edu/~seander/bithacks.html
320 	 */
321 	x ^= x >> 1;
322 	x ^= x >> 2;
323 	x = (x & 0x11111111U) * 0x11111111U;
324 	return (x >> 28) & 1;
325 }
326 
327 /* Galois field basic operations: multiply, divide, inverse, etc. */
328 
329 static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
330 				  unsigned int b)
331 {
332 	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
333 					       bch->a_log_tab[b])] : 0;
334 }
335 
336 static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
337 {
338 	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
339 }
340 
341 static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
342 				  unsigned int b)
343 {
344 	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
345 					GF_N(bch)-bch->a_log_tab[b])] : 0;
346 }
347 
348 static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
349 {
350 	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
351 }
352 
353 static inline unsigned int a_pow(struct bch_control *bch, int i)
354 {
355 	return bch->a_pow_tab[modulo(bch, i)];
356 }
357 
358 static inline int a_log(struct bch_control *bch, unsigned int x)
359 {
360 	return bch->a_log_tab[x];
361 }
362 
363 static inline int a_ilog(struct bch_control *bch, unsigned int x)
364 {
365 	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
366 }
367 
368 /*
369  * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
370  */
371 static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
372 			      unsigned int *syn)
373 {
374 	int i, j, s;
375 	unsigned int m;
376 	uint32_t poly;
377 	const int t = GF_T(bch);
378 
379 	s = bch->ecc_bits;
380 
381 	/* make sure extra bits in last ecc word are cleared */
382 	m = ((unsigned int)s) & 31;
383 	if (m)
384 		ecc[s/32] &= ~((1u << (32-m))-1);
385 	memset(syn, 0, 2*t*sizeof(*syn));
386 
387 	/* compute v(a^j) for j=1 .. 2t-1 */
388 	do {
389 		poly = *ecc++;
390 		s -= 32;
391 		while (poly) {
392 			i = deg(poly);
393 			for (j = 0; j < 2*t; j += 2)
394 				syn[j] ^= a_pow(bch, (j+1)*(i+s));
395 
396 			poly ^= (1 << i);
397 		}
398 	} while (s > 0);
399 
400 	/* v(a^(2j)) = v(a^j)^2 */
401 	for (j = 0; j < t; j++)
402 		syn[2*j+1] = gf_sqr(bch, syn[j]);
403 }
404 
405 static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
406 {
407 	memcpy(dst, src, GF_POLY_SZ(src->deg));
408 }
409 
410 static int compute_error_locator_polynomial(struct bch_control *bch,
411 					    const unsigned int *syn)
412 {
413 	const unsigned int t = GF_T(bch);
414 	const unsigned int n = GF_N(bch);
415 	unsigned int i, j, tmp, l, pd = 1, d = syn[0];
416 	struct gf_poly *elp = bch->elp;
417 	struct gf_poly *pelp = bch->poly_2t[0];
418 	struct gf_poly *elp_copy = bch->poly_2t[1];
419 	int k, pp = -1;
420 
421 	memset(pelp, 0, GF_POLY_SZ(2*t));
422 	memset(elp, 0, GF_POLY_SZ(2*t));
423 
424 	pelp->deg = 0;
425 	pelp->c[0] = 1;
426 	elp->deg = 0;
427 	elp->c[0] = 1;
428 
429 	/* use simplified binary Berlekamp-Massey algorithm */
430 	for (i = 0; (i < t) && (elp->deg <= t); i++) {
431 		if (d) {
432 			k = 2*i-pp;
433 			gf_poly_copy(elp_copy, elp);
434 			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
435 			tmp = a_log(bch, d)+n-a_log(bch, pd);
436 			for (j = 0; j <= pelp->deg; j++) {
437 				if (pelp->c[j]) {
438 					l = a_log(bch, pelp->c[j]);
439 					elp->c[j+k] ^= a_pow(bch, tmp+l);
440 				}
441 			}
442 			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
443 			tmp = pelp->deg+k;
444 			if (tmp > elp->deg) {
445 				elp->deg = tmp;
446 				gf_poly_copy(pelp, elp_copy);
447 				pd = d;
448 				pp = 2*i;
449 			}
450 		}
451 		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
452 		if (i < t-1) {
453 			d = syn[2*i+2];
454 			for (j = 1; j <= elp->deg; j++)
455 				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
456 		}
457 	}
458 	dbg("elp=%s\n", gf_poly_str(elp));
459 	return (elp->deg > t) ? -1 : (int)elp->deg;
460 }
461 
462 /*
463  * solve a m x m linear system in GF(2) with an expected number of solutions,
464  * and return the number of found solutions
