xref: /openbmc/u-boot/include/spi.h (revision 0c331ebcc6843bb5e4e6727d1b4a13ef2284a5ab)
1 /*
2  * Common SPI Interface: Controller-specific definitions
3  *
4  * (C) Copyright 2001
5  * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  */
9 
10 #ifndef _SPI_H_
11 #define _SPI_H_
12 
13 /* SPI mode flags */
14 #define	SPI_CPHA	0x01			/* clock phase */
15 #define	SPI_CPOL	0x02			/* clock polarity */
16 #define	SPI_MODE_0	(0|0)			/* (original MicroWire) */
17 #define	SPI_MODE_1	(0|SPI_CPHA)
18 #define	SPI_MODE_2	(SPI_CPOL|0)
19 #define	SPI_MODE_3	(SPI_CPOL|SPI_CPHA)
20 #define	SPI_CS_HIGH	0x04			/* CS active high */
21 #define	SPI_LSB_FIRST	0x08			/* per-word bits-on-wire */
22 #define	SPI_3WIRE	0x10			/* SI/SO signals shared */
23 #define	SPI_LOOP	0x20			/* loopback mode */
24 #define	SPI_SLAVE	0x40			/* slave mode */
25 #define	SPI_PREAMBLE	0x80			/* Skip preamble bytes */
26 
27 /* SPI transfer flags */
28 #define SPI_XFER_BEGIN		0x01	/* Assert CS before transfer */
29 #define SPI_XFER_END		0x02	/* Deassert CS after transfer */
30 #define SPI_XFER_MMAP		0x08	/* Memory Mapped start */
31 #define SPI_XFER_MMAP_END	0x10	/* Memory Mapped End */
32 #define SPI_XFER_ONCE		(SPI_XFER_BEGIN | SPI_XFER_END)
33 #define SPI_XFER_U_PAGE	(1 << 5)
34 
35 /* SPI TX operation modes */
36 #define SPI_OPM_TX_QPP		(1 << 0)
37 
38 /* SPI RX operation modes */
39 #define SPI_OPM_RX_AS		(1 << 0)
40 #define SPI_OPM_RX_DOUT	(1 << 1)
41 #define SPI_OPM_RX_DIO		(1 << 2)
42 #define SPI_OPM_RX_QOF		(1 << 3)
43 #define SPI_OPM_RX_QIOF	(1 << 4)
44 #define SPI_OPM_RX_EXTN	(SPI_OPM_RX_AS | SPI_OPM_RX_DOUT | \
45 				SPI_OPM_RX_DIO | SPI_OPM_RX_QOF | \
46 				SPI_OPM_RX_QIOF)
47 
48 /* SPI bus connection options - see enum spi_dual_flash */
49 #define SPI_CONN_DUAL_SHARED		(1 << 0)
50 #define SPI_CONN_DUAL_SEPARATED	(1 << 1)
51 
52 /* Header byte that marks the start of the message */
53 #define SPI_PREAMBLE_END_BYTE	0xec
54 
55 #define SPI_DEFAULT_WORDLEN 8
56 
57 #ifdef CONFIG_DM_SPI
58 struct dm_spi_bus {
59 	uint max_hz;
60 };
61 
62 #endif /* CONFIG_DM_SPI */
63 
64 /**
65  * struct spi_slave - Representation of a SPI slave
66  *
67  * For driver model this is the per-child data used by the SPI bus. It can
68  * be accessed using dev_get_parentdata() on the slave device. Each SPI
69  * driver should define this child data in its U_BOOT_DRIVER() definition:
70  *
71  *	.per_child_auto_alloc_size	= sizeof(struct spi_slave),
72  *
73  * If not using driver model, drivers are expected to extend this with
74  * controller-specific data.
75  *
76  * @dev:		SPI slave device
77  * @max_hz:		Maximum speed for this slave
78  * @mode:		SPI mode to use for this slave (see SPI mode flags)
79  * @bus:		ID of the bus that the slave is attached to. For
80  *			driver model this is the sequence number of the SPI
81  *			bus (bus->seq) so does not need to be stored
82  * @cs:			ID of the chip select connected to the slave.
