1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic binary BCH encoding/decoding library 4 * 5 * Copyright © 2011 Parrot S.A. 6 * 7 * Author: Ivan Djelic <ivan.djelic@parrot.com> 8 * 9 * Description: 10 * 11 * This library provides runtime configurable encoding/decoding of binary 12 * Bose-Chaudhuri-Hocquenghem (BCH) codes. 13 * 14 * Call init_bch to get a pointer to a newly allocated bch_control structure for 15 * the given m (Galois field order), t (error correction capability) and 16 * (optional) primitive polynomial parameters. 17 * 18 * Call encode_bch to compute and store ecc parity bytes to a given buffer. 19 * Call decode_bch to detect and locate errors in received data. 20 * 21 * On systems supporting hw BCH features, intermediate results may be provided 22 * to decode_bch in order to skip certain steps. See decode_bch() documentation 23 * for details. 24 * 25 * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of 26 * parameters m and t; thus allowing extra compiler optimizations and providing 27 * better (up to 2x) encoding performance. Using this option makes sense when 28 * (m,t) are fixed and known in advance, e.g. when using BCH error correction 29 * on a particular NAND flash device. 30 * 31 * Algorithmic details: 32 * 33 * Encoding is performed by processing 32 input bits in parallel, using 4 34 * remainder lookup tables. 35 * 36 * The final stage of decoding involves the following internal steps: 37 * a. Syndrome computation 38 * b. Error locator polynomial computation using Berlekamp-Massey algorithm 39 * c. Error locator root finding (by far the most expensive step) 40 * 41 * In this implementation, step c is not performed using the usual Chien search. 42 * Instead, an alternative approach described in [1] is used. It consists in 43 * factoring the error locator polynomial using the Berlekamp Trace algorithm 44 * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial 45 * solving techniques [2] are used. The resulting algorithm, called BTZ, yields 46 * much better performance than Chien search for usual (m,t) values (typically 47 * m >= 13, t < 32, see [1]). 48 * 49 * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields 50 * of characteristic 2, in: Western European Workshop on Research in Cryptology 51 * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. 52 * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over 53 * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. 54 */ 55 56 #ifndef USE_HOSTCC 57 #include <common.h> 58 #include <ubi_uboot.h> 59 60 #include <linux/bitops.h> 61 #else 62 #include <errno.h> 63 #if defined(__FreeBSD__) 64 #include <sys/endian.h> 65 #elif defined(__APPLE__) 66 #include <machine/endian.h> 67 #include <libkern/OSByteOrder.h> 68 #else 69 #include <endian.h> 70 #endif 71 #include <stdint.h> 72 #include <stdlib.h> 73 #include <string.h> 74 75 #undef cpu_to_be32 76 #if defined(__APPLE__) 77 #define cpu_to_be32 OSSwapHostToBigInt32 78 #else 79 #define cpu_to_be32 htobe32 80 #endif 81 #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) 82 #define kmalloc(size, flags) malloc(size) 83 #define kzalloc(size, flags) calloc(1, size) 84 #define kfree free 85 #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0])) 86 #endif 87 88 #include <asm/byteorder.h> 89 #include <linux/bch.h> 90 91 #if defined(CONFIG_BCH_CONST_PARAMS) 92 #define GF_M(_p) (CONFIG_BCH_CONST_M) 93 #define GF_T(_p) (CONFIG_BCH_CONST_T) 94 #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) 95 #else 96 #define GF_M(_p) ((_p)->m) 97 #define GF_T(_p) ((_p)->t) 98 #define GF_N(_p) ((_p)->n) 99 #endif 100 101 #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) 102 #define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) 103 104 #ifndef dbg 105 #define dbg(_fmt, args...) do {} while (0) 106 #endif 107 108 /* 109 * represent a polynomial over GF(2^m) 110 */ 111 struct gf_poly { 112 unsigned int deg; /* polynomial degree */ 113 unsigned int c[0]; /* polynomial terms */ 114 }; 115 116 /* given its degree, compute a polynomial size in bytes */ 117 #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) 118 119 /* polynomial of degree 1 */ 120 struct gf_poly_deg1 { 121 struct gf_poly poly; 122 unsigned int c[2]; 123 }; 124 125 #ifdef USE_HOSTCC 126 #if !defined(__DragonFly__) && !defined(__FreeBSD__) && !defined(__APPLE__) 127 static int fls(int x) 128 { 129 int r = 32; 130 131 if (!x) 132 return 0; 133 if (!(x & 0xffff0000u)) { 134 x <<= 16; 135 r -= 16; 136 } 137 if (!(x & 0xff000000u)) { 138 x <<= 8; 139 r -= 8; 140 } 141 if (!(x & 0xf0000000u)) { 142 x <<= 4; 143 r -= 4; 144 } 145 if (!(x & 0xc0000000u)) { 146 x <<= 2; 147 r -= 2; 148 } 149 if (!