465  */
466 static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
467 			       unsigned int *sol, int nsol)
468 {
469 	const int m = GF_M(bch);
470 	unsigned int tmp, mask;
471 	int rem, c, r, p, k, param[m];
472 
473 	k = 0;
474 	mask = 1 << m;
475 
476 	/* Gaussian elimination */
477 	for (c = 0; c < m; c++) {
478 		rem = 0;
479 		p = c-k;
480 		/* find suitable row for elimination */
481 		for (r = p; r < m; r++) {
482 			if (rows[r] & mask) {
483 				if (r != p) {
484 					tmp = rows[r];
485 					rows[r] = rows[p];
486 					rows[p] = tmp;
487 				}
488 				rem = r+1;
489 				break;
490 			}
491 		}
492 		if (rem) {
493 			/* perform elimination on remaining rows */
494 			tmp = rows[p];
495 			for (r = rem; r < m; r++) {
496 				if (rows[r] & mask)
497 					rows[r] ^= tmp;
498 			}
499 		} else {
500 			/* elimination not needed, store defective row index */
501 			param[k++] = c;
502 		}
503 		mask >>= 1;
504 	}
505 	/* rewrite system, inserting fake parameter rows */
506 	if (k > 0) {
507 		p = k;
508 		for (r = m-1; r >= 0; r--) {
509 			if ((r > m-1-k) && rows[r])
510 				/* system has no solution */
511 				return 0;
512 
513 			rows[r] = (p && (r == param[p-1])) ?
514 				p--, 1u << (m-r) : rows[r-p];
515 		}
516 	}
517 
518 	if (nsol != (1 << k))
519 		/* unexpected number of solutions */
520 		return 0;
521 
522 	for (p = 0; p < nsol; p++) {
523 		/* set parameters for p-th solution */
524 		for (c = 0; c < k; c++)
525 			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
526 
527 		/* compute unique solution */
528 		tmp = 0;
529 		for (r = m-1; r >= 0; r--) {
530 			mask = rows[r] & (tmp|1);
531 			tmp |= parity(mask) << (m-r);
532 		}
533 		sol[p] = tmp >> 1;
534 	}
535 	return nsol;
536 }
537 
538 /*
539  * this function builds and solves a linear system for finding roots of a degree
540  * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
541  */
542 static int find_affine4_roots(struct bch_control *bch, unsigned int a,
543 			      unsigned int b, unsigned int c,
544 			      unsigned int *roots)
545 {
546 	int i, j, k;
547 	const int m = GF_M(bch);
548 	unsigned int mask = 0xff, t, rows[16] = {0,};
549 
550 	j = a_log(bch, b);
551 	k = a_log(bch, a);
552 	rows[0] = c;
553 
554 	/* buid linear system to solve X^4+aX^2+bX+c = 0 */
555 	for (i = 0; i < m; i++) {
556 		rows[i+1] = bch->a_pow_tab[4*i]^
557 			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
558 			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
559 		j++;
560 		k += 2;
561 	}
562 	/*
563 	 * transpose 16x16 matrix before passing it to linear solver
564 	 * warning: this code assumes m < 16
565 	 */
566 	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
567 		for (k = 0; k < 16; k = (k+j+1) & ~j) {
568 			t = ((rows[k] >> j)^rows[k+j]) & mask;
569 			rows[k] ^= (t << j);
570 			rows[k+j] ^= t;
571 		}
572 	}
573 	return solve_linear_system(bch, rows, roots, 4);
574 }
575 
576 /*
577  * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
578  */
579 static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
580 				unsigned int *roots)
581 {
582 	int n = 0;
583 
584 	if (poly->c[0])
585 		/* poly[X] = bX+c with c!=0, root=c/b */
586 		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
587 				   bch->a_log_tab[poly->c[1]]);
588 	return n;
589 }
590 
591 /*
592  * compute roots of a degree 2 polynomial over GF(2^m)
593  */
594 static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
595 				unsigned int *roots)
596 {
597 	int n = 0, i, l0, l1, l2;
598 	unsigned int u, v, r;
599 
600 	if (poly->c[0] && poly->c[1]) {
601 
602 		l0 = bch->a_log_tab[poly->c[0]];
603 		l1 = bch->a_log_tab[poly->c[1]];
604 		l2 = bch->a_log_tab[poly->c[2]];
605 
606 		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
607 		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
608 		/*
609 		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
610 		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
611 		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