83  * @op_mode_rx:		SPI RX operation mode.
84  * @op_mode_tx:		SPI TX operation mode.
85  * @wordlen:		Size of SPI word in number of bits
86  * @max_write_size:	If non-zero, the maximum number of bytes which can
87  *			be written at once, excluding command bytes.
88  * @memory_map:		Address of read-only SPI flash access.
89  * @option:		Varies SPI bus options - separate, shared bus.
90  * @flags:		Indication of SPI flags.
91  */
92 struct spi_slave {
93 #ifdef CONFIG_DM_SPI
94 	struct udevice *dev;	/* struct spi_slave is dev->parentdata */
95 	uint max_hz;
96 	uint mode;
97 #else
98 	unsigned int bus;
99 #endif
100 	unsigned int cs;
101 	u8 op_mode_rx;
102 	u8 op_mode_tx;
103 	unsigned int wordlen;
104 	unsigned int max_write_size;
105 	void *memory_map;
106 	u8 option;
107 	u8 flags;
108 };
109 
110 /**
111  * Initialization, must be called once on start up.
112  *
113  * TODO: I don't think we really need this.
114  */
115 void spi_init(void);
116 
117 /**
118  * spi_do_alloc_slave - Allocate a new SPI slave (internal)
119  *
120  * Allocate and zero all fields in the spi slave, and set the bus/chip
121  * select. Use the helper macro spi_alloc_slave() to call this.
122  *
123  * @offset:	Offset of struct spi_slave within slave structure.
124  * @size:	Size of slave structure.
125  * @bus:	Bus ID of the slave chip.
126  * @cs:		Chip select ID of the slave chip on the specified bus.
127  */
128 void *spi_do_alloc_slave(int offset, int size, unsigned int bus,
129 			 unsigned int cs);
130 
131 /**
132  * spi_alloc_slave - Allocate a new SPI slave
133  *
134  * Allocate and zero all fields in the spi slave, and set the bus/chip
135  * select.
136  *
137  * @_struct:	Name of structure to allocate (e.g. struct tegra_spi).
138  *		This structure must contain a member 'struct spi_slave *slave'.
139  * @bus:	Bus ID of the slave chip.
140  * @cs:		Chip select ID of the slave chip on the specified bus.
141  */
142 #define spi_alloc_slave(_struct, bus, cs) \
143 	spi_do_alloc_slave(offsetof(_struct, slave), \
144 			    sizeof(_struct), bus, cs)
145 
146 /**
147  * spi_alloc_slave_base - Allocate a new SPI slave with no private data
148  *
149  * Allocate and zero all fields in the spi slave, and set the bus/chip
150  * select.
151  *
152  * @bus:	Bus ID of the slave chip.
153  * @cs:		Chip select ID of the slave chip on the specified bus.
154  */
155 #define spi_alloc_slave_base(bus, cs) \
156 	spi_do_alloc_slave(0, sizeof(struct spi_slave), bus, cs)
157 
158 /**
159  * Set up communications parameters for a SPI slave.
160  *
161  * This must be called once for each slave. Note that this function
162  * usually doesn't touch any actual hardware, it only initializes the
163  * contents of spi_slave so that the hardware can be easily
164  * initialized later.
165  *
166  * @bus:	Bus ID of the slave chip.
167  * @cs:		Chip select ID of the slave chip on the specified bus.
168  * @max_hz:	Maximum SCK rate in Hz.
169  * @mode:	Clock polarity, clock phase and other parameters.
170  *
171  * Returns: A spi_slave reference that can be used in subsequent SPI
172  * calls, or NULL if one or more of the parameters are not supported.
173  */
174 struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
175 		unsigned int max_hz, unsigned int mode);
176 
177 /**
178  * Free any memory associated with a SPI slave.
