xref: /openbmc/u-boot/include/spi.h (revision 49413ea3f5b05079c11d284a8520da2bc421442e)
1 /*
2  * Common SPI Interface: Controller-specific definitions
3  *
4  * (C) Copyright 2001
5  * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  */
9 
10 #ifndef _SPI_H_
11 #define _SPI_H_
12 
13 /* SPI mode flags */
14 #define	SPI_CPHA	0x01			/* clock phase */
15 #define	SPI_CPOL	0x02			/* clock polarity */
16 #define	SPI_MODE_0	(0|0)			/* (original MicroWire) */
17 #define	SPI_MODE_1	(0|SPI_CPHA)
18 #define	SPI_MODE_2	(SPI_CPOL|0)
19 #define	SPI_MODE_3	(SPI_CPOL|SPI_CPHA)
20 #define	SPI_CS_HIGH	0x04			/* CS active high */
21 #define	SPI_LSB_FIRST	0x08			/* per-word bits-on-wire */
22 #define	SPI_3WIRE	0x10			/* SI/SO signals shared */
23 #define	SPI_LOOP	0x20			/* loopback mode */
24 #define	SPI_SLAVE	0x40			/* slave mode */
25 #define	SPI_PREAMBLE	0x80			/* Skip preamble bytes */
26 
27 /* SPI transfer flags */
28 #define SPI_XFER_BEGIN		0x01	/* Assert CS before transfer */
29 #define SPI_XFER_END		0x02	/* Deassert CS after transfer */
30 #define SPI_XFER_MMAP		0x08	/* Memory Mapped start */
31 #define SPI_XFER_MMAP_END	0x10	/* Memory Mapped End */
32 #define SPI_XFER_ONCE		(SPI_XFER_BEGIN | SPI_XFER_END)
33 #define SPI_XFER_U_PAGE	(1 << 5)
34 
35 /* SPI TX operation modes */
36 #define SPI_OPM_TX_QPP		(1 << 0)
37 #define SPI_OPM_TX_BP		(1 << 1)
38 
39 /* SPI RX operation modes */
40 #define SPI_OPM_RX_AS		(1 << 0)
41 #define SPI_OPM_RX_DOUT	(1 << 1)
42 #define SPI_OPM_RX_DIO		(1 << 2)
43 #define SPI_OPM_RX_QOF		(1 << 3)
44 #define SPI_OPM_RX_QIOF	(1 << 4)
45 #define SPI_OPM_RX_EXTN	(SPI_OPM_RX_AS | SPI_OPM_RX_DOUT | \
46 				SPI_OPM_RX_DIO | SPI_OPM_RX_QOF | \
47 				SPI_OPM_RX_QIOF)
48 
49 /* SPI bus connection options - see enum spi_dual_flash */
50 #define SPI_CONN_DUAL_SHARED		(1 << 0)
51 #define SPI_CONN_DUAL_SEPARATED	(1 << 1)
52 
53 /* Header byte that marks the start of the message */
54 #define SPI_PREAMBLE_END_BYTE	0xec
55 
56 #define SPI_DEFAULT_WORDLEN 8
57 
58 #ifdef CONFIG_DM_SPI
59 struct dm_spi_bus {
60 	uint max_hz;
61 };
62 
63 #endif /* CONFIG_DM_SPI */
64 
65 /**
66  * struct spi_slave - Representation of a SPI slave
67  *
68  * For driver model this is the per-child data used by the SPI bus. It can
69  * be accessed using dev_get_parentdata() on the slave device. Each SPI
70  * driver should define this child data in its U_BOOT_DRIVER() definition:
71  *
72  *	.per_child_auto_alloc_size	= sizeof(struct spi_slave),
73  *
74  * If not using driver model, drivers are expected to extend this with
75  * controller-specific data.
76  *
77  * @dev:		SPI slave device
78  * @max_hz:		Maximum speed for this slave
79  * @mode:		SPI mode to use for this slave (see SPI mode flags)
80  * @bus:		ID of the bus that the slave is attached to. For
81  *			driver model this is the sequence number of the SPI
82  *			bus (bus->seq) so does not need to be stored
83  * @cs:			ID of the chip select connected to the slave.