(x & 0x80000000u)) { 150 x <<= 1; 151 r -= 1; 152 } 153 return r; 154 } 155 #endif 156 #endif 157 158 /* 159 * same as encode_bch(), but process input data one byte at a time 160 */ 161 static void encode_bch_unaligned(struct bch_control *bch, 162 const unsigned char *data, unsigned int len, 163 uint32_t *ecc) 164 { 165 int i; 166 const uint32_t *p; 167 const int l = BCH_ECC_WORDS(bch)-1; 168 169 while (len--) { 170 p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); 171 172 for (i = 0; i < l; i++) 173 ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); 174 175 ecc[l] = (ecc[l] << 8)^(*p); 176 } 177 } 178 179 /* 180 * convert ecc bytes to aligned, zero-padded 32-bit ecc words 181 */ 182 static void load_ecc8(struct bch_control *bch, uint32_t *dst, 183 const uint8_t *src) 184 { 185 uint8_t pad[4] = {0, 0, 0, 0}; 186 unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; 187 188 for (i = 0; i < nwords; i++, src += 4) 189 dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; 190 191 memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); 192 dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; 193 } 194 195 /* 196 * convert 32-bit ecc words to ecc bytes 197 */ 198 static void store_ecc8(struct bch_control *bch, uint8_t *dst, 199 const uint32_t *src) 200 { 201 uint8_t pad[4]; 202 unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; 203 204 for (i = 0; i < nwords; i++) { 205 *dst++ = (src[i] >> 24); 206 *dst++ = (src[i] >> 16) & 0xff; 207 *dst++ = (src[i] >> 8) & 0xff; 208 *dst++ = (src[i] >> 0) & 0xff; 209 } 210 pad[0] = (src[nwords] >> 24); 211 pad[1] = (src[nwords] >> 16) & 0xff; 212 pad[2] = (src[nwords] >> 8) & 0xff; 213 pad[3] = (src[nwords] >> 0) & 0xff; 214 memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); 215 } 216 217 /** 218 * encode_bch - calculate BCH ecc parity of data 219 * @bch: BCH control structure 220 * @data: data to encode 221 * @len: data length in bytes 222 * @ecc: ecc parity data, must be initialized by caller 223 * 224 * The @ecc parity array is used both as input and output parameter, in order to 225 * allow incremental computations. It should be of the size indicated by member 226 * @ecc_bytes of @bch, and should be initialized to 0 before the first call. 227 * 228 * The exact number of computed ecc parity bits is given by member @ecc_bits of 229 * @bch; it may be less than m*t for large values of t. 230 */ 231 void encode_bch(struct bch_control *bch, const uint8_t *data, 232 unsigned int len, uint8_t *ecc) 233 { 234 const unsigned int l = BCH_ECC_WORDS(bch)-1; 235 unsigned int i, mlen; 236 unsigned long m; 237 uint32_t w, r[l+1]; 238 const uint32_t * const tab0 = bch->mod8_tab; 239 const uint32_t * const tab1 = tab0 + 256*(l+1); 240 const uint32_t * const tab2 = tab1 + 256*(l+1); 241 const uint32_t * const tab3 = tab2 + 256*(l+1); 242 const uint32_t *pdata, *p0, *p1, *p2, *p3; 243 244 if (ecc) { 245 /* load ecc parity bytes into internal 32-bit buffer */ 246 load_ecc8(bch, bch->ecc_buf, ecc); 247 } else { 248 memset(bch->ecc_buf, 0, sizeof(r)); 249 } 250 251 /* process first unaligned data bytes */ 252 m = ((unsigned long)data) & 3; 253 if (m) { 254 mlen = (len < (4-m)) ? len : 4-m; 255 encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); 256 data += mlen; 257 len -= mlen; 258 } 259 260 /* process 32-bit aligned data words */ 261 pdata = (uint32_t *)data; 262 mlen = len/4; 263 data += 4*mlen; 264 len -= 4*mlen; 265 memcpy(r, bch->ecc_buf, sizeof(r)); 266 267 /* 268 * split each 32-bit word into 4 polynomials of weight 8 as follows: 269 * 270 * 31 ...24 23 ...16 15 ... 8 7 ... 0 271 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt 272 * tttttttt mod g = r0 (precomputed) 273 * zzzzzzzz 00000000 mod g = r1 (precomputed) 274 * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) 275 * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) 276 * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 277 */ 278 while (mlen--) { 279 /* input data is read in big-endian format */ 280 w = r[0]^cpu_to_be32(*pdata++); 281 p0 = tab0 + (l+1)*((w >> 0) & 0xff); 282 p1 = tab1 + (l+1)*((w >> 8) & 0xff); 283 p2 = tab2 + (l+1)*((w >> 16) & 0xff); 284 p3 = tab3 + (l+1)*((w >> 24) & 0xff); 285 286 for (i = 0; i < l; i++) 287 r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; 288 289 r[l] = p0[l]^p1[l]^p2[l]^p3[l]; 290 } 291 memcpy(bch->ecc_buf, r, sizeof(r)); 292 293 /* process last unaligned bytes */ 294 if (len) 295 encode_bch_unaligned(bch, data, len, bch->ecc_buf); 296 297 /* store ecc parity bytes into original parity buffer */ 298 if (ecc) 299 store_ecc8(bch, ecc, bch->ecc_buf); 300 } 301 302 static inline int modulo(struct bch_control *bch, unsigned int v) 303 { 304 const unsigned int n = GF_N(bch); 305 while (v >= n) { 306 v -= n; 307 v = (v & n) + (v >> GF_M(bch)); 308 } 309 return v; 310 } 311 312 /* 313 * shorter and faster modulo function, only works when v < 2N. 314 */ 315 static inline int mod_s(struct bch_control *bch, unsigned int v) 316 { 317 const unsigned int n = GF_N(bch); 318 return (v < n) ? v : v-n; 319 } 320 321 static inline int deg(unsigned int poly) 322 { 323 /* polynomial degree is the most-significant bit index */ 324 return fls(poly)-1; 325 } 326 327 static inline int parity(unsigned int x) 328 { 329 /* 330 * public domain code snippet, lifted from 331 * http://www-graphics.stanford.edu/~seander/bithacks.html 332 */ 333 x ^= x >> 1; 334 x ^= x >> 2; 335 x = (x & 0x11111111U) * 0x11111111U; 336 return (x >> 28) & 1; 337 } 338 339 /* Galois field basic operations: multiply, divide, inverse, etc. */ 340 341 static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, 342 unsigned int b) 343 { 344 return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ 345 bch->a_log_tab[b])] : 0; 346 } 347 348 static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) 349 { 350 return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; 351 } 352 353 static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, 354 unsigned int b) 355 { 356 return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ 357 GF_N(bch)-bch->a_log_tab[b])] : 0; 358 } 359 360 static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) 361 { 362 return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; 363 } 364 365 static inline unsigned int a_pow(struct bch_control *bch, int i) 366 { 367 return bch->a_pow_tab[modulo(bch, i)]; 368 } 369 370 static inline int a_log(struct bch_control *bch, unsigned int x) 371 { 372 return bch->a_log_tab[x]; 373 } 374 375 static inline int a_ilog(struct bch_control *bch, unsigned int x) 376 { 377 return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); 378 } 379 380 /* 381 * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t 382 */ 383 static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, 384 unsigned int *syn) 385 { 386 int i, j, s; 387 unsigned int m; 388 uint32_t poly; 389 const int t = GF_T(bch); 390 391 s = bch->ecc_bits; 392 393 /* make sure extra bits in last ecc word are cleared */ 394 m = ((unsigned int)s) & 31; 395 if (m) 396 ecc[s/32] &= ~((1u << (32-m))-1); 397 memset(syn, 0, 2*t*sizeof(*syn)); 398 399 /* compute v(a^j) for j=1 .. 2t-1 */ 400 do { 401 poly = *ecc++; 402 s -= 32; 403 while (poly) { 404 i = deg(poly); 405 for (j = 0; j < 2*t; j += 2) 406 syn[j] ^= a_pow(bch, (j+1)*(i+s)); 407 408 poly ^= (1 << i); 409 } 410 } while (s > 0); 411 412 /* v(a^(2j)) = v(a^j)^2 */ 413 for (j = 0; j < t; j++) 414 syn[2*j+1] = gf_sqr(bch, syn[j]); 415 } 416 417 static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) 418 { 419 memcpy(dst, src, GF_POLY_SZ(src->deg)); 420 } 421 422 static int compute_error_locator_polynomial(struct bch_control *bch, 423 const unsigned int *syn) 424 { 425 const unsigned int t = GF_T(bch); 426 const unsigned int n = GF_N(bch); 427 unsigned int i, j, tmp, l, pd = 1, d = syn[0]; 428 struct gf_poly *elp = bch->elp; 429 struct gf_poly *pelp = bch->poly_2t[0]; 430 struct gf_poly *elp_copy = bch->poly_2t[1]; 431 int k, pp = -1; 432 433 memset(pelp, 0, GF_POLY_SZ(2*t)); 434 memset(elp, 0, GF_POLY_SZ(2*t)); 435 436 pelp->deg = 0; 437 pelp->c[0] = 1; 438 elp->deg = 0; 439 elp->c[0] = 1; 440 441 /* use simplified binary Berlekamp-Massey algorithm */ 442 for (i = 0; (i < t) && (elp->deg <= t); i++) { 443 if (d) { 444 k = 2*i-pp; 445 gf_poly_copy(elp_copy, elp); 446 /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ 447 tmp = a_log(bch, d)+n-a_log(bch, pd); 448 for (j = 0; j <= pelp->deg; j++) { 449 if (pelp->c[j]) { 450 l = a_log(bch, pelp->c[j]); 451 elp->c[j+k] ^= a_pow(bch, tmp+l); 452 } 453 } 454 /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ 455 tmp = pelp->deg+k; 456 if (tmp > elp->deg) { 457 elp->deg = tmp; 458 gf_poly_copy(pelp, elp_copy); 459 pd = d; 460 pp = 2*i; 461 } 462 } 463 /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ 464 if (i < t-1) { 465 d = syn[2*i+2]; 466 for (j = 1; j <= elp->deg; j++) 467 d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); 468 } 469 } 470 dbg("elp=%s\n", gf_poly_str(elp)); 471 return (elp->deg > t) ? -1 : (int)elp->deg; 472 } 473 474 /* 475 * solve a m x m linear system in GF(2) with an expected number of solutions, 476 * and return the number of found solutions 477 */ 478 static int solve_linear_system(struct bch_control *bch, unsigned int *rows, 479 unsigned int *sol, int nsol) 480 { 481 const int m = GF_M(bch); 482 unsigned int tmp, mask; 483 int rem, c, r, p, k, param[m]; 484 485 k = 0; 486 mask = 1 << m; 487 488 /* Gaussian elimination */ 489 for (c = 0; c < m; c++) { 490 rem = 0; 491 p = c-k; 492 /* find suitable row for elimination */ 493 for (r = p; r < m; r++) { 494 if (rows[r] & mask) { 495 if (r != p) { 496 tmp = rows[r]; 497 rows[r] = rows[p]; 498 rows[p] = tmp; 499 } 500 rem = r+1; 501 break; 502 } 503 } 504 if (rem) { 505 /* perform elimination on remaining rows */ 506 tmp = rows[p]; 507 for (r = rem; r < m; r++) { 508 if (rows[r] & mask) 509 rows[r] ^= tmp; 510 } 511 } else { 512 /* elimination not needed, store defective row index */ 513 param[k++] = c; 514 } 515 mask >>= 1; 516 } 517 /* rewrite system, inserting fake parameter rows */ 518 if (k > 0) { 519 p = k; 520 for (r = m-1; r >= 0; r--) { 521 if ((r > m-1-k) && rows[r]) 522 /* system has no solution */ 523 return 0; 524 525 rows[r] = (p && (r == param[p-1])) ? 