179  *
180  * @slave:	The SPI slave
181  */
182 void spi_free_slave(struct spi_slave *slave);
183 
184 /**
185  * Claim the bus and prepare it for communication with a given slave.
186  *
187  * This must be called before doing any transfers with a SPI slave. It
188  * will enable and initialize any SPI hardware as necessary, and make
189  * sure that the SCK line is in the correct idle state. It is not
190  * allowed to claim the same bus for several slaves without releasing
191  * the bus in between.
192  *
193  * @slave:	The SPI slave
194  *
195  * Returns: 0 if the bus was claimed successfully, or a negative value
196  * if it wasn't.
197  */
198 int spi_claim_bus(struct spi_slave *slave);
199 
200 /**
201  * Release the SPI bus
202  *
203  * This must be called once for every call to spi_claim_bus() after
204  * all transfers have finished. It may disable any SPI hardware as
205  * appropriate.
206  *
207  * @slave:	The SPI slave
208  */
209 void spi_release_bus(struct spi_slave *slave);
210 
211 /**
212  * Set the word length for SPI transactions
213  *
214  * Set the word length (number of bits per word) for SPI transactions.
215  *
216  * @slave:	The SPI slave
217  * @wordlen:	The number of bits in a word
218  *
219  * Returns: 0 on success, -1 on failure.
220  */
221 int spi_set_wordlen(struct spi_slave *slave, unsigned int wordlen);
222 
223 /**
224  * SPI transfer
225  *
226  * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks
227  * "bitlen" bits in the SPI MISO port.  That's just the way SPI works.
228  *
229  * The source of the outgoing bits is the "dout" parameter and the
230  * destination of the input bits is the "din" parameter.  Note that "dout"
231  * and "din" can point to the same memory location, in which case the
232  * input data overwrites the output data (since both are buffered by
233  * temporary variables, this is OK).
234  *
235  * spi_xfer() interface:
236  * @slave:	The SPI slave which will be sending/receiving the data.
237  * @bitlen:	How many bits to write and read.
238  * @dout:	Pointer to a string of bits to send out.  The bits are
239  *		held in a byte array and are sent MSB first.
240  * @din:	Pointer to a string of bits that will be filled in.
241  * @flags:	A bitwise combination of SPI_XFER_* flags.
242  *
243  * Returns: 0 on success, not 0 on failure
244  */
245 int  spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
246 		void *din, unsigned long flags);
247 
248 /**
249  * Determine if a SPI chipselect is valid.
250  * This function is provided by the board if the low-level SPI driver
251  * needs it to determine if a given chipselect is actually valid.
252  *
253  * Returns: 1 if bus:cs identifies a valid chip on this board, 0
254  * otherwise.
255  */
256 int spi_cs_is_valid(unsigned int bus, unsigned int cs);
257 
258 #ifndef CONFIG_DM_SPI
259 /**
260  * Activate a SPI chipselect.
261  * This function is provided by the board code when using a driver
262  * that can't control its chipselects automatically (e.g.
263  * common/soft_spi.c). When called, it should activate the chip select
264  * to the device identified by "slave".
265  */
266 void spi_cs_activate(struct spi_slave *slave);
267 
268 /**
269  * Deactivate a SPI chipselect.
270  * This function is provided by the board code when using a driver
271  * that can't control its chipselects automatically (e.g.
272  * common/soft_spi.c). When called, it should deactivate the chip
273  * select to the device identified by "slave".
274  */
275 void spi_cs_deactivate(struct spi_slave *slave);
276 
277 /**
278  * Set transfer speed.
279  * This sets a new speed to be applied for next spi_xfer().
280  * @slave:	The SPI slave
281  * @hz:		The transfer speed
282  */
283 void spi_set_speed(struct spi_slave *slave, uint hz);
284 #endif
285 
286 /**
287  * Write 8 bits, then read 8 bits.
288  * @slave:	The SPI slave we're communicating with
289  * @byte:	Byte to be written
290  *
291  * Returns: The value that was read, or a negative value on error.
292  *
293  * TODO: This function probably shouldn't be inlined.