84  * @op_mode_rx:		SPI RX operation mode.
85  * @op_mode_tx:		SPI TX operation mode.
86  * @wordlen:		Size of SPI word in number of bits
87  * @max_write_size:	If non-zero, the maximum number of bytes which can
88  *			be written at once, excluding command bytes.
89  * @memory_map:		Address of read-only SPI flash access.
90  * @option:		Varies SPI bus options - separate, shared bus.
91  * @flags:		Indication of SPI flags.
92  */
93 struct spi_slave {
94 #ifdef CONFIG_DM_SPI
95 	struct udevice *dev;	/* struct spi_slave is dev->parentdata */
96 	uint max_hz;
97 	uint mode;
98 #else
99 	unsigned int bus;
100 #endif
101 	unsigned int cs;
102 	u8 op_mode_rx;
103 	u8 op_mode_tx;
104 	unsigned int wordlen;
105 	unsigned int max_write_size;
106 	void *memory_map;
107 	u8 option;
108 	u8 flags;
109 };
110 
111 /**
112  * Initialization, must be called once on start up.
113  *
114  * TODO: I don't think we really need this.
115  */
116 void spi_init(void);
117 
118 /**
119  * spi_do_alloc_slave - Allocate a new SPI slave (internal)
120  *
121  * Allocate and zero all fields in the spi slave, and set the bus/chip
122  * select. Use the helper macro spi_alloc_slave() to call this.
123  *
124  * @offset:	Offset of struct spi_slave within slave structure.
125  * @size:	Size of slave structure.
126  * @bus:	Bus ID of the slave chip.
127  * @cs:		Chip select ID of the slave chip on the specified bus.
128  */
129 void *spi_do_alloc_slave(int offset, int size, unsigned int bus,
130 			 unsigned int cs);
131 
132 /**
133  * spi_alloc_slave - Allocate a new SPI slave
134  *
135  * Allocate and zero all fields in the spi slave, and set the bus/chip
136  * select.
137  *
138  * @_struct:	Name of structure to allocate (e.g. struct tegra_spi).
139  *		This structure must contain a member 'struct spi_slave *slave'.
140  * @bus:	Bus ID of the slave chip.
141  * @cs:		Chip select ID of the slave chip on the specified bus.
142  */
143 #define spi_alloc_slave(_struct, bus, cs) \
144 	spi_do_alloc_slave(offsetof(_struct, slave), \
145 			    sizeof(_struct), bus, cs)
146 
147 /**
148  * spi_alloc_slave_base - Allocate a new SPI slave with no private data
149  *
150  * Allocate and zero all fields in the spi slave, and set the bus/chip
151  * select.
152  *
153  * @bus:	Bus ID of the slave chip.
154  * @cs:		Chip select ID of the slave chip on the specified bus.
155  */
156 #define spi_alloc_slave_base(bus, cs) \
157 	spi_do_alloc_slave(0, sizeof(struct spi_slave), bus, cs)
158 
159 /**
160  * Set up communications parameters for a SPI slave.
161  *
162  * This must be called once for each slave. Note that this function
163  * usually doesn't touch any actual hardware, it only initializes the
164  * contents of spi_slave so that the hardware can be easily
165  * initialized later.
166  *
167  * @bus:	Bus ID of the slave chip.
168  * @cs:		Chip select ID of the slave chip on the specified bus.
169  * @max_hz:	Maximum SCK rate in Hz.
170  * @mode:	Clock polarity, clock phase and other parameters.
171  *
172  * Returns: A spi_slave reference that can be used in subsequent SPI
173  * calls, or NULL if one or more of the parameters are not supported.
174  */
175 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
176 		unsigned int max_hz, unsigned int mode);
177 
178 /**
179  * Free any memory associated with a SPI slave.