612 		 * i.e. r and r+1 are roots iff Tr(u)=0
613 		 */
614 		r = 0;
615 		v = u;
616 		while (v) {
617 			i = deg(v);
618 			r ^= bch->xi_tab[i];
619 			v ^= (1 << i);
620 		}
621 		/* verify root */
622 		if ((gf_sqr(bch, r)^r) == u) {
623 			/* reverse z=a/bX transformation and compute log(1/r) */
624 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
625 					    bch->a_log_tab[r]+l2);
626 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
627 					    bch->a_log_tab[r^1]+l2);
628 		}
629 	}
630 	return n;
631 }
632 
633 /*
634  * compute roots of a degree 3 polynomial over GF(2^m)
635  */
636 static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
637 				unsigned int *roots)
638 {
639 	int i, n = 0;
640 	unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
641 
642 	if (poly->c[0]) {
643 		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
644 		e3 = poly->c[3];
645 		c2 = gf_div(bch, poly->c[0], e3);
646 		b2 = gf_div(bch, poly->c[1], e3);
647 		a2 = gf_div(bch, poly->c[2], e3);
648 
649 		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
650 		c = gf_mul(bch, a2, c2);           /* c = a2c2      */
651 		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
652 		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
653 
654 		/* find the 4 roots of this affine polynomial */
655 		if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
656 			/* remove a2 from final list of roots */
657 			for (i = 0; i < 4; i++) {
658 				if (tmp[i] != a2)
659 					roots[n++] = a_ilog(bch, tmp[i]);
660 			}
661 		}
662 	}
663 	return n;
664 }
665 
666 /*
667  * compute roots of a degree 4 polynomial over GF(2^m)
668  */
669 static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
670 				unsigned int *roots)
671 {
672 	int i, l, n = 0;
673 	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
674 
675 	if (poly->c[0] == 0)
676 		return 0;
677 
678 	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
679 	e4 = poly->c[4];
680 	d = gf_div(bch, poly->c[0], e4);
681 	c = gf_div(bch, poly->c[1], e4);
682 	b = gf_div(bch, poly->c[2], e4);
683 	a = gf_div(bch, poly->c[3], e4);
684 
685 	/* use Y=1/X transformation to get an affine polynomial */
686 	if (a) {
687 		/* first, eliminate cX by using z=X+e with ae^2+c=0 */
688 		if (c) {
689 			/* compute e such that e^2 = c/a */
690 			f = gf_div(bch, c, a);
691 			l = a_log(bch, f);
692 			l += (l & 1) ? GF_N(bch) : 0;
693 			e = a_pow(bch, l/2);
694 			/*
695 			 * use transformation z=X+e:
696 			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
697 			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
698 			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
699 			 * z^4 + az^3 +     b'z^2 + d'
700 			 */
701 			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
702 			b = gf_mul(bch, a, e)^b;
703 		}
704 		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
705 		if (d == 0)
706 			/* assume all roots have multiplicity 1 */
707 			return 0;
708 
709 		c2 = gf_inv(bch, d);
710 		b2 = gf_div(bch, a, d);
711 		a2 = gf_div(bch, b, d);
712 	} else {
713 		/* polynomial is already affine */
714 		c2 = d;
715 		b2 = c;
716 		a2 = b;
717 	}
718 	/* find the 4 roots of this affine polynomial */
719 	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
720 		for (i = 0; i < 4; i++) {
721 			/* post-process roots (reverse transformations) */
722 			f = a ? gf_inv(bch, roots[i]) : roots[i];
723 			roots[i] = a_ilog(bch, f^e);
724 		}
725 		n = 4;
726 	}
727 	return n;
728 }
729 
730 /*
731  * build monic, log-based representation of a polynomial
732  */
733 static void gf_poly_logrep(struct bch_control *bch,
734 			   const struct gf_poly *a, int *rep)
735 {
736 	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
737 
738 	/* represent 0 values with -1; warning, rep[d] is not set to 1 */
739 	for (i = 0; i < d; i++)
740 		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
741 }
742 
743 /*
744  * compute polynomial Euclidean division remainder in GF(2^m)[X]
745  */