526 p--, 1u << (m-r) : rows[r-p]; 527 } 528 } 529 530 if (nsol != (1 << k)) 531 /* unexpected number of solutions */ 532 return 0; 533 534 for (p = 0; p < nsol; p++) { 535 /* set parameters for p-th solution */ 536 for (c = 0; c < k; c++) 537 rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); 538 539 /* compute unique solution */ 540 tmp = 0; 541 for (r = m-1; r >= 0; r--) { 542 mask = rows[r] & (tmp|1); 543 tmp |= parity(mask) << (m-r); 544 } 545 sol[p] = tmp >> 1; 546 } 547 return nsol; 548 } 549 550 /* 551 * this function builds and solves a linear system for finding roots of a degree 552 * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). 553 */ 554 static int find_affine4_roots(struct bch_control *bch, unsigned int a, 555 unsigned int b, unsigned int c, 556 unsigned int *roots) 557 { 558 int i, j, k; 559 const int m = GF_M(bch); 560 unsigned int mask = 0xff, t, rows[16] = {0,}; 561 562 j = a_log(bch, b); 563 k = a_log(bch, a); 564 rows[0] = c; 565 566 /* buid linear system to solve X^4+aX^2+bX+c = 0 */ 567 for (i = 0; i < m; i++) { 568 rows[i+1] = bch->a_pow_tab[4*i]^ 569 (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ 570 (b ? bch->a_pow_tab[mod_s(bch, j)] : 0); 571 j++; 572 k += 2; 573 } 574 /* 575 * transpose 16x16 matrix before passing it to linear solver 576 * warning: this code assumes m < 16 577 */ 578 for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { 579 for (k = 0; k < 16; k = (k+j+1) & ~j) { 580 t = ((rows[k] >> j)^rows[k+j]) & mask; 581 rows[k] ^= (t << j); 582 rows[k+j] ^= t; 583 } 584 } 585 return solve_linear_system(bch, rows, roots, 4); 586 } 587 588 /* 589 * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) 590 */ 591 static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, 592 unsigned int *roots) 593 { 594 int n = 0; 595 596 if (poly->c[0]) 597 /* poly[X] = bX+c with c!=0, root=c/b */ 598 roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ 599 bch->a_log_tab[poly->c[1]]); 600 return n; 601 } 602 603 /* 604 * compute roots of a degree 2 polynomial over GF(2^m) 605 */ 606 static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, 607 unsigned int *roots) 608 { 609 int n = 0, i, l0, l1, l2; 610 unsigned int u, v, r; 611 612 if (poly->c[0] && poly->c[1]) { 613 614 l0 = bch->a_log_tab[poly->c[0]]; 615 l1 = bch->a_log_tab[poly->c[1]]; 616 l2 = bch->a_log_tab[poly->c[2]]; 617 618 /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ 619 u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); 620 /* 621 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): 622 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = 623 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) 624 * i.e. r and r+1 are roots iff Tr(u)=0 625 */ 626 r = 0; 627 v = u; 628 while (v) { 629 i = deg(v); 630 r ^= bch->xi_tab[i]; 631 v ^= (1 << i); 632 } 633 /* verify root */ 634 if ((gf_sqr(bch, r)^r) == u) { 635 /* reverse z=a/bX transformation and compute log(1/r) */ 636 roots[n++] = modulo(bch, 2*GF_N(bch)-l1- 637 bch->a_log_tab[r]+l2); 638 roots[n++] = modulo(bch, 2*GF_N(bch)-l1- 639 bch->a_log_tab[r^1]+l2); 640 } 641 } 642 return n; 643 } 644 645 /* 646 * compute roots of a degree 3 polynomial over GF(2^m) 647 */ 648 static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, 649 unsigned int *roots) 650 { 651 int i, n = 0; 652 unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; 653 654 if (poly->c[0]) { 655 /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ 656 e3 = poly->c[3]; 657 c2 = gf_div(bch, poly->c[0], e3); 658 b2 = gf_div(bch, poly->c[1], e3); 659 a2 = gf_div(bch, poly->c[2], e3); 660 661 /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ 662 c = gf_mul(bch, a2, c2); /* c = a2c2 */ 663 b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */ 664 a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */ 665 666 /* find the 4 roots of this affine polynomial */ 667 if (find_affine4_roots(bch, a, b, c, tmp) == 4) { 668 /* remove a2 from final list of roots */ 669 for (i = 0; i < 4; i++) { 670 if (tmp[i] != a2) 671 roots[n++] = a_ilog(bch, tmp[i]); 672 } 673 } 674 } 675 return n; 676 } 677 678 /* 679 * compute roots of a degree 4 polynomial over GF(2^m) 680 */ 681 static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, 682 unsigned int *roots) 683 { 684 int i, l, n = 0; 685 unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; 686 687 if (poly->c[0] == 0) 688 return 0; 689 690 /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ 691 e4 = poly->c[4]; 692 d = gf_div(bch, poly->c[0], e4); 693 c = gf_div(bch, poly->c[1], e4); 694 b = gf_div(bch, poly->c[2], e4); 695 a = gf_div(bch, poly->c[3], e4); 696 697 /* use Y=1/X transformation to get an affine polynomial */ 698 if (a) { 699 /* first, eliminate cX by using z=X+e with ae^2+c=0 */ 700 if (c) { 701 /* compute e such that e^2 = c/a */ 702 f = gf_div(bch, c, a); 703 l = a_log(bch, f); 704 l += (l & 