180  *
181  * @slave:	The SPI slave
182  */
183 void spi_free_slave(struct spi_slave *slave);
184 
185 /**
186  * Claim the bus and prepare it for communication with a given slave.
187  *
188  * This must be called before doing any transfers with a SPI slave. It
189  * will enable and initialize any SPI hardware as necessary, and make
190  * sure that the SCK line is in the correct idle state. It is not
191  * allowed to claim the same bus for several slaves without releasing
192  * the bus in between.
193  *
194  * @slave:	The SPI slave
195  *
196  * Returns: 0 if the bus was claimed successfully, or a negative value
197  * if it wasn't.
198  */
199 int spi_claim_bus(struct spi_slave *slave);
200 
201 /**
202  * Release the SPI bus
203  *
204  * This must be called once for every call to spi_claim_bus() after
205  * all transfers have finished. It may disable any SPI hardware as
206  * appropriate.
207  *
208  * @slave:	The SPI slave
209  */
210 void spi_release_bus(struct spi_slave *slave);
211 
212 /**
213  * Set the word length for SPI transactions
214  *
215  * Set the word length (number of bits per word) for SPI transactions.
216  *
217  * @slave:	The SPI slave
218  * @wordlen:	The number of bits in a word
219  *
220  * Returns: 0 on success, -1 on failure.
221  */
222 int spi_set_wordlen(struct spi_slave *slave, unsigned int wordlen);
223 
224 /**
225  * SPI transfer
226  *
227  * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks
228  * "bitlen" bits in the SPI MISO port.  That's just the way SPI works.
229  *
230  * The source of the outgoing bits is the "dout" parameter and the
231  * destination of the input bits is the "din" parameter.  Note that "dout"
232  * and "din" can point to the same memory location, in which case the
233  * input data overwrites the output data (since both are buffered by
234  * temporary variables, this is OK).
235  *
236  * spi_xfer() interface:
237  * @slave:	The SPI slave which will be sending/receiving the data.
238  * @bitlen:	How many bits to write and read.
239  * @dout:	Pointer to a string of bits to send out.  The bits are
240  *		held in a byte array and are sent MSB first.
241  * @din:	Pointer to a string of bits that will be filled in.
242  * @flags:	A bitwise combination of SPI_XFER_* flags.
243  *
244  * Returns: 0 on success, not 0 on failure
245  */
246 int  spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
247 		void *din, unsigned long flags);
248 
249 /**
250  * Determine if a SPI chipselect is valid.
251  * This function is provided by the board if the low-level SPI driver
252  * needs it to determine if a given chipselect is actually valid.
253  *
254  * Returns: 1 if bus:cs identifies a valid chip on this board, 0
255  * otherwise.
256  */
257 int spi_cs_is_valid(unsigned int bus, unsigned int cs);
258 
259 #ifndef CONFIG_DM_SPI
260 /**
261  * Activate a SPI chipselect.
262  * This function is provided by the board code when using a driver
263  * that can't control its chipselects automatically (e.g.
264  * common/soft_spi.c). When called, it should activate the chip select
265  * to the device identified by "slave".
266  */
267 void spi_cs_activate(struct spi_slave *slave);
268 
269 /**
270  * Deactivate a SPI chipselect.
271  * This function is provided by the board code when using a driver
272  * that can't control its chipselects automatically (e.g.
273  * common/soft_spi.c). When called, it should deactivate the chip
274  * select to the device identified by "slave".
275  */
276 void spi_cs_deactivate(struct spi_slave *slave);
277 
278 /**
279  * Set transfer speed.
280  * This sets a new speed to be applied for next spi_xfer().
281  * @slave:	The SPI slave
282  * @hz:		The transfer speed
283  */
284 void spi_set_speed(struct spi_slave *slave, uint hz);
285 #endif
286 
287 /**
288  * Write 8 bits, then read 8 bits.
289  * @slave:	The SPI slave we're communicating with
290  * @byte:	Byte to be written
291  *
292  * Returns: The value that was read, or a negative value on error.
