xref: /openbmc/u-boot/include/malloc.h (revision 33b1d3f4)
1 /*
2   A version of malloc/free/realloc written by Doug Lea and released to the
3   public domain.  Send questions/comments/complaints/performance data
4   to dl@cs.oswego.edu
5 
6 * VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
7 
8    Note: There may be an updated version of this malloc obtainable at
9 	   ftp://g.oswego.edu/pub/misc/malloc.c
10 	 Check before installing!
11 
12 * Why use this malloc?
13 
14   This is not the fastest, most space-conserving, most portable, or
15   most tunable malloc ever written. However it is among the fastest
16   while also being among the most space-conserving, portable and tunable.
17   Consistent balance across these factors results in a good general-purpose
18   allocator. For a high-level description, see
19      http://g.oswego.edu/dl/html/malloc.html
20 
21 * Synopsis of public routines
22 
23   (Much fuller descriptions are contained in the program documentation below.)
24 
25   malloc(size_t n);
26      Return a pointer to a newly allocated chunk of at least n bytes, or null
27      if no space is available.
28   free(Void_t* p);
29      Release the chunk of memory pointed to by p, or no effect if p is null.
30   realloc(Void_t* p, size_t n);
31      Return a pointer to a chunk of size n that contains the same data
32      as does chunk p up to the minimum of (n, p's size) bytes, or null
33      if no space is available. The returned pointer may or may not be
34      the same as p. If p is null, equivalent to malloc.  Unless the
35      #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
36      size argument of zero (re)allocates a minimum-sized chunk.
37   memalign(size_t alignment, size_t n);
38      Return a pointer to a newly allocated chunk of n bytes, aligned
39      in accord with the alignment argument, which must be a power of
40      two.
41   valloc(size_t n);
42      Equivalent to memalign(pagesize, n), where pagesize is the page
43      size of the system (or as near to this as can be figured out from
44      all the includes/defines below.)
45   pvalloc(size_t n);
46      Equivalent to valloc(minimum-page-that-holds(n)), that is,
47      round up n to nearest pagesize.
48   calloc(size_t unit, size_t quantity);
49      Returns a pointer to quantity * unit bytes, with all locations
50      set to zero.
51   cfree(Void_t* p);
52      Equivalent to free(p).
53   malloc_trim(size_t pad);
54      Release all but pad bytes of freed top-most memory back
55      to the system. Return 1 if successful, else 0.
56   malloc_usable_size(Void_t* p);
57      Report the number usable allocated bytes associated with allocated
58      chunk p. This may or may not report more bytes than were requested,
59      due to alignment and minimum size constraints.
60   malloc_stats();
61      Prints brief summary statistics on stderr.
62   mallinfo()
63      Returns (by copy) a struct containing various summary statistics.
64   mallopt(int parameter_number, int parameter_value)
65      Changes one of the tunable parameters described below. Returns
66      1 if successful in changing the parameter, else 0.
67 
68 * Vital statistics:
69 
70   Alignment:                            8-byte
71        8 byte alignment is currently hardwired into the design.  This
72        seems to suffice for all current machines and C compilers.
73 
74   Assumed pointer representation:       4 or 8 bytes
75        Code for 8-byte pointers is untested by me but has worked
76        reliably by Wolfram Gloger, who contributed most of the
77        changes supporting this.
78 
79   Assumed size_t  representation:       4 or 8 bytes
80        Note that size_t is allowed to be 4 bytes even if pointers are 8.
81 
82   Minimum overhead per allocated chunk: 4 or 8 bytes
83        Each malloced chunk has a hidden overhead of 4 bytes holding size
84        and status information.
85 
86   Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
87 			  8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
88 
89        When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
90        ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
91        needed; 4 (8) for a trailing size field
92        and 8 (16) bytes for free list pointers. Thus, the minimum
93        allocatable size is 16/24/32 bytes.
94 
95        Even a request for zero bytes (i.e., malloc(0)) returns a
96        pointer to something of the minimum allocatable size.
97 
98   Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
99 			  8-byte size_t: 2^63 - 16 bytes
100 
101        It is assumed that (possibly signed) size_t bit values suffice to
102        represent chunk sizes. `Possibly signed' is due to the fact
103        that `size_t' may be defined on a system as either a signed or
104        an unsigned type. To be conservative, values that would appear
105        as negative numbers are avoided.
106        Requests for sizes with a negative sign bit when the request
107        size is treaded as a long will return null.