1) ? GF_N(bch) : 0; 705 e = a_pow(bch, l/2); 706 /* 707 * use transformation z=X+e: 708 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d 709 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d 710 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d 711 * z^4 + az^3 + b'z^2 + d' 712 */ 713 d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; 714 b = gf_mul(bch, a, e)^b; 715 } 716 /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ 717 if (d == 0) 718 /* assume all roots have multiplicity 1 */ 719 return 0; 720 721 c2 = gf_inv(bch, d); 722 b2 = gf_div(bch, a, d); 723 a2 = gf_div(bch, b, d); 724 } else { 725 /* polynomial is already affine */ 726 c2 = d; 727 b2 = c; 728 a2 = b; 729 } 730 /* find the 4 roots of this affine polynomial */ 731 if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { 732 for (i = 0; i < 4; i++) { 733 /* post-process roots (reverse transformations) */ 734 f = a ? gf_inv(bch, roots[i]) : roots[i]; 735 roots[i] = a_ilog(bch, f^e); 736 } 737 n = 4; 738 } 739 return n; 740 } 741 742 /* 743 * build monic, log-based representation of a polynomial 744 */ 745 static void gf_poly_logrep(struct bch_control *bch, 746 const struct gf_poly *a, int *rep) 747 { 748 int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); 749 750 /* represent 0 values with -1; warning, rep[d] is not set to 1 */ 751 for (i = 0; i < d; i++) 752 rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; 753 } 754 755 /* 756 * compute polynomial Euclidean division remainder in GF(2^m)[X] 757 */ 758 static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, 759 const struct gf_poly *b, int *rep) 760 { 761 int la, p, m; 762 unsigned int i, j, *c = a->c; 763 const unsigned int d = b->deg; 764 765 if (a->deg < d) 766 return; 767 768 /* reuse or compute log representation of denominator */ 769 if (!rep) { 770 rep = bch->cache; 771 gf_poly_logrep(bch, b, rep); 772 } 773 774 for (j = a->deg; j >= d; j--) { 775 if (c[j]) { 776 la = a_log(bch, c[j]); 777 p = j-d; 778 for (i = 0; i < d; i++, p++) { 779 m = rep[i]; 780 if (m >= 0) 781 c[p] ^= bch->a_pow_tab[mod_s(bch, 782 m+la)]; 783 } 784 } 785 } 786 a->deg = d-1; 787 while (!c[a->deg] && a->deg) 788 a->deg--; 789 } 790 791 /* 792 * compute polynomial Euclidean division quotient in GF(2^m)[X] 793 */ 794 static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, 795 const struct gf_poly *b, struct gf_poly *q) 796 { 797 if (a->deg >= b->deg) { 798 q->deg = a->deg-b->deg; 799 /* compute a mod b (modifies a) */ 800 gf_poly_mod(bch, a, b, NULL); 801 /* quotient is stored in upper part of polynomial a */ 802 memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); 803 } else { 804 q->deg = 0; 805 q->c[0] = 0; 806 } 807 } 808 809 /* 810 * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] 811 */ 812 static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, 813 struct gf_poly *b) 814 { 815 struct gf_poly *tmp; 816 817 dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); 818 819 if (a->deg < b->deg) { 820 tmp = b; 821 b = a; 822 a = tmp; 823 } 824 825 while (b->deg > 0) { 826 gf_poly_mod(bch, a, b, NULL); 827 tmp = b; 828 b = a; 829 a = tmp; 830 } 831 832 dbg("%s\n", gf_poly_str(a)); 833 834 return a; 835 } 836 837 /* 838 * Given a polynomial f and an integer k, compute Tr(a^kX) mod f 839 * This is used in Berlekamp Trace algorithm for splitting polynomials 840 */ 841 static void compute_trace_bk_mod(struct bch_control *bch, int k, 842 const struct gf_poly *f, struct gf_poly *z, 843 struct gf_poly *out) 844 { 845 const int m = GF_M(bch); 846 int i, j; 847 848 /* z contains z^2j mod f */ 849 z->deg = 1; 850 z->c[0] = 0; 851 z->c[1] = bch->a_pow_tab[k]; 852 853 out->deg = 0; 854 memset(out, 0, GF_POLY_SZ(f->deg)); 855 856 /* compute f log representation only once */ 857 gf_poly_logrep(bch, f, bch->cache); 858 859 for (i = 0; i < m; i++) { 860 /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ 861 for (j = z->deg; j >= 0; j--) { 862 out->c[j] ^= z->c[j]; 863 z->c[2*j] = gf_sqr(bch, z->c[j]); 864 z->c[2*j+1] = 0; 865 } 866 if (z->deg > out->deg) 867 out->deg = z->deg; 868 869 if (i < m-1) { 870 z->deg *= 2; 871 /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ 872 gf_poly_mod(bch, z, f, bch->cache); 873 } 874 } 875 while (!out->c[out->deg] && out->deg) 876 out->deg--; 877 878 dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); 879 } 880 881 /* 882 * factor a polynomial using Berlekamp Trace algorithm (BTA) 883 */ 884 static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, 885 struct gf_poly **g, struct gf_poly **h) 886 { 887 struct gf_poly *f2 = bch->poly_2t[0]; 888 struct gf_poly *q = bch->poly_2t[1]; 889 struct gf_poly *tk = bch->poly_2t[2]; 890 struct gf_poly *z = bch->poly_2t[3]; 891 struct gf_poly *gcd; 892 893 dbg("factoring %s...