293  *
294  * TODO: This function probably shouldn't be inlined.
295  */
296 static inline int spi_w8r8(struct spi_slave *slave, unsigned char byte)
297 {
298 	unsigned char dout[2];
299 	unsigned char din[2];
300 	int ret;
301 
302 	dout[0] = byte;
303 	dout[1] = 0;
304 
305 	ret = spi_xfer(slave, 16, dout, din, SPI_XFER_BEGIN | SPI_XFER_END);
306 	return ret < 0 ? ret : din[1];
307 }
308 
309 /**
310  * Set up a SPI slave for a particular device tree node
311  *
312  * This calls spi_setup_slave() with the correct bus number. Call
313  * spi_free_slave() to free it later.
314  *
315  * @param blob:		Device tree blob
316  * @param slave_node:	Slave node to use
317  * @param spi_node:	SPI peripheral node to use
318  * @return pointer to new spi_slave structure
319  */
320 struct spi_slave *spi_setup_slave_fdt(const void *blob, int slave_node,
321 				      int spi_node);
322 
323 /**
324  * spi_base_setup_slave_fdt() - helper function to set up a SPI slace
325  *
326  * This decodes SPI properties from the slave node to determine the
327  * chip select and SPI parameters.
328  *
329  * @blob:	Device tree blob
330  * @busnum:	Bus number to use
331  * @node:	Device tree node for the SPI bus
332  */
333 struct spi_slave *spi_base_setup_slave_fdt(const void *blob, int busnum,
334 					   int node);
335 
336 #ifdef CONFIG_DM_SPI
337 
338 /**
339  * struct spi_cs_info - Information about a bus chip select
340  *
341  * @dev:	Connected device, or NULL if none
342  */
343 struct spi_cs_info {
344 	struct udevice *dev;
345 };
346 
347 /**
348  * struct struct dm_spi_ops - Driver model SPI operations
349  *
350  * The uclass interface is implemented by all SPI devices which use
351  * driver model.
352  */
353 struct dm_spi_ops {
354 	/**
355 	 * Claim the bus and prepare it for communication.
356 	 *
357 	 * The device provided is the slave device. It's parent controller
358 	 * will be used to provide the communication.
359 	 *
360 	 * This must be called before doing any transfers with a SPI slave. It
361 	 * will enable and initialize any SPI hardware as necessary, and make
362 	 * sure that the SCK line is in the correct idle state. It is not
363 	 * allowed to claim the same bus for several slaves without releasing
364 	 * the bus in between.
365 	 *
366 	 * @bus:	The SPI slave
367 	 *
368 	 * Returns: 0 if the bus was claimed successfully, or a negative value
369 	 * if it wasn't.
370 	 */
371 	int (*claim_bus)(struct udevice *bus);
372 
373 	/**
374 	 * Release the SPI bus
375 	 *
376 	 * This must be called once for every call to spi_claim_bus() after
377 	 * all transfers have finished. It may disable any SPI hardware as
378 	 * appropriate.
379 	 *
380 	 * @bus:	The SPI slave
381 	 */
382 	int (*release_bus)(struct udevice *bus);
383 
384 	/**
385 	 * Set the word length for SPI transactions
386 	 *
387 	 * Set the word length (number of bits per word) for SPI transactions.
388 	 *
389 	 * @bus:	The SPI slave
390 	 * @wordlen:	The number of bits in a word
391 	 *
392 	 * Returns: 0 on success, -ve on failure.
393 	 */
394 	int (*set_wordlen)(struct udevice *bus, unsigned int wordlen);
395 
396 	/**
397 	 * SPI transfer
398 	 *
399 	 * This writes "bitlen" bits out the SPI MOSI port and simultaneously
400 	 * clocks "bitlen" bits in the SPI MISO port.  That's just the way SPI
401 	 * works.
402 	 *
403 	 * The source of the outgoing bits is the "dout" parameter and the
404 	 * destination of the input bits is the "din" parameter.  Note that
405 	 * "dout" and "din" can point to the same memory location, in which
406 	 * case the input data overwrites the output data (since both are
407 	 * buffered by temporary variables, this is OK).