108 
109   Maximum overhead wastage per allocated chunk: normally 15 bytes
110 
111        Alignnment demands, plus the minimum allocatable size restriction
112        make the normal worst-case wastage 15 bytes (i.e., up to 15
113        more bytes will be allocated than were requested in malloc), with
114        two exceptions:
115 	 1. Because requests for zero bytes allocate non-zero space,
116 	    the worst case wastage for a request of zero bytes is 24 bytes.
117 	 2. For requests >= mmap_threshold that are serviced via
118 	    mmap(), the worst case wastage is 8 bytes plus the remainder
119 	    from a system page (the minimal mmap unit); typically 4096 bytes.
120 
121 * Limitations
122 
123     Here are some features that are NOT currently supported
124 
125     * No user-definable hooks for callbacks and the like.
126     * No automated mechanism for fully checking that all accesses
127       to malloced memory stay within their bounds.
128     * No support for compaction.
129 
130 * Synopsis of compile-time options:
131 
132     People have reported using previous versions of this malloc on all
133     versions of Unix, sometimes by tweaking some of the defines
134     below. It has been tested most extensively on Solaris and
135     Linux. It is also reported to work on WIN32 platforms.
136     People have also reported adapting this malloc for use in
137     stand-alone embedded systems.
138 
139     The implementation is in straight, hand-tuned ANSI C.  Among other
140     consequences, it uses a lot of macros.  Because of this, to be at
141     all usable, this code should be compiled using an optimizing compiler
142     (for example gcc -O2) that can simplify expressions and control
143     paths.
144 
145   __STD_C                  (default: derived from C compiler defines)
146      Nonzero if using ANSI-standard C compiler, a C++ compiler, or
147      a C compiler sufficiently close to ANSI to get away with it.
148   DEBUG                    (default: NOT defined)
149      Define to enable debugging. Adds fairly extensive assertion-based
150      checking to help track down memory errors, but noticeably slows down
151      execution.
152   REALLOC_ZERO_BYTES_FREES (default: NOT defined)
153      Define this if you think that realloc(p, 0) should be equivalent
154      to free(p). Otherwise, since malloc returns a unique pointer for
155      malloc(0), so does realloc(p, 0).
156   HAVE_MEMCPY               (default: defined)
157      Define if you are not otherwise using ANSI STD C, but still
158      have memcpy and memset in your C library and want to use them.
159      Otherwise, simple internal versions are supplied.
160   USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
161      Define as 1 if you want the C library versions of memset and
162      memcpy called in realloc and calloc (otherwise macro versions are used).
163      At least on some platforms, the simple macro versions usually
164      outperform libc versions.
165   HAVE_MMAP                 (default: defined as 1)
166      Define to non-zero to optionally make malloc() use mmap() to
167      allocate very large blocks.
168   HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
169      Define to non-zero to optionally make realloc() use mremap() to
170      reallocate very large blocks.
171   malloc_getpagesize        (default: derived from system #includes)
172      Either a constant or routine call returning the system page size.
173   HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
174      Optionally define if you are on a system with a /usr/include/malloc.h
175      that declares struct mallinfo. It is not at all necessary to
176      define this even if you do, but will ensure consistency.
177   INTERNAL_SIZE_T           (default: size_t)
178      Define to a 32-bit type (probably `unsigned int') if you are on a
179      64-bit machine, yet do not want or need to allow malloc requests of
180      greater than 2^31 to be handled. This saves space, especially for
181      very small chunks.
182   INTERNAL_LINUX_C_LIB      (default: NOT defined)
183      Defined only when compiled as part of Linux libc.
184      Also note that there is some odd internal name-mangling via defines
185      (for example, internally, `malloc' is named `mALLOc') needed
186      when compiling in this case. These look funny but don't otherwise
187      affect anything.
188   WIN32                     (default: undefined)
189      Define this on MS win (95, nt) platforms to compile in sbrk emulation.
190   LACKS_UNISTD_H            (default: undefined if not WIN32)
191      Define this if your system does not have a <unistd.h>.
192   LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
193      Define this if your system does not have a <sys/param.h>.
194   MORECORE                  (default: sbrk)
195      The name of the routine to call to obtain more memory from the system.
196   MORECORE_FAILURE          (default: -1)
197      The value returned upon failure of MORECORE.
198   MORECORE_CLEARS           (default 1)
199      True (1) if the routine mapped to MORECORE zeroes out memory (which
200      holds for sbrk).
