xref: /openbmc/u-boot/include/mtd/ubi-user.h (revision ac1058fd)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Author: Artem Bityutskiy (Битюцкий Артём)
7  */
8 
9 #ifndef __UBI_USER_H__
10 #define __UBI_USER_H__
11 
12 /*
13  * UBI device creation (the same as MTD device attachment)
14  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
15  *
16  * MTD devices may be attached using %UBI_IOCATT ioctl command of the UBI
17  * control device. The caller has to properly fill and pass
18  * &struct ubi_attach_req object - UBI will attach the MTD device specified in
19  * the request and return the newly created UBI device number as the ioctl
20  * return value.
21  *
22  * UBI device deletion (the same as MTD device detachment)
23  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24  *
25  * An UBI device maybe deleted with %UBI_IOCDET ioctl command of the UBI
26  * control device.
27  *
28  * UBI volume creation
29  * ~~~~~~~~~~~~~~~~~~~
30  *
31  * UBI volumes are created via the %UBI_IOCMKVOL IOCTL command of UBI character
32  * device. A &struct ubi_mkvol_req object has to be properly filled and a
33  * pointer to it has to be passed to the IOCTL.
34  *
35  * UBI volume deletion
36  * ~~~~~~~~~~~~~~~~~~~
37  *
38  * To delete a volume, the %UBI_IOCRMVOL IOCTL command of the UBI character
39  * device should be used. A pointer to the 32-bit volume ID hast to be passed
40  * to the IOCTL.
41  *
42  * UBI volume re-size
43  * ~~~~~~~~~~~~~~~~~~
44  *
45  * To re-size a volume, the %UBI_IOCRSVOL IOCTL command of the UBI character
46  * device should be used. A &struct ubi_rsvol_req object has to be properly
47  * filled and a pointer to it has to be passed to the IOCTL.
48  *
49  * UBI volume update
50  * ~~~~~~~~~~~~~~~~~
51  *
52  * Volume update should be done via the %UBI_IOCVOLUP IOCTL command of the
53  * corresponding UBI volume character device. A pointer to a 64-bit update
54  * size should be passed to the IOCTL. After this, UBI expects user to write
55  * this number of bytes to the volume character device. The update is finished
56  * when the claimed number of bytes is passed. So, the volume update sequence
57  * is something like:
58  *
59  * fd = open("/dev/my_volume");
60  * ioctl(fd, UBI_IOCVOLUP, &image_size);
61  * write(fd, buf, image_size);
62  * close(fd);
63  *
64  * Atomic eraseblock change
65  * ~~~~~~~~~~~~~~~~~~~~~~~~
66  *
67  * Atomic eraseblock change operation is done via the %UBI_IOCEBCH IOCTL
68  * command of the corresponding UBI volume character device. A pointer to
69  * &struct ubi_leb_change_req has to be passed to the IOCTL. Then the user is
70  * expected to write the requested amount of bytes. This is similar to the
71  * "volume update" IOCTL.
72  */
73 
74 /*
75  * When a new UBI volume or UBI device is created, users may either specify the
76  * volume/device number they want to create or to let UBI automatically assign
77  * the number using these constants.
78  */
79 #define UBI_VOL_NUM_AUTO (-1)
80 #define UBI_DEV_NUM_AUTO (-1)
81 
82 /* Maximum volume name length */
83 #define UBI_MAX_VOLUME_NAME 127
84 
85 /* IOCTL commands of UBI character devices */
86 
87 #define UBI_IOC_MAGIC 'o'
88 
89 /* Create an UBI volume */
90 #define UBI_IOCMKVOL _IOW(UBI_IOC_MAGIC, 0, struct ubi_mkvol_req)
91 /* Remove an UBI volume */
92 #define UBI_IOCRMVOL _IOW(UBI_IOC_MAGIC, 1, int32_t)
93 /* Re-size an UBI volume */
94 #define UBI_IOCRSVOL _IOW(UBI_IOC_MAGIC, 2, struct ubi_rsvol_req)
95 
96 /* IOCTL commands of the UBI control character device */
97 
98 #define UBI_CTRL_IOC_MAGIC 'o'
99 
100 /* Attach an MTD device */
101 #define UBI_IOCATT _IOW(UBI_CTRL_IOC_MAGIC, 64, struct ubi_attach_req)
102 /* Detach an MTD device */
103 #define UBI_IOCDET _IOW(UBI_CTRL_IOC_MAGIC, 65, int32_t)
104 
105 /* IOCTL commands of UBI volume character devices */
106 
107 #define UBI_VOL_IOC_MAGIC 'O'
108 
109 /* Start UBI volume update */
110 #define UBI_IOCVOLUP _IOW(UBI_VOL_IOC_MAGIC, 0, int64_t)
111 /* An eraseblock erasure command, used for debugging, disabled by default */
112 #define UBI_IOCEBER _IOW(UBI_VOL_IOC_MAGIC, 1, int32_t)
113 /* An atomic eraseblock change command */
114 #define UBI_IOCEBCH _IOW(UBI_VOL_IOC_MAGIC, 2, int32_t)
115 
116 /* Maximum MTD device name length supported by UBI */
117 #define MAX_UBI_MTD_NAME_LEN 127
118 
119 /*
120  * UBI data type hint constants.
121  *
122  * UBI_LONGTERM: long-term data
123  * UBI_SHORTTERM: short-term data
124  * UBI_UNKNOWN: data persistence is unknown
125  *
126  * These constants are used when data is written to UBI volumes in order to
127  * help the UBI wear-leveling unit to find more appropriate physical
128  * eraseblocks.