408 	 *
409 	 * spi_xfer() interface:
410 	 * @dev:	The slave device to communicate with
411 	 * @bitlen:	How many bits to write and read.
412 	 * @dout:	Pointer to a string of bits to send out.  The bits are
413 	 *		held in a byte array and are sent MSB first.
414 	 * @din:	Pointer to a string of bits that will be filled in.
415 	 * @flags:	A bitwise combination of SPI_XFER_* flags.
416 	 *
417 	 * Returns: 0 on success, not -1 on failure
418 	 */
419 	int (*xfer)(struct udevice *dev, unsigned int bitlen, const void *dout,
420 		    void *din, unsigned long flags);
421 
422 	/**
423 	 * Set transfer speed.
424 	 * This sets a new speed to be applied for next spi_xfer().
425 	 * @bus:	The SPI bus
426 	 * @hz:		The transfer speed
427 	 * @return 0 if OK, -ve on error
428 	 */
429 	int (*set_speed)(struct udevice *bus, uint hz);
430 
431 	/**
432 	 * Set the SPI mode/flags
433 	 *
434 	 * It is unclear if we want to set speed and mode together instead
435 	 * of separately.
436 	 *
437 	 * @bus:	The SPI bus
438 	 * @mode:	Requested SPI mode (SPI_... flags)
439 	 * @return 0 if OK, -ve on error
440 	 */
441 	int (*set_mode)(struct udevice *bus, uint mode);
442 
443 	/**
444 	 * Get information on a chip select
445 	 *
446 	 * This is only called when the SPI uclass does not know about a
447 	 * chip select, i.e. it has no attached device. It gives the driver
448 	 * a chance to allow activity on that chip select even so.
449 	 *
450 	 * @bus:	The SPI bus
451 	 * @cs:		The chip select (0..n-1)
452 	 * @info:	Returns information about the chip select, if valid.
453 	 *		On entry info->dev is NULL
454 	 * @return 0 if OK (and @info is set up), -ENODEV if the chip select
455 	 *	   is invalid, other -ve value on error
456 	 */
457 	int (*cs_info)(struct udevice *bus, uint cs, struct spi_cs_info *info);
458 };
459 
460 struct dm_spi_emul_ops {
461 	/**
462 	 * SPI transfer
463 	 *
464 	 * This writes "bitlen" bits out the SPI MOSI port and simultaneously
465 	 * clocks "bitlen" bits in the SPI MISO port.  That's just the way SPI
466 	 * works. Here the device is a slave.
467 	 *
468 	 * The source of the outgoing bits is the "dout" parameter and the
469 	 * destination of the input bits is the "din" parameter.  Note that
470 	 * "dout" and "din" can point to the same memory location, in which
471 	 * case the input data overwrites the output data (since both are
472 	 * buffered by temporary variables, this is OK).
473 	 *
474 	 * spi_xfer() interface:
475 	 * @slave:	The SPI slave which will be sending/receiving the data.
476 	 * @bitlen:	How many bits to write and read.
477 	 * @dout:	Pointer to a string of bits sent to the device. The
478 	 *		bits are held in a byte array and are sent MSB first.
479 	 * @din:	Pointer to a string of bits that will be sent back to
480 	 *		the master.
481 	 * @flags:	A bitwise combination of SPI_XFER_* flags.
482 	 *
483 	 * Returns: 0 on success, not -1 on failure
484 	 */
485 	int (*xfer)(struct udevice *slave, unsigned int bitlen,
486 		    const void *dout, void *din, unsigned long flags);
487 };
488 
489 /**
490  * spi_find_bus_and_cs() - Find bus and slave devices by number
491  *
492  * Given a bus number and chip select, this finds the corresponding bus
493  * device and slave device. Neither device is activated by this function,
494  * although they may have been activated previously.