201   DEFAULT_TRIM_THRESHOLD
202   DEFAULT_TOP_PAD
203   DEFAULT_MMAP_THRESHOLD
204   DEFAULT_MMAP_MAX
205      Default values of tunable parameters (described in detail below)
206      controlling interaction with host system routines (sbrk, mmap, etc).
207      These values may also be changed dynamically via mallopt(). The
208      preset defaults are those that give best performance for typical
209      programs/systems.
210   USE_DL_PREFIX             (default: undefined)
211      Prefix all public routines with the string 'dl'.  Useful to
212      quickly avoid procedure declaration conflicts and linker symbol
213      conflicts with existing memory allocation routines.
214 
215 
216 */
217 
218 
219 
220 
221 /* Preliminaries */
222 
223 #ifndef __STD_C
224 #ifdef __STDC__
225 #define __STD_C     1
226 #else
227 #if __cplusplus
228 #define __STD_C     1
229 #else
230 #define __STD_C     0
231 #endif /*__cplusplus*/
232 #endif /*__STDC__*/
233 #endif /*__STD_C*/
234 
235 #ifndef Void_t
236 #if (__STD_C || defined(WIN32))
237 #define Void_t      void
238 #else
239 #define Void_t      char
240 #endif
241 #endif /*Void_t*/
242 
243 #if __STD_C
244 #include <linux/stddef.h>	/* for size_t */
245 #else
246 #include <sys/types.h>
247 #endif	/* __STD_C */
248 
249 #ifdef __cplusplus
250 extern "C" {
251 #endif
252 
253 #if 0	/* not for U-Boot */
254 #include <stdio.h>	/* needed for malloc_stats */
255 #endif
256 
257 
258 /*
259   Compile-time options
260 */
261 
262 
263 /*
264     Debugging:
265 
266     Because freed chunks may be overwritten with link fields, this
267     malloc will often die when freed memory is overwritten by user
268     programs.  This can be very effective (albeit in an annoying way)
269     in helping track down dangling pointers.
270 
271     If you compile with -DDEBUG, a number of assertion checks are
272     enabled that will catch more memory errors. You probably won't be
273     able to make much sense of the actual assertion errors, but they
274     should help you locate incorrectly overwritten memory.  The
275     checking is fairly extensive, and will slow down execution
276     noticeably. Calling malloc_stats or mallinfo with DEBUG set will
277     attempt to check every non-mmapped allocated and free chunk in the
278     course of computing the summmaries. (By nature, mmapped regions
279     cannot be checked very much automatically.)
280 
281     Setting DEBUG may also be helpful if you are trying to modify
282     this code. The assertions in the check routines spell out in more
283     detail the assumptions and invariants underlying the algorithms.
284 
285 */
286 
287 #ifdef DEBUG
288 /* #include <assert.h> */
289 #define assert(x) ((void)0)
290 #else
291 #define assert(x) ((void)0)
292 #endif
293 
294 
295 /*
296   INTERNAL_SIZE_T is the word-size used for internal bookkeeping
297   of chunk sizes. On a 64-bit machine, you can reduce malloc
298   overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
299   at the expense of not being able to handle requests greater than
300   2^31. This limitation is hardly ever a concern; you are encouraged
301   to set this. However, the default version is the same as size_t.
302 */
303 
304 #ifndef INTERNAL_SIZE_T
305 #define INTERNAL_SIZE_T size_t
306 #endif
307 
308 /*
309   REALLOC_ZERO_BYTES_FREES should be set if a call to
310   realloc with zero bytes should be the same as a call to free.
311   Some people think it should. Otherwise, since this malloc
312   returns a unique pointer for malloc(0), so does realloc(p, 0).
313 */
314 
315 
316 /*   #define REALLOC_ZERO_BYTES_FREES */
317 
318 
319 /*
320   WIN32 causes an emulation of sbrk to be compiled in
321   mmap-based options are not currently supported in WIN32.
322 */
323 
324 /* #define WIN32 */
325 #ifdef WIN32
326 #define MORECORE wsbrk
327 #define HAVE_MMAP 0
328 
329 #define LACKS_UNISTD_H
330 #define LACKS_SYS_PARAM_H
331 
332 /*
333   Include 'windows.h' to get the necessary declarations for the
334   Microsoft Visual C++ data structures and routines used in the 'sbrk'
335   emulation.