294  */
295 static inline int spi_w8r8(struct spi_slave *slave, unsigned char byte)
296 {
297 	unsigned char dout[2];
298 	unsigned char din[2];
299 	int ret;
300 
301 	dout[0] = byte;
302 	dout[1] = 0;
303 
304 	ret = spi_xfer(slave, 16, dout, din, SPI_XFER_BEGIN | SPI_XFER_END);
305 	return ret < 0 ? ret : din[1];
306 }
307 
308 /**
309  * Set up a SPI slave for a particular device tree node
310  *
311  * This calls spi_setup_slave() with the correct bus number. Call
312  * spi_free_slave() to free it later.
313  *
314  * @param blob:		Device tree blob
315  * @param slave_node:	Slave node to use
316  * @param spi_node:	SPI peripheral node to use
317  * @return pointer to new spi_slave structure
318  */
319 struct spi_slave *spi_setup_slave_fdt(const void *blob, int slave_node,
320 				      int spi_node);
321 
322 /**
323  * spi_base_setup_slave_fdt() - helper function to set up a SPI slace
324  *
325  * This decodes SPI properties from the slave node to determine the
326  * chip select and SPI parameters.
327  *
328  * @blob:	Device tree blob
329  * @busnum:	Bus number to use
330  * @node:	Device tree node for the SPI bus
331  */
332 struct spi_slave *spi_base_setup_slave_fdt(const void *blob, int busnum,
333 					   int node);
334 
335 #ifdef CONFIG_DM_SPI
336 
337 /**
338  * struct spi_cs_info - Information about a bus chip select
339  *
340  * @dev:	Connected device, or NULL if none
341  */
342 struct spi_cs_info {
343 	struct udevice *dev;
344 };
345 
346 /**
347  * struct struct dm_spi_ops - Driver model SPI operations
348  *
349  * The uclass interface is implemented by all SPI devices which use
350  * driver model.
351  */
352 struct dm_spi_ops {
353 	/**
354 	 * Claim the bus and prepare it for communication.
355 	 *
356 	 * The device provided is the slave device. It's parent controller
357 	 * will be used to provide the communication.
358 	 *
359 	 * This must be called before doing any transfers with a SPI slave. It
360 	 * will enable and initialize any SPI hardware as necessary, and make
361 	 * sure that the SCK line is in the correct idle state. It is not
362 	 * allowed to claim the same bus for several slaves without releasing
363 	 * the bus in between.
364 	 *
365 	 * @bus:	The SPI slave
366 	 *
367 	 * Returns: 0 if the bus was claimed successfully, or a negative value
368 	 * if it wasn't.
369 	 */
370 	int (*claim_bus)(struct udevice *bus);
371 
372 	/**
373 	 * Release the SPI bus
374 	 *
375 	 * This must be called once for every call to spi_claim_bus() after
376 	 * all transfers have finished. It may disable any SPI hardware as
377 	 * appropriate.
378 	 *
379 	 * @bus:	The SPI slave
380 	 */
381 	int (*release_bus)(struct udevice *bus);
382 
383 	/**
384 	 * Set the word length for SPI transactions
385 	 *
386 	 * Set the word length (number of bits per word) for SPI transactions.
387 	 *
388 	 * @bus:	The SPI slave
389 	 * @wordlen:	The number of bits in a word
390 	 *
391 	 * Returns: 0 on success, -ve on failure.
392 	 */
393 	int (*set_wordlen)(struct udevice *bus, unsigned int wordlen);
394 
395 	/**
396 	 * SPI transfer
397 	 *
398 	 * This writes "bitlen" bits out the SPI MOSI port and simultaneously
399 	 * clocks "bitlen" bits in the SPI MISO port.  That's just the way SPI
400 	 * works.
401 	 *
402 	 * The source of the outgoing bits is the "dout" parameter and the
403 	 * destination of the input bits is the "din" parameter.  Note that
404 	 * "dout" and "din" can point to the same memory location, in which
405 	 * case the input data overwrites the output data (since both are
406 	 * buffered by temporary variables, this is OK).