495  *
496  * @busnum:	SPI bus number
497  * @cs:		Chip select to look for
498  * @busp:	Returns bus device
499  * @devp:	Return slave device
500  * @return 0 if found, -ENODEV on error
501  */
502 int spi_find_bus_and_cs(int busnum, int cs, struct udevice **busp,
503 			struct udevice **devp);
504 
505 /**
506  * spi_get_bus_and_cs() - Find and activate bus and slave devices by number
507  *
508  * Given a bus number and chip select, this finds the corresponding bus
509  * device and slave device.
510  *
511  * If no such slave exists, and drv_name is not NULL, then a new slave device
512  * is automatically bound on this chip select.
513  *
514  * Ths new slave device is probed ready for use with the given speed and mode.
515  *
516  * @busnum:	SPI bus number
517  * @cs:		Chip select to look for
518  * @speed:	SPI speed to use for this slave
519  * @mode:	SPI mode to use for this slave
520  * @drv_name:	Name of driver to attach to this chip select
521  * @dev_name:	Name of the new device thus created
522  * @busp:	Returns bus device
523  * @devp:	Return slave device
524  * @return 0 if found, -ve on error
525  */
526 int spi_get_bus_and_cs(int busnum, int cs, int speed, int mode,
527 			const char *drv_name, const char *dev_name,
528 			struct udevice **busp, struct spi_slave **devp);
529 
530 /**
531  * spi_chip_select() - Get the chip select for a slave
532  *
533  * @return the chip select this slave is attached to
534  */
535 int spi_chip_select(struct udevice *slave);
536 
537 /**
538  * spi_find_chip_select() - Find the slave attached to chip select
539  *
540  * @bus:	SPI bus to search
541  * @cs:		Chip select to look for
542  * @devp:	Returns the slave device if found
543  * @return 0 if found, -ENODEV on error
544  */
545 int spi_find_chip_select(struct udevice *bus, int cs, struct udevice **devp);
546 
547 /**
548  * spi_ofdata_to_platdata() - decode standard SPI platform data
549  *
550  * This decodes the speed and mode from a device tree node and puts it into
551  * the spi_slave structure.
552  *
553  * @blob:	Device tree blob
554  * @node:	Node offset to read from
555  * @spi:	Place to put the decoded information
556  */
557 int spi_ofdata_to_platdata(const void *blob, int node, struct spi_slave *spi);
558 
559 /**
560  * spi_cs_info() - Check information on a chip select
561  *
562  * This checks a particular chip select on a bus to see if it has a device
563  * attached, or is even valid.
564  *
565  * @bus:	The SPI bus
566  * @cs:		The chip select (0..n-1)
567  * @info:	Returns information about the chip select, if valid
568  * @return 0 if OK (and @info is set up), -ENODEV if the chip select
569  *	   is invalid, other -ve value on error
570  */
571 int spi_cs_info(struct udevice *bus, uint cs, struct spi_cs_info *info);
572 
573 struct sandbox_state;
574 
575 /**
576  * sandbox_spi_get_emul() - get an emulator for a SPI slave
577  *
578  * This provides a way to attach an emulated SPI device to a particular SPI
579  * slave, so that xfer() operations on the slave will be handled by the
580  * emulator. If a emulator already exists on that chip select it is returned.
581  * Otherwise one is created.
582  *
583  * @state:	Sandbox state
584  * @bus:	SPI bus requesting the emulator
585  * @slave:	SPI slave device requesting the emulator
586  * @emuip:	Returns pointer to emulator
587  * @return 0 if OK, -ve on error
588  */
589 int sandbox_spi_get_emul(struct sandbox_state *state,
590 			 struct udevice *bus, struct udevice *slave,
591 			 struct udevice **emulp);
592 
593 /* Access the serial operations for a device */
594 #define spi_get_ops(dev)	((struct dm_spi_ops *)(dev)->driver->ops)
595 #define spi_emul_get_ops(dev)	((struct dm_spi_emul_ops *)(dev)->driver->ops)
596 #endif /* CONFIG_DM_SPI */
597 
598 #endif	/* _SPI_H_ */
599