746 static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
747 			const struct gf_poly *b, int *rep)
748 {
749 	int la, p, m;
750 	unsigned int i, j, *c = a->c;
751 	const unsigned int d = b->deg;
752 
753 	if (a->deg < d)
754 		return;
755 
756 	/* reuse or compute log representation of denominator */
757 	if (!rep) {
758 		rep = bch->cache;
759 		gf_poly_logrep(bch, b, rep);
760 	}
761 
762 	for (j = a->deg; j >= d; j--) {
763 		if (c[j]) {
764 			la = a_log(bch, c[j]);
765 			p = j-d;
766 			for (i = 0; i < d; i++, p++) {
767 				m = rep[i];
768 				if (m >= 0)
769 					c[p] ^= bch->a_pow_tab[mod_s(bch,
770 								     m+la)];
771 			}
772 		}
773 	}
774 	a->deg = d-1;
775 	while (!c[a->deg] && a->deg)
776 		a->deg--;
777 }
778 
779 /*
780  * compute polynomial Euclidean division quotient in GF(2^m)[X]
781  */
782 static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
783 			const struct gf_poly *b, struct gf_poly *q)
784 {
785 	if (a->deg >= b->deg) {
786 		q->deg = a->deg-b->deg;
787 		/* compute a mod b (modifies a) */
788 		gf_poly_mod(bch, a, b, NULL);
789 		/* quotient is stored in upper part of polynomial a */
790 		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
791 	} else {
792 		q->deg = 0;
793 		q->c[0] = 0;
794 	}
795 }
796 
797 /*
798  * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
799  */
800 static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
801 				   struct gf_poly *b)
802 {
803 	struct gf_poly *tmp;
804 
805 	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
806 
807 	if (a->deg < b->deg) {
808 		tmp = b;
809 		b = a;
810 		a = tmp;
811 	}
812 
813 	while (b->deg > 0) {
814 		gf_poly_mod(bch, a, b, NULL);
815 		tmp = b;
816 		b = a;
817 		a = tmp;
818 	}
819 
820 	dbg("%s\n", gf_poly_str(a));
821 
822 	return a;
823 }
824 
825 /*
826  * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
827  * This is used in Berlekamp Trace algorithm for splitting polynomials
828  */
829 static void compute_trace_bk_mod(struct bch_control *bch, int k,
830 				 const struct gf_poly *f, struct gf_poly *z,
831 				 struct gf_poly *out)
832 {
833 	const int m = GF_M(bch);
834 	int i, j;
835 
836 	/* z contains z^2j mod f */
837 	z->deg = 1;
838 	z->c[0] = 0;
839 	z->c[1] = bch->a_pow_tab[k];
840 
841 	out->deg = 0;
842 	memset(out, 0, GF_POLY_SZ(f->deg));
843 
844 	/* compute f log representation only once */
845 	gf_poly_logrep(bch, f, bch->cache);
846 
847 	for (i = 0; i < m; i++) {
848 		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
849 		for (j = z->deg; j >= 0; j--) {
850 			out->c[j] ^= z->c[j];
851 			z->c[2*j] = gf_sqr(bch, z->c[j]);
852 			z->c[2*j+1] = 0;
853 		}
854 		if (z->deg > out->deg)
855 			out->deg = z->deg;
856 
857 		if (i < m-1) {
858 			z->deg *= 2;
859 			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
860 			gf_poly_mod(bch, z, f, bch->cache);
861 		}
862 	}
863 	while (!out->c[out->deg] && out->deg)
864 		out->deg--;
865 
866 	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
867 }
868 
869 /*
870  * factor a polynomial using Berlekamp Trace algorithm (BTA)
871  */
872 static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
873 			      struct gf_poly **g, struct gf_poly **h)
874 {
875 	struct gf_poly *f2 = bch->poly_2t[0];
876 	struct gf_poly *q  = bch->poly_2t[1];
877 	struct gf_poly *tk = bch->poly_2t[2];
878 	struct gf_poly *z  = bch->poly_2t[3];
879 	struct gf_poly *gcd;
880 
881 	dbg("factoring %s...\n", gf_poly_str(f));
882 
883 	*g = f;
884 	*h = NULL;
885 
886 	/* tk = Tr(a^k.X) mod f */
887 	compute_trace_bk_mod(bch, k, f, z, tk);
888 
889 	if (tk->deg > 0) {
890 		/* compute g = gcd(f, tk) (destructive operation) */
891 		gf_poly_copy(f2, f);
892 		gcd = gf_poly_gcd(bch, f2, tk);
893 		if (gcd->deg < f->deg) {
894 			/* compute h=f/gcd(f,tk); this will modify f and q */
895 			gf_poly_div(bch, f, gcd, q);
896 			/* store g and h in-place (clobbering f) */
897 			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
898 			gf_poly_copy(*g, gcd);
899 			gf_poly_copy(*h, q);