\n", gf_poly_str(f)); 894 895 *g = f; 896 *h = NULL; 897 898 /* tk = Tr(a^k.X) mod f */ 899 compute_trace_bk_mod(bch, k, f, z, tk); 900 901 if (tk->deg > 0) { 902 /* compute g = gcd(f, tk) (destructive operation) */ 903 gf_poly_copy(f2, f); 904 gcd = gf_poly_gcd(bch, f2, tk); 905 if (gcd->deg < f->deg) { 906 /* compute h=f/gcd(f,tk); this will modify f and q */ 907 gf_poly_div(bch, f, gcd, q); 908 /* store g and h in-place (clobbering f) */ 909 *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; 910 gf_poly_copy(*g, gcd); 911 gf_poly_copy(*h, q); 912 } 913 } 914 } 915 916 /* 917 * find roots of a polynomial, using BTZ algorithm; see the beginning of this 918 * file for details 919 */ 920 static int find_poly_roots(struct bch_control *bch, unsigned int k, 921 struct gf_poly *poly, unsigned int *roots) 922 { 923 int cnt; 924 struct gf_poly *f1, *f2; 925 926 switch (poly->deg) { 927 /* handle low degree polynomials with ad hoc techniques */ 928 case 1: 929 cnt = find_poly_deg1_roots(bch, poly, roots); 930 break; 931 case 2: 932 cnt = find_poly_deg2_roots(bch, poly, roots); 933 break; 934 case 3: 935 cnt = find_poly_deg3_roots(bch, poly, roots); 936 break; 937 case 4: 938 cnt = find_poly_deg4_roots(bch, poly, roots); 939 break; 940 default: 941 /* factor polynomial using Berlekamp Trace Algorithm (BTA) */ 942 cnt = 0; 943 if (poly->deg && (k <= GF_M(bch))) { 944 factor_polynomial(bch, k, poly, &f1, &f2); 945 if (f1) 946 cnt += find_poly_roots(bch, k+1, f1, roots); 947 if (f2) 948 cnt += find_poly_roots(bch, k+1, f2, roots+cnt); 949 } 950 break; 951 } 952 return cnt; 953 } 954 955 #if defined(USE_CHIEN_SEARCH) 956 /* 957 * exhaustive root search (Chien) implementation - not used, included only for 958 * reference/comparison tests 959 */ 960 static int chien_search(struct bch_control *bch, unsigned int len, 961 struct gf_poly *p, unsigned int *roots) 962 { 963 int m; 964 unsigned int i, j, syn, syn0, count = 0; 965 const unsigned int k = 8*len+bch->ecc_bits; 966 967 /* use a log-based representation of polynomial */ 968 gf_poly_logrep(bch, p, bch->cache); 969 bch->cache[p->deg] = 0; 970 syn0 = gf_div(bch, p->c[0], p->c[p->deg]); 971 972 for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { 973 /* compute elp(a^i) */ 974 for (j = 1, syn = syn0; j <= p->deg; j++) { 975 m = bch->cache[j]; 976 if (m >= 0) 977 syn ^= a_pow(bch, m+j*i); 978 } 979 if (syn == 0) { 980 roots[count++] = GF_N(bch)-i; 981 if (count == p->deg) 982 break; 983 } 984 } 985 return (count == p->deg) ? count : 0; 986 } 987 #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) 988 #endif /* USE_CHIEN_SEARCH */ 989 990 /** 991 * decode_bch - decode received codeword and find bit error locations 992 * @bch: BCH control structure 993 * @data: received data, ignored if @calc_ecc is provided 994 * @len: data length in bytes, must always be provided 995 * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc 996 * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data 997 * @syn: hw computed syndrome data (if NULL, syndrome is calculated) 998 * @errloc: output array of error locations 999 * 1000 * Returns: 1001 * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if 1002 * invalid parameters were provided 1003 * 1004 * Depending on the available hw BCH support and the need to compute @calc_ecc 1005 * separately (using encode_bch()), this function should be called with one of 1006 * the following parameter configurations - 1007 * 1008 * by providing @data and @recv_ecc only: 1009 * decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) 1010 * 1011 * by providing @recv_ecc and @calc_ecc: 1012 * decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) 1013 * 1014 * by providing ecc = recv_ecc XOR calc_ecc: 1015 * decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc) 1016 * 1017 * by providing syndrome results @syn: 1018 * decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc) 1019 * 1020 * Once decode_bch() has successfully returned with a positive value, error 1021 * locations returned in array @errloc should be interpreted as follows - 1022 * 1023 * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for 1024 * data correction) 1025 * 1026 * if (errloc[n] < 8*len), then n-th error is located in data and can be 1027 * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); 1028 * 1029 * Note that this function does not perform any data correction by itself, it 1030 * merely indicates error locations. 