129  */
130 enum {
131 	UBI_LONGTERM  = 1,
132 	UBI_SHORTTERM = 2,
133 	UBI_UNKNOWN   = 3,
134 };
135 
136 /*
137  * UBI volume type constants.
138  *
139  * @UBI_DYNAMIC_VOLUME: dynamic volume
140  * @UBI_STATIC_VOLUME:  static volume
141  */
142 enum {
143 	UBI_DYNAMIC_VOLUME = 3,
144 	UBI_STATIC_VOLUME  = 4,
145 };
146 
147 /**
148  * struct ubi_attach_req - attach MTD device request.
149  * @ubi_num: UBI device number to create
150  * @mtd_num: MTD device number to attach
151  * @vid_hdr_offset: VID header offset (use defaults if %0)
152  * @padding: reserved for future, not used, has to be zeroed
153  *
154  * This data structure is used to specify MTD device UBI has to attach and the
155  * parameters it has to use. The number which should be assigned to the new UBI
156  * device is passed in @ubi_num. UBI may automatically assign the number if
157  * @UBI_DEV_NUM_AUTO is passed. In this case, the device number is returned in
158  * @ubi_num.
159  *
160  * Most applications should pass %0 in @vid_hdr_offset to make UBI use default
161  * offset of the VID header within physical eraseblocks. The default offset is
162  * the next min. I/O unit after the EC header. For example, it will be offset
163  * 512 in case of a 512 bytes page NAND flash with no sub-page support. Or
164  * it will be 512 in case of a 2KiB page NAND flash with 4 512-byte sub-pages.
165  *
166  * But in rare cases, if this optimizes things, the VID header may be placed to
167  * a different offset. For example, the boot-loader might do things faster if the
168  * VID header sits at the end of the first 2KiB NAND page with 4 sub-pages. As
169  * the boot-loader would not normally need to read EC headers (unless it needs
170  * UBI in RW mode), it might be faster to calculate ECC. This is weird example,
171  * but it real-life example. So, in this example, @vid_hdr_offer would be
172  * 2KiB-64 bytes = 1984. Note, that this position is not even 512-bytes
173  * aligned, which is OK, as UBI is clever enough to realize this is 4th sub-page
174  * of the first page and add needed padding.
175  */
176 struct ubi_attach_req {
177 	int32_t ubi_num;
178 	int32_t mtd_num;
179 	int32_t vid_hdr_offset;
180 	uint8_t padding[12];
181 };
182 
183 /**
184  * struct ubi_mkvol_req - volume description data structure used in
185  *                        volume creation requests.
186  * @vol_id: volume number
187  * @alignment: volume alignment
188  * @bytes: volume size in bytes
189  * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME)
190  * @padding1: reserved for future, not used, has to be zeroed
191  * @name_len: volume name length
192  * @padding2: reserved for future, not used, has to be zeroed
193  * @name: volume name
194  *
195  * This structure is used by user-space programs when creating new volumes. The
196  * @used_bytes field is only necessary when creating static volumes.
197  *
198  * The @alignment field specifies the required alignment of the volume logical
199  * eraseblock. This means, that the size of logical eraseblocks will be aligned
200  * to this number, i.e.,
201  *	(UBI device logical eraseblock size) mod (@alignment) = 0.
202  *
203  * To put it differently, the logical eraseblock of this volume may be slightly
204  * shortened in order to make it properly aligned. The alignment has to be
205  * multiple of the flash minimal input/output unit, or %1 to utilize the entire
206  * available space of logical eraseblocks.
207  *
208  * The @alignment field may be useful, for example, when one wants to maintain
209  * a block device on top of an UBI volume. In this case, it is desirable to fit
210  * an integer number of blocks in logical eraseblocks of this UBI volume. With
211  * alignment it is possible to update this volume using plane UBI volume image
212  * BLOBs, without caring about how to properly align them.
213  */
214 struct ubi_mkvol_req {
215 	int32_t vol_id;
216 	int32_t alignment;
217 	int64_t bytes;
218 	int8_t vol_type;
219 	int8_t padding1;
220 	int16_t name_len;
221 	int8_t padding2[4];
222 	char name[UBI_MAX_VOLUME_NAME + 1];
223 } __attribute__ ((packed));
224 
225 /**
226  * struct ubi_rsvol_req - a data structure used in volume re-size requests.
227  * @vol_id: ID of the volume to re-size
228  * @bytes: new size of the volume in bytes
229  *
230  * Re-sizing is possible for both dynamic and static volumes. But while dynamic
231  * volumes may be re-sized arbitrarily, static volumes cannot be made to be
232  * smaller then the number of bytes they bear. To arbitrarily shrink a static
233  * volume, it must be wiped out first (by means of volume update operation with
234  * zero number of bytes).
235  */
236 struct ubi_rsvol_req {
237 	int64_t bytes;
238 	int32_t vol_id;
239 } __attribute__ ((packed));
240 
241 /**
242  * struct ubi_leb_change_req - a data structure used in atomic logical
243  *                             eraseblock change requests.
244  * @lnum: logical eraseblock number to change
245  * @bytes: how many bytes will be written to the logical eraseblock
246  * @dtype: data type (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
247  * @padding: reserved for future, not used, has to be zeroed
248  */
249 struct ubi_leb_change_req {
250 	int32_t lnum;
251 	int32_t bytes;
252 	uint8_t dtype;
253 	uint8_t padding[7];
254 } __attribute__ ((packed));
255 
256 #endif /* __UBI_USER_H__ */
257