407 	 *
408 	 * spi_xfer() interface:
409 	 * @dev:	The slave device to communicate with
410 	 * @bitlen:	How many bits to write and read.
411 	 * @dout:	Pointer to a string of bits to send out.  The bits are
412 	 *		held in a byte array and are sent MSB first.
413 	 * @din:	Pointer to a string of bits that will be filled in.
414 	 * @flags:	A bitwise combination of SPI_XFER_* flags.
415 	 *
416 	 * Returns: 0 on success, not -1 on failure
417 	 */
418 	int (*xfer)(struct udevice *dev, unsigned int bitlen, const void *dout,
419 		    void *din, unsigned long flags);
420 
421 	/**
422 	 * Set transfer speed.
423 	 * This sets a new speed to be applied for next spi_xfer().
424 	 * @bus:	The SPI bus
425 	 * @hz:		The transfer speed
426 	 * @return 0 if OK, -ve on error
427 	 */
428 	int (*set_speed)(struct udevice *bus, uint hz);
429 
430 	/**
431 	 * Set the SPI mode/flags
432 	 *
433 	 * It is unclear if we want to set speed and mode together instead
434 	 * of separately.
435 	 *
436 	 * @bus:	The SPI bus
437 	 * @mode:	Requested SPI mode (SPI_... flags)
438 	 * @return 0 if OK, -ve on error
439 	 */
440 	int (*set_mode)(struct udevice *bus, uint mode);
441 
442 	/**
443 	 * Get information on a chip select
444 	 *
445 	 * This is only called when the SPI uclass does not know about a
446 	 * chip select, i.e. it has no attached device. It gives the driver
447 	 * a chance to allow activity on that chip select even so.
448 	 *
449 	 * @bus:	The SPI bus
450 	 * @cs:		The chip select (0..n-1)
451 	 * @info:	Returns information about the chip select, if valid.
452 	 *		On entry info->dev is NULL
453 	 * @return 0 if OK (and @info is set up), -ENODEV if the chip select
454 	 *	   is invalid, other -ve value on error
455 	 */
456 	int (*cs_info)(struct udevice *bus, uint cs, struct spi_cs_info *info);
457 };
458 
459 struct dm_spi_emul_ops {
460 	/**
461 	 * SPI transfer
462 	 *
463 	 * This writes "bitlen" bits out the SPI MOSI port and simultaneously
464 	 * clocks "bitlen" bits in the SPI MISO port.  That's just the way SPI
465 	 * works. Here the device is a slave.
466 	 *
467 	 * The source of the outgoing bits is the "dout" parameter and the
468 	 * destination of the input bits is the "din" parameter.  Note that
469 	 * "dout" and "din" can point to the same memory location, in which
470 	 * case the input data overwrites the output data (since both are
471 	 * buffered by temporary variables, this is OK).
472 	 *
473 	 * spi_xfer() interface:
474 	 * @slave:	The SPI slave which will be sending/receiving the data.
475 	 * @bitlen:	How many bits to write and read.
476 	 * @dout:	Pointer to a string of bits sent to the device. The
477 	 *		bits are held in a byte array and are sent MSB first.
478 	 * @din:	Pointer to a string of bits that will be sent back to
479 	 *		the master.
480 	 * @flags:	A bitwise combination of SPI_XFER_* flags.
481 	 *
482 	 * Returns: 0 on success, not -1 on failure
483 	 */
484 	int (*xfer)(struct udevice *slave, unsigned int bitlen,
485 		    const void *dout, void *din, unsigned long flags);
486 };
487 
488 /**
489  * spi_find_bus_and_cs() - Find bus and slave devices by number
490  *
491  * Given a bus number and chip select, this finds the corresponding bus
492  * device and slave device. Neither device is activated by this function,
493  * although they may have been activated previously.