1031 */ 1032 int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, 1033 const uint8_t *recv_ecc, const uint8_t *calc_ecc, 1034 const unsigned int *syn, unsigned int *errloc) 1035 { 1036 const unsigned int ecc_words = BCH_ECC_WORDS(bch); 1037 unsigned int nbits; 1038 int i, err, nroots; 1039 uint32_t sum; 1040 1041 /* sanity check: make sure data length can be handled */ 1042 if (8*len > (bch->n-bch->ecc_bits)) 1043 return -EINVAL; 1044 1045 /* if caller does not provide syndromes, compute them */ 1046 if (!syn) { 1047 if (!calc_ecc) { 1048 /* compute received data ecc into an internal buffer */ 1049 if (!data || !recv_ecc) 1050 return -EINVAL; 1051 encode_bch(bch, data, len, NULL); 1052 } else { 1053 /* load provided calculated ecc */ 1054 load_ecc8(bch, bch->ecc_buf, calc_ecc); 1055 } 1056 /* load received ecc or assume it was XORed in calc_ecc */ 1057 if (recv_ecc) { 1058 load_ecc8(bch, bch->ecc_buf2, recv_ecc); 1059 /* XOR received and calculated ecc */ 1060 for (i = 0, sum = 0; i < (int)ecc_words; i++) { 1061 bch->ecc_buf[i] ^= bch->ecc_buf2[i]; 1062 sum |= bch->ecc_buf[i]; 1063 } 1064 if (!sum) 1065 /* no error found */ 1066 return 0; 1067 } 1068 compute_syndromes(bch, bch->ecc_buf, bch->syn); 1069 syn = bch->syn; 1070 } 1071 1072 err = compute_error_locator_polynomial(bch, syn); 1073 if (err > 0) { 1074 nroots = find_poly_roots(bch, 1, bch->elp, errloc); 1075 if (err != nroots) 1076 err = -1; 1077 } 1078 if (err > 0) { 1079 /* post-process raw error locations for easier correction */ 1080 nbits = (len*8)+bch->ecc_bits; 1081 for (i = 0; i < err; i++) { 1082 if (errloc[i] >= nbits) { 1083 err = -1; 1084 break; 1085 } 1086 errloc[i] = nbits-1-errloc[i]; 1087 errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7)); 1088 } 1089 } 1090 return (err >= 0) ? err : -EBADMSG; 1091 } 1092 1093 /* 1094 * generate Galois field lookup tables 1095 */ 1096 static int build_gf_tables(struct bch_control *bch, unsigned int poly) 1097 { 1098 unsigned int i, x = 1; 1099 const unsigned int k = 1 << deg(poly); 1100 1101 /* primitive polynomial must be of degree m */ 1102 if (k != (1u << GF_M(bch))) 1103 return -1; 1104 1105 for (i = 0; i < GF_N(bch); i++) { 1106 bch->a_pow_tab[i] = x; 1107 bch->a_log_tab[x] = i; 1108 if (i && (x == 1)) 1109 /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ 1110 return -1; 1111 x <<= 1; 1112 if (x & k) 1113 x ^= poly; 1114 } 1115 bch->a_pow_tab[GF_N(bch)] = 1; 1116 bch->a_log_tab[0] = 0; 1117 1118 return 0; 1119 } 1120 1121 /* 1122 * compute generator polynomial remainder tables for fast encoding 1123 */ 1124 static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) 1125 { 1126 int i, j, b, d; 1127 uint32_t data, hi, lo, *tab; 1128 const int l = BCH_ECC_WORDS(bch); 1129 const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); 1130 const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); 1131 1132 memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); 1133 1134 for (i = 0; i < 256; i++) { 1135 /* p(X)=i is a small polynomial of weight <= 8 */ 1136 for (b = 0; b < 4; b++) { 1137 /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ 1138 tab = bch->mod8_tab + (b*256+i)*l; 1139 data = i << (8*b); 1140 while (data) { 1141 d = deg(data); 1142 /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ 1143 data ^= g[0] >> (31-d); 1144 for (j = 0; j < ecclen; j++) { 1145 hi = (d < 31) ? g[j] << (d+1) : 0; 1146 lo = (j+1 < plen) ? 1147 g[j+1] >> (31-d) : 0; 1148 tab[j] ^= hi|lo; 1149 } 1150 } 1151 } 1152 } 1153 } 1154 1155 /* 1156 * build a base for factoring degree 2 polynomials 1157 */ 1158 static int build_deg2_base(struct bch_control *bch) 1159 { 1160 const int m = GF_M(bch); 1161 int i, j, r; 1162 unsigned int sum, x, y, remaining, ak = 0, xi[m]; 1163 1164 /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ 1165 for (i = 0; i < m; i++) { 1166 for (j = 0, sum = 0; j < m; j++) 1167 sum ^= a_pow(bch, i*(1 << j)); 1168 1169 if (sum) { 1170 ak = bch->a_pow_tab[i]; 1171 break; 1172 } 1173 } 1174 /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ 1175 remaining = m; 1176 memset(xi, 0, sizeof(xi)); 1177 1178 for (x = 0; (x <= GF_N(bch)) && remaining; x++) { 1179 y = gf_sqr(bch, x)^x; 1180 for (i = 0; i < 2; i++) { 1181 r = a_log(bch, y); 1182 if (y && (r < m) && !xi[r]) { 1183 bch->xi_tab[r] = x; 1184 xi[r] = 1; 1185 remaining--; 1186 dbg("x%d = %x\n", r, x); 1187 break; 1188 } 1189 y ^= ak; 1190 } 1191 } 1192 /* should not happen but check anyway */ 1193 return remaining ? -1 : 0; 1194 } 1195 1196 static void *bch_alloc(size_t size, int *err) 1197 { 1198 void *ptr; 1199 1200 ptr = kmalloc(size, GFP_KERNEL); 1201 if (ptr == NULL) 1202 *err = 1; 1203 return ptr; 1204 } 1205 1206 /* 1207 * compute generator polynomial for given (m,t) parameters. 1208 */ 1209 static uint32_t *compute_generator_polynomial(struct bch_control *bch) 1210 { 1211 const unsigned int m = GF_M(bch); 1212 const unsigned int t = GF_T(bch); 1213 int n, err = 0; 1214 unsigned int i, j, nbits, r, word, *roots; 1215 struct gf_poly *g; 1216 uint32_t *genpoly; 1217 1218 g = bch_alloc(GF_POLY_SZ(m*t), &err); 1219 roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); 1220 genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); 1221 1222 if (err) { 1223 kfree(genpoly); 1224 genpoly = NULL; 1225 goto finish; 1226 } 1227 1228 /* enumerate all roots of g(X) */ 1229 memset(roots , 0, (bch->n+1)*sizeof(*roots)); 1230 for (i = 0; i < t; i++) { 1231 for (j = 0, r = 2*i+1; j < m; j++) { 1232 roots[r] = 1; 1233 r = mod_s(bch, 2*r); 1234 } 1235 } 1236 /* build generator polynomial g(X) */ 1237 g->deg = 0; 1238 g->c[0] = 1; 1239 for (i = 0; i < GF_N(bch); i++) { 1240 if (roots[i]) { 1241 /* multiply g(X) by (X+root) */ 1242 r = bch->a_pow_tab[i]; 1243 g->c[g->deg+1] = 1; 1244 for (j = g->deg; j > 0; j--) 1245 g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; 1246 1247 g->c[0] = gf_mul(bch, g->c[0], r); 1248 g->deg++; 1249 } 1250 } 1251 /* store left-justified binary representation of g(X) */ 1252 n = g->deg+1; 1253 i = 0; 1254 1255 while (n > 0) { 1256 nbits = (n > 32) ? 