336 
337   Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
338   Visual C++ header files are included.
339 */
340 #define WIN32_LEAN_AND_MEAN
341 #include <windows.h>
342 #endif
343 
344 
345 /*
346   HAVE_MEMCPY should be defined if you are not otherwise using
347   ANSI STD C, but still have memcpy and memset in your C library
348   and want to use them in calloc and realloc. Otherwise simple
349   macro versions are defined here.
350 
351   USE_MEMCPY should be defined as 1 if you actually want to
352   have memset and memcpy called. People report that the macro
353   versions are often enough faster than libc versions on many
354   systems that it is better to use them.
355 
356 */
357 
358 #define HAVE_MEMCPY
359 
360 #ifndef USE_MEMCPY
361 #ifdef HAVE_MEMCPY
362 #define USE_MEMCPY 1
363 #else
364 #define USE_MEMCPY 0
365 #endif
366 #endif
367 
368 #if (__STD_C || defined(HAVE_MEMCPY))
369 
370 #if __STD_C
371 void* memset(void*, int, size_t);
372 void* memcpy(void*, const void*, size_t);
373 #else
374 #ifdef WIN32
375 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
376 /* 'windows.h' */
377 #else
378 Void_t* memset();
379 Void_t* memcpy();
380 #endif
381 #endif
382 #endif
383 
384 #if USE_MEMCPY
385 
386 /* The following macros are only invoked with (2n+1)-multiples of
387    INTERNAL_SIZE_T units, with a positive integer n. This is exploited
388    for fast inline execution when n is small. */
389 
390 #define MALLOC_ZERO(charp, nbytes)                                            \
391 do {                                                                          \
392   INTERNAL_SIZE_T mzsz = (nbytes);                                            \
393   if(mzsz <= 9*sizeof(mzsz)) {                                                \
394     INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
395     if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
396 				     *mz++ = 0;                               \
397       if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
398 				     *mz++ = 0;                               \
399 	if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
400 				     *mz++ = 0; }}}                           \
401 				     *mz++ = 0;                               \
402 				     *mz++ = 0;                               \
403 				     *mz   = 0;                               \
404   } else memset((charp), 0, mzsz);                                            \
405 } while(0)
406 
407 #define MALLOC_COPY(dest,src,nbytes)                                          \
408 do {                                                                          \
409   INTERNAL_SIZE_T mcsz = (nbytes);                                            \
410   if(mcsz <= 9*sizeof(mcsz)) {                                                \
411     INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
412     INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
413     if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
414 				     *mcdst++ = *mcsrc++;                     \
415       if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
416 				     *mcdst++ = *mcsrc++;                     \
417 	if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
418 				     *mcdst++ = *mcsrc++; }}}                 \
419 				     *mcdst++ = *mcsrc++;                     \
420 				     *mcdst++ = *mcsrc++;                     \
421 				     *mcdst   = *mcsrc  ;                     \
422   } else memcpy(dest, src, mcsz);                                             \
423 } while(0)
424 
425 #else /* !USE_MEMCPY */
426 
427 /* Use Duff's device for good zeroing/copying performance. */
428 
429 #define MALLOC_ZERO(charp, nbytes)                                            \
430 do {                                                                          \
431   INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
432   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
433   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
434   switch (mctmp) {                                                            \
435     case 0: for(;;) { *mzp++ = 0;                                             \
436     case 7:           *mzp++ = 0;                                             \
437     case 6:           *mzp++ = 0;                                             \
438     case 5:           *mzp++ = 0;                                             \
439     case 4:           *mzp++ = 0;                                             \
440     case 3:           *mzp++ = 0;                                             \
441     case 2:           *mzp++ = 0;                                             \
442     case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
443   }                                                                           \
444 } while(0)
445 
446 #define MALLOC_COPY(dest,src,nbytes)                                          \
447 do {                                                                          \
448   INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
449   INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
450   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
451   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
452   switch (mctmp) {                                                            \
453     case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
454     case 7:           *mcdst++ = *mcsrc++;                                    \
455     case 6:           *mcdst++ = *mcsrc++;                                    \
456     case 5:           *mcdst++ = *mcsrc++;                                    \
457     case 4:           *mcdst++ = *mcsrc++;                                    \
458     case 3:           *mcdst++ = *mcsrc++;                                    \
459     case 2:           *mcdst++ = *mcsrc++;                                    \
460     case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
461   }                                                                           \
462 } while(0)
463 
464 #endif
465 
466 
467 /*
468   Define HAVE_MMAP to optionally make malloc() use mmap() to
469   allocate very large blocks.  These will be returned to the
470   operating system immediately after a free().