900 		}
901 	}
902 }
903 
904 /*
905  * find roots of a polynomial, using BTZ algorithm; see the beginning of this
906  * file for details
907  */
908 static int find_poly_roots(struct bch_control *bch, unsigned int k,
909 			   struct gf_poly *poly, unsigned int *roots)
910 {
911 	int cnt;
912 	struct gf_poly *f1, *f2;
913 
914 	switch (poly->deg) {
915 		/* handle low degree polynomials with ad hoc techniques */
916 	case 1:
917 		cnt = find_poly_deg1_roots(bch, poly, roots);
918 		break;
919 	case 2:
920 		cnt = find_poly_deg2_roots(bch, poly, roots);
921 		break;
922 	case 3:
923 		cnt = find_poly_deg3_roots(bch, poly, roots);
924 		break;
925 	case 4:
926 		cnt = find_poly_deg4_roots(bch, poly, roots);
927 		break;
928 	default:
929 		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */
930 		cnt = 0;
931 		if (poly->deg && (k <= GF_M(bch))) {
932 			factor_polynomial(bch, k, poly, &f1, &f2);
933 			if (f1)
934 				cnt += find_poly_roots(bch, k+1, f1, roots);
935 			if (f2)
936 				cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
937 		}
938 		break;
939 	}
940 	return cnt;
941 }
942 
943 #if defined(USE_CHIEN_SEARCH)
944 /*
945  * exhaustive root search (Chien) implementation - not used, included only for
946  * reference/comparison tests
947  */
948 static int chien_search(struct bch_control *bch, unsigned int len,
949 			struct gf_poly *p, unsigned int *roots)
950 {
951 	int m;
952 	unsigned int i, j, syn, syn0, count = 0;
953 	const unsigned int k = 8*len+bch->ecc_bits;
954 
955 	/* use a log-based representation of polynomial */
956 	gf_poly_logrep(bch, p, bch->cache);
957 	bch->cache[p->deg] = 0;
958 	syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
959 
960 	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
961 		/* compute elp(a^i) */
962 		for (j = 1, syn = syn0; j <= p->deg; j++) {
963 			m = bch->cache[j];
964 			if (m >= 0)
965 				syn ^= a_pow(bch, m+j*i);
966 		}
967 		if (syn == 0) {
968 			roots[count++] = GF_N(bch)-i;
969 			if (count == p->deg)
970 				break;
971 		}
972 	}
973 	return (count == p->deg) ? count : 0;
974 }
975 #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
976 #endif /* USE_CHIEN_SEARCH */
977 
978 /**
979  * decode_bch - decode received codeword and find bit error locations
980  * @bch:      BCH control structure
981  * @data:     received data, ignored if @calc_ecc is provided
982  * @len:      data length in bytes, must always be provided
983  * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
984  * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
985  * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
986  * @errloc:   output array of error locations
987  *
988  * Returns:
989  *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
990  *  invalid parameters were provided
991  *
992  * Depending on the available hw BCH support and the need to compute @calc_ecc
993  * separately (using encode_bch()), this function should be called with one of
994  * the following parameter configurations -
995  *
996  * by providing @data and @recv_ecc only:
997  *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
998  *
999  * by providing @recv_ecc and @calc_ecc:
1000  *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
1001  *
1002  * by providing ecc = recv_ecc XOR calc_ecc:
1003  *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
1004  *
1005  * by providing syndrome results @syn:
1006  *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
1007  *
1008  * Once decode_bch() has successfully returned with a positive value, error
1009  * locations returned in array @errloc should be interpreted as follows -
1010  *
1011  * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
1012  * data correction)
1013  *
1014  * if (errloc[n] < 8*len), then n-th error is located in data and can be
1015  * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
1016  *
1017  * Note that this function does not perform any data correction by itself, it
1018  * merely indicates error locations.