494  *
495  * @busnum:	SPI bus number
496  * @cs:		Chip select to look for
497  * @busp:	Returns bus device
498  * @devp:	Return slave device
499  * @return 0 if found, -ENODEV on error
500  */
501 int spi_find_bus_and_cs(int busnum, int cs, struct udevice **busp,
502 			struct udevice **devp);
503 
504 /**
505  * spi_get_bus_and_cs() - Find and activate bus and slave devices by number
506  *
507  * Given a bus number and chip select, this finds the corresponding bus
508  * device and slave device.
509  *
510  * If no such slave exists, and drv_name is not NULL, then a new slave device
511  * is automatically bound on this chip select.
512  *
513  * Ths new slave device is probed ready for use with the given speed and mode.
514  *
515  * @busnum:	SPI bus number
516  * @cs:		Chip select to look for
517  * @speed:	SPI speed to use for this slave
518  * @mode:	SPI mode to use for this slave
519  * @drv_name:	Name of driver to attach to this chip select
520  * @dev_name:	Name of the new device thus created
521  * @busp:	Returns bus device
522  * @devp:	Return slave device
523  * @return 0 if found, -ve on error
524  */
525 int spi_get_bus_and_cs(int busnum, int cs, int speed, int mode,
526 			const char *drv_name, const char *dev_name,
527 			struct udevice **busp, struct spi_slave **devp);
528 
529 /**
530  * spi_chip_select() - Get the chip select for a slave
531  *
532  * @return the chip select this slave is attached to
533  */
534 int spi_chip_select(struct udevice *slave);
535 
536 /**
537  * spi_find_chip_select() - Find the slave attached to chip select
538  *
539  * @bus:	SPI bus to search
540  * @cs:		Chip select to look for
541  * @devp:	Returns the slave device if found
542  * @return 0 if found, -ENODEV on error
543  */
544 int spi_find_chip_select(struct udevice *bus, int cs, struct udevice **devp);
545 
546 /**
547  * spi_ofdata_to_platdata() - decode standard SPI platform data
548  *
549  * This decodes the speed and mode from a device tree node and puts it into
550  * the spi_slave structure.
551  *
552  * @blob:	Device tree blob
553  * @node:	Node offset to read from
554  * @spi:	Place to put the decoded information
555  */
556 int spi_ofdata_to_platdata(const void *blob, int node, struct spi_slave *spi);
557 
558 /**
559  * spi_cs_info() - Check information on a chip select
560  *
561  * This checks a particular chip select on a bus to see if it has a device
562  * attached, or is even valid.
563  *
564  * @bus:	The SPI bus
565  * @cs:		The chip select (0..n-1)
566  * @info:	Returns information about the chip select, if valid
567  * @return 0 if OK (and @info is set up), -ENODEV if the chip select
568  *	   is invalid, other -ve value on error
569  */
570 int spi_cs_info(struct udevice *bus, uint cs, struct spi_cs_info *info);
571 
572 struct sandbox_state;
573 
574 /**
575  * sandbox_spi_get_emul() - get an emulator for a SPI slave
576  *
577  * This provides a way to attach an emulated SPI device to a particular SPI
578  * slave, so that xfer() operations on the slave will be handled by the
579  * emulator. If a emulator already exists on that chip select it is returned.
580  * Otherwise one is created.
581  *
582  * @state:	Sandbox state
583  * @bus:	SPI bus requesting the emulator
584  * @slave:	SPI slave device requesting the emulator
585  * @emuip:	Returns pointer to emulator
586  * @return 0 if OK, -ve on error
587  */
588 int sandbox_spi_get_emul(struct sandbox_state *state,
589 			 struct udevice *bus, struct udevice *slave,
590 			 struct udevice **emulp);
591 
592 /* Access the serial operations for a device */
593 #define spi_get_ops(dev)	((struct dm_spi_ops *)(dev)->driver->ops)
594 #define spi_emul_get_ops(dev)	((struct dm_spi_emul_ops *)(dev)->driver->ops)
595 #endif /* CONFIG_DM_SPI */
596 
597 #endif	/* _SPI_H_ */
598