471 */
472 
473 /***
474 #ifndef HAVE_MMAP
475 #define HAVE_MMAP 1
476 #endif
477 ***/
478 #undef	HAVE_MMAP	/* Not available for U-Boot */
479 
480 /*
481   Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
482   large blocks.  This is currently only possible on Linux with
483   kernel versions newer than 1.3.77.
484 */
485 
486 /***
487 #ifndef HAVE_MREMAP
488 #ifdef INTERNAL_LINUX_C_LIB
489 #define HAVE_MREMAP 1
490 #else
491 #define HAVE_MREMAP 0
492 #endif
493 #endif
494 ***/
495 #undef	HAVE_MREMAP	/* Not available for U-Boot */
496 
497 #if HAVE_MMAP
498 
499 #include <unistd.h>
500 #include <fcntl.h>
501 #include <sys/mman.h>
502 
503 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
504 #define MAP_ANONYMOUS MAP_ANON
505 #endif
506 
507 #endif /* HAVE_MMAP */
508 
509 /*
510   Access to system page size. To the extent possible, this malloc
511   manages memory from the system in page-size units.
512 
513   The following mechanics for getpagesize were adapted from
514   bsd/gnu getpagesize.h
515 */
516 
517 #define	LACKS_UNISTD_H	/* Shortcut for U-Boot */
518 #define	malloc_getpagesize	4096
519 
520 #ifndef LACKS_UNISTD_H
521 #  include <unistd.h>
522 #endif
523 
524 #ifndef malloc_getpagesize
525 #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
526 #    ifndef _SC_PAGE_SIZE
527 #      define _SC_PAGE_SIZE _SC_PAGESIZE
528 #    endif
529 #  endif
530 #  ifdef _SC_PAGE_SIZE
531 #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
532 #  else
533 #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
534        extern size_t getpagesize();
535 #      define malloc_getpagesize getpagesize()
536 #    else
537 #      ifdef WIN32
538 #        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
539 #      else
540 #        ifndef LACKS_SYS_PARAM_H
541 #          include <sys/param.h>
542 #        endif
543 #        ifdef EXEC_PAGESIZE
544 #          define malloc_getpagesize EXEC_PAGESIZE
545 #        else
546 #          ifdef NBPG
547 #            ifndef CLSIZE
548 #              define malloc_getpagesize NBPG
549 #            else
550 #              define malloc_getpagesize (NBPG * CLSIZE)
551 #            endif
552 #          else
553 #            ifdef NBPC
554 #              define malloc_getpagesize NBPC
555 #            else
556 #              ifdef PAGESIZE
557 #                define malloc_getpagesize PAGESIZE
558 #              else
559 #                define malloc_getpagesize (4096) /* just guess */
560 #              endif
561 #            endif
562 #          endif
563 #        endif
564 #      endif
565 #    endif
566 #  endif
567 #endif
568 
569 
570 /*
571 
572   This version of malloc supports the standard SVID/XPG mallinfo
573   routine that returns a struct containing the same kind of
574   information you can get from malloc_stats. It should work on
575   any SVID/XPG compliant system that has a /usr/include/malloc.h
576   defining struct mallinfo. (If you'd like to install such a thing
577   yourself, cut out the preliminary declarations as described above
578   and below and save them in a malloc.h file. But there's no
579   compelling reason to bother to do this.)
580 
581   The main declaration needed is the mallinfo struct that is returned
582   (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
583   bunch of fields, most of which are not even meaningful in this
584   version of malloc. Some of these fields are are instead filled by
585   mallinfo() with other numbers that might possibly be of interest.
586 
587   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
588   /usr/include/malloc.h file that includes a declaration of struct
589   mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
590   version is declared below.  These must be precisely the same for
591   mallinfo() to work.