1019  */
1020 int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
1021 	       const uint8_t *recv_ecc, const uint8_t *calc_ecc,
1022 	       const unsigned int *syn, unsigned int *errloc)
1023 {
1024 	const unsigned int ecc_words = BCH_ECC_WORDS(bch);
1025 	unsigned int nbits;
1026 	int i, err, nroots;
1027 	uint32_t sum;
1028 
1029 	/* sanity check: make sure data length can be handled */
1030 	if (8*len > (bch->n-bch->ecc_bits))
1031 		return -EINVAL;
1032 
1033 	/* if caller does not provide syndromes, compute them */
1034 	if (!syn) {
1035 		if (!calc_ecc) {
1036 			/* compute received data ecc into an internal buffer */
1037 			if (!data || !recv_ecc)
1038 				return -EINVAL;
1039 			encode_bch(bch, data, len, NULL);
1040 		} else {
1041 			/* load provided calculated ecc */
1042 			load_ecc8(bch, bch->ecc_buf, calc_ecc);
1043 		}
1044 		/* load received ecc or assume it was XORed in calc_ecc */
1045 		if (recv_ecc) {
1046 			load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1047 			/* XOR received and calculated ecc */
1048 			for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1049 				bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1050 				sum |= bch->ecc_buf[i];
1051 			}
1052 			if (!sum)
1053 				/* no error found */
1054 				return 0;
1055 		}
1056 		compute_syndromes(bch, bch->ecc_buf, bch->syn);
1057 		syn = bch->syn;
1058 	}
1059 
1060 	err = compute_error_locator_polynomial(bch, syn);
1061 	if (err > 0) {
1062 		nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1063 		if (err != nroots)
1064 			err = -1;
1065 	}
1066 	if (err > 0) {
1067 		/* post-process raw error locations for easier correction */
1068 		nbits = (len*8)+bch->ecc_bits;
1069 		for (i = 0; i < err; i++) {
1070 			if (errloc[i] >= nbits) {
1071 				err = -1;
1072 				break;
1073 			}
1074 			errloc[i] = nbits-1-errloc[i];
1075 			errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
1076 		}
1077 	}
1078 	return (err >= 0) ? err : -EBADMSG;
1079 }
1080 
1081 /*
1082  * generate Galois field lookup tables
1083  */
1084 static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1085 {
1086 	unsigned int i, x = 1;
1087 	const unsigned int k = 1 << deg(poly);
1088 
1089 	/* primitive polynomial must be of degree m */
1090 	if (k != (1u << GF_M(bch)))
1091 		return -1;
1092 
1093 	for (i = 0; i < GF_N(bch); i++) {
1094 		bch->a_pow_tab[i] = x;
1095 		bch->a_log_tab[x] = i;
1096 		if (i && (x == 1))
1097 			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1098 			return -1;
1099 		x <<= 1;
1100 		if (x & k)
1101 			x ^= poly;
1102 	}
1103 	bch->a_pow_tab[GF_N(bch)] = 1;
1104 	bch->a_log_tab[0] = 0;
1105 
1106 	return 0;
1107 }
1108 
1109 /*
1110  * compute generator polynomial remainder tables for fast encoding
1111  */
1112 static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1113 {
1114 	int i, j, b, d;
1115 	uint32_t data, hi, lo, *tab;
1116 	const int l = BCH_ECC_WORDS(bch);
1117 	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1118 	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1119 
1120 	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1121 
1122 	for (i = 0; i < 256; i++) {
1123 		/* p(X)=i is a small polynomial of weight <= 8 */
1124 		for (b = 0; b < 4; b++) {
1125 			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1126 			tab = bch->mod8_tab + (b*256+i)*l;
1127 			data = i << (8*b);
1128 			while (data) {
1129 				d = deg(data);
1130 				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1131 				data ^= g[0] >> (31-d);
1132 				for (j = 0; j < ecclen; j++) {
1133 					hi = (d < 31) ? g[j] << (d+1) : 0;
1134 					lo = (j+1 < plen) ?