32 : n; 1257 for (j = 0, word = 0; j < nbits; j++) { 1258 if (g->c[n-1-j]) 1259 word |= 1u << (31-j); 1260 } 1261 genpoly[i++] = word; 1262 n -= nbits; 1263 } 1264 bch->ecc_bits = g->deg; 1265 1266 finish: 1267 kfree(g); 1268 kfree(roots); 1269 1270 return genpoly; 1271 } 1272 1273 /** 1274 * init_bch - initialize a BCH encoder/decoder 1275 * @m: Galois field order, should be in the range 5-15 1276 * @t: maximum error correction capability, in bits 1277 * @prim_poly: user-provided primitive polynomial (or 0 to use default) 1278 * 1279 * Returns: 1280 * a newly allocated BCH control structure if successful, NULL otherwise 1281 * 1282 * This initialization can take some time, as lookup tables are built for fast 1283 * encoding/decoding; make sure not to call this function from a time critical 1284 * path. Usually, init_bch() should be called on module/driver init and 1285 * free_bch() should be called to release memory on exit. 1286 * 1287 * You may provide your own primitive polynomial of degree @m in argument 1288 * @prim_poly, or let init_bch() use its default polynomial. 1289 * 1290 * Once init_bch() has successfully returned a pointer to a newly allocated 1291 * BCH control structure, ecc length in bytes is given by member @ecc_bytes of 1292 * the structure. 1293 */ 1294 struct bch_control *init_bch(int m, int t, unsigned int prim_poly) 1295 { 1296 int err = 0; 1297 unsigned int i, words; 1298 uint32_t *genpoly; 1299 struct bch_control *bch = NULL; 1300 1301 const int min_m = 5; 1302 const int max_m = 15; 1303 1304 /* default primitive polynomials */ 1305 static const unsigned int prim_poly_tab[] = { 1306 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, 1307 0x402b, 0x8003, 1308 }; 1309 1310 #if defined(CONFIG_BCH_CONST_PARAMS) 1311 if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { 1312 printk(KERN_ERR "bch encoder/decoder was configured to support " 1313 "parameters m=%d, t=%d only!\n", 1314 CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); 1315 goto fail; 1316 } 1317 #endif 1318 if ((m < min_m) || (m > max_m)) 1319 /* 1320 * values of m greater than 15 are not currently supported; 1321 * supporting m > 15 would require changing table base type 1322 * (uint16_t) and a small patch in matrix transposition 1323 */ 1324 goto fail; 1325 1326 /* sanity checks */ 1327 if ((t < 1) || (m*t >= ((1 << m)-1))) 1328 /* invalid t value */ 1329 goto fail; 1330 1331 /* select a primitive polynomial for generating GF(2^m) */ 1332 if (prim_poly == 0) 1333 prim_poly = prim_poly_tab[m-min_m]; 1334 1335 bch = kzalloc(sizeof(*bch), GFP_KERNEL); 1336 if (bch == NULL) 1337 goto fail; 1338 1339 bch->m = m; 1340 bch->t = t; 1341 bch->n = (1 << m)-1; 1342 words = DIV_ROUND_UP(m*t, 32); 1343 bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); 1344 bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); 1345 bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); 1346 bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); 1347 bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err); 1348 bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); 1349 bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err); 1350 bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err); 1351 bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err); 1352 bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); 1353 1354 for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) 1355 bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); 1356 1357 if (err) 1358 goto fail; 1359 1360 err = build_gf_tables(bch, prim_poly); 1361 if (err) 1362 goto fail; 1363 1364 /* use generator polynomial for computing encoding tables */ 1365 genpoly = compute_generator_polynomial(bch); 1366 if (genpoly == NULL) 1367 goto fail; 1368 1369 build_mod8_tables(bch, genpoly); 1370 kfree(genpoly); 1371 1372 err = build_deg2_base(bch); 1373 if (err) 1374 goto fail; 1375 1376 return bch; 1377 1378 fail: 1379 free_bch(bch); 1380 return NULL; 1381 } 1382 1383 /** 1384 * free_bch - free the BCH control structure 1385 * @bch: BCH control structure to release 1386 */ 1387 void free_bch(struct bch_control *bch) 1388 { 1389 unsigned int i; 1390 1391 if (bch) { 1392 kfree(bch->a_pow_tab); 1393 kfree(bch->a_log_tab); 1394 kfree(bch->mod8_tab); 1395 kfree(bch->ecc_buf); 1396 kfree(bch->ecc_buf2); 1397 kfree(bch->xi_tab); 1398 kfree(bch->syn); 1399 kfree(bch->cache); 1400 kfree(bch->elp); 1401 1402 for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) 1403 kfree(bch->poly_2t[i]); 1404 1405 kfree(bch); 1406 } 1407 } 1408