1135 						g[j+1] >> (31-d) : 0;
1136 					tab[j] ^= hi|lo;
1137 				}
1138 			}
1139 		}
1140 	}
1141 }
1142 
1143 /*
1144  * build a base for factoring degree 2 polynomials
1145  */
1146 static int build_deg2_base(struct bch_control *bch)
1147 {
1148 	const int m = GF_M(bch);
1149 	int i, j, r;
1150 	unsigned int sum, x, y, remaining, ak = 0, xi[m];
1151 
1152 	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1153 	for (i = 0; i < m; i++) {
1154 		for (j = 0, sum = 0; j < m; j++)
1155 			sum ^= a_pow(bch, i*(1 << j));
1156 
1157 		if (sum) {
1158 			ak = bch->a_pow_tab[i];
1159 			break;
1160 		}
1161 	}
1162 	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1163 	remaining = m;
1164 	memset(xi, 0, sizeof(xi));
1165 
1166 	for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1167 		y = gf_sqr(bch, x)^x;
1168 		for (i = 0; i < 2; i++) {
1169 			r = a_log(bch, y);
1170 			if (y && (r < m) && !xi[r]) {
1171 				bch->xi_tab[r] = x;
1172 				xi[r] = 1;
1173 				remaining--;
1174 				dbg("x%d = %x\n", r, x);
1175 				break;
1176 			}
1177 			y ^= ak;
1178 		}
1179 	}
1180 	/* should not happen but check anyway */
1181 	return remaining ? -1 : 0;
1182 }
1183 
1184 static void *bch_alloc(size_t size, int *err)
1185 {
1186 	void *ptr;
1187 
1188 	ptr = kmalloc(size, GFP_KERNEL);
1189 	if (ptr == NULL)
1190 		*err = 1;
1191 	return ptr;
1192 }
1193 
1194 /*
1195  * compute generator polynomial for given (m,t) parameters.
1196  */
1197 static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1198 {
1199 	const unsigned int m = GF_M(bch);
1200 	const unsigned int t = GF_T(bch);
1201 	int n, err = 0;
1202 	unsigned int i, j, nbits, r, word, *roots;
1203 	struct gf_poly *g;
1204 	uint32_t *genpoly;
1205 
1206 	g = bch_alloc(GF_POLY_SZ(m*t), &err);
1207 	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1208 	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1209 
1210 	if (err) {
1211 		kfree(genpoly);
1212 		genpoly = NULL;
1213 		goto finish;
1214 	}
1215 
1216 	/* enumerate all roots of g(X) */
1217 	memset(roots , 0, (bch->n+1)*sizeof(*roots));
1218 	for (i = 0; i < t; i++) {
1219 		for (j = 0, r = 2*i+1; j < m; j++) {
1220 			roots[r] = 1;
1221 			r = mod_s(bch, 2*r);
1222 		}
1223 	}
1224 	/* build generator polynomial g(X) */
1225 	g->deg = 0;
1226 	g->c[0] = 1;
1227 	for (i = 0; i < GF_N(bch); i++) {
1228 		if (roots[i]) {
1229 			/* multiply g(X) by (X+root) */
1230 			r = bch->a_pow_tab[i];
1231 			g->c[g->deg+1] = 1;
1232 			for (j = g->deg; j > 0; j--)
1233 				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1234 
1235 			g->c[0] = gf_mul(bch, g->c[0], r);
1236 			g->deg++;
1237 		}
1238 	}
1239 	/* store left-justified binary representation of g(X) */
1240 	n = g->deg+1;
1241 	i = 0;
1242 
1243 	while (n > 0) {
1244 		nbits = (n > 32) ? 32 : n;
1245 		for (j = 0, word = 0; j < nbits; j++) {
1246 			if (g->c[n-1-j])
1247 				word |= 1u << (31-j);
1248 		}
1249 		genpoly[i++] = word;
1250 		n -= nbits;
1251 	}
1252 	bch->ecc_bits = g->deg;
1253 
1254 finish:
1255 	kfree(g);
1256 	kfree(roots);
1257 
1258 	return genpoly;
1259 }
1260 
1261 /**
1262  * init_bch - initialize a BCH encoder/decoder
1263  * @m:          Galois field order, should be in the range 5-15
1264  * @t:          maximum error correction capability, in bits
1265  * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
1266  *
1267  * Returns:
1268  *  a newly allocated BCH control structure if successful, NULL otherwise
1269  *
1270  * This initialization can take some time, as lookup tables are built for fast
1271  * encoding/decoding; make sure not to call this function from a time critical
1272  * path. Usually, init_bch() should be called on module/driver init and
1273  * free_bch() should be called to release memory on exit.
1274  *
1275  * You may provide your own primitive polynomial of degree @m in argument
1276  * @prim_poly, or let init_bch() use its default polynomial.
1277  *
1278  * Once init_bch() has successfully returned a pointer to a newly allocated
1279  * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1280  * the structure.
1281  */
1282 struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
1283 {
1284 	int err = 0;
1285 	unsigned int i, words;
1286 	uint32_t *genpoly;
1287 	struct bch_control *bch = NULL;
1288 
1289 	const int min_m = 5;
1290 	const int max_m = 15;
1291 
1292 	/* default primitive polynomials */
1293 	static const unsigned int prim_poly_tab[] = {
1294 		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1295 		0x402b, 0x8003,
1296 	};
1297 
1298 #if defined(CONFIG_BCH_CONST_PARAMS)
1299 	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1300 		printk(KERN_ERR "bch encoder/decoder was configured to support "
1301 		       "parameters m=%d, t=%d only!\n",
1302 		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1303 		goto fail;
1304 	}
1305 #endif
1306 	if ((m < min_m) || (m > max_m))
1307 		/*
1308 		 * values of m greater than 15 are not currently supported;
1309 		 * supporting m > 15 would require changing table base type
1310 		 * (uint16_t) and a small patch in matrix transposition
1311 		 */
1312 		goto fail;
1313 
1314 	/* sanity checks */
1315 	if ((t < 1) || (m*t >= ((1 << m)-1)))
1316 		/* invalid t value */
1317 		goto fail;
1318 
1319 	/* select a primitive polynomial for generating GF(2^m) */
1320 	if (prim_poly == 0)
1321 		prim_poly = prim_poly_tab[m-min_m];
1322 
1323 	bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1324 	if (bch == NULL)
1325 		goto fail;
1326 
1327 	bch->m = m;
1328 	bch->t = t;
1329 	bch->n = (1 << m)-1;
1330 	words  = DIV_ROUND_UP(m*t, 32);
1331 	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1332 	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1333 	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1334 	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1335 	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1336 	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1337 	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1338 	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
1339 	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
1340 	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1341 
1342 	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1343 		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1344 
1345 	if (err)
1346 		goto fail;
1347 
1348 	err = build_gf_tables(bch, prim_poly);
1349 	if (err)
1350 		goto fail;
1351 
1352 	/* use generator polynomial for computing encoding tables */
1353 	genpoly = compute_generator_polynomial(bch);
1354 	if (genpoly == NULL)
1355 		goto fail;
1356 
1357 	build_mod8_tables(bch, genpoly);
1358 	kfree(genpoly);
1359 
1360 	err = build_deg2_base(bch);
1361 	if (err)
1362 		goto fail;
1363 
1364 	return bch;
1365 
1366 fail:
1367 	free_bch(bch);
1368 	return NULL;
1369 }
1370 
1371 /**
1372  *  free_bch - free the BCH control structure
1373  *  @bch:    BCH control structure to release
1374  */
1375 void free_bch(struct bch_control *bch)
1376 {
1377 	unsigned int i;
1378 
1379 	if (bch) {
1380 		kfree(bch->a_pow_tab);
1381 		kfree(bch->a_log_tab);
1382 		kfree(bch->mod8_tab);
1383 		kfree(bch->ecc_buf);
1384 		kfree(bch->ecc_buf2);
1385 		kfree(bch->xi_tab);
1386 		kfree(bch->syn);
1387 		kfree(bch->cache);
1388 		kfree(bch->elp);
1389 
1390 		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1391 			kfree(bch->poly_2t[i]);
1392 
1393 		kfree(bch);
1394 	}
1395 }
1396