592 
593 */
594 
595 /* #define HAVE_USR_INCLUDE_MALLOC_H */
596 
597 #if HAVE_USR_INCLUDE_MALLOC_H
598 #include "/usr/include/malloc.h"
599 #else
600 
601 /* SVID2/XPG mallinfo structure */
602 
603 struct mallinfo {
604   int arena;    /* total space allocated from system */
605   int ordblks;  /* number of non-inuse chunks */
606   int smblks;   /* unused -- always zero */
607   int hblks;    /* number of mmapped regions */
608   int hblkhd;   /* total space in mmapped regions */
609   int usmblks;  /* unused -- always zero */
610   int fsmblks;  /* unused -- always zero */
611   int uordblks; /* total allocated space */
612   int fordblks; /* total non-inuse space */
613   int keepcost; /* top-most, releasable (via malloc_trim) space */
614 };
615 
616 /* SVID2/XPG mallopt options */
617 
618 #define M_MXFAST  1    /* UNUSED in this malloc */
619 #define M_NLBLKS  2    /* UNUSED in this malloc */
620 #define M_GRAIN   3    /* UNUSED in this malloc */
621 #define M_KEEP    4    /* UNUSED in this malloc */
622 
623 #endif
624 
625 /* mallopt options that actually do something */
626 
627 #define M_TRIM_THRESHOLD    -1
628 #define M_TOP_PAD           -2
629 #define M_MMAP_THRESHOLD    -3
630 #define M_MMAP_MAX          -4
631 
632 
633 #ifndef DEFAULT_TRIM_THRESHOLD
634 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
635 #endif
636 
637 /*
638     M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
639       to keep before releasing via malloc_trim in free().
640 
641       Automatic trimming is mainly useful in long-lived programs.
642       Because trimming via sbrk can be slow on some systems, and can
643       sometimes be wasteful (in cases where programs immediately
644       afterward allocate more large chunks) the value should be high
645       enough so that your overall system performance would improve by
646       releasing.
647 
648       The trim threshold and the mmap control parameters (see below)
649       can be traded off with one another. Trimming and mmapping are
650       two different ways of releasing unused memory back to the
651       system. Between these two, it is often possible to keep
652       system-level demands of a long-lived program down to a bare
653       minimum. For example, in one test suite of sessions measuring
654       the XF86 X server on Linux, using a trim threshold of 128K and a
655       mmap threshold of 192K led to near-minimal long term resource
656       consumption.
657 
658       If you are using this malloc in a long-lived program, it should
659       pay to experiment with these values.  As a rough guide, you
660       might set to a value close to the average size of a process
661       (program) running on your system.  Releasing this much memory
662       would allow such a process to run in memory.  Generally, it's
663       worth it to tune for trimming rather tham memory mapping when a
664       program undergoes phases where several large chunks are
665       allocated and released in ways that can reuse each other's
666       storage, perhaps mixed with phases where there are no such
667       chunks at all.  And in well-behaved long-lived programs,
668       controlling release of large blocks via trimming versus mapping
669       is usually faster.
670 
671       However, in most programs, these parameters serve mainly as
672       protection against the system-level effects of carrying around
673       massive amounts of unneeded memory. Since frequent calls to
674       sbrk, mmap, and munmap otherwise degrade performance, the default
675       parameters are set to relatively high values that serve only as
676       safeguards.
677 
678       The default trim value is high enough to cause trimming only in
679       fairly extreme (by current memory consumption standards) cases.
680       It must be greater than page size to have any useful effect.  To
681       disable trimming completely, you can set to (unsigned long)(-1);
682 
683 
684 */
685 
686 
687 #ifndef DEFAULT_TOP_PAD
688 #define DEFAULT_TOP_PAD        (0)
689 #endif
690 
691 /*
692     M_TOP_PAD is the amount of extra `padding' space to allocate or
693       retain whenever sbrk is called. It is used in two ways internally:
694 
695       * When sbrk is called to extend the top of the arena to satisfy
696 	a new malloc request, this much padding is added to the sbrk
697 	request.
698 
699       * When malloc_trim is called automatically from free(),
700 	it is used as the `pad' argument.
701 
702       In both cases, the actual amount of padding is rounded
703       so that the end of the arena is always a system page boundary.
704 
705       The main reason for using padding is to avoid calling sbrk so
706       often. Having even a small pad greatly reduces the likelihood
707       that nearly every malloc request during program start-up (or
708       after trimming) will invoke sbrk, which needlessly wastes
709       time.
710 
711       Automatic rounding-up to page-size units is normally sufficient
712       to avoid measurable overhead, so the default is 0.  However, in
713       systems where sbrk is relatively slow, it can pay to increase
714       this value, at the expense of carrying around more memory than
715       the program needs.
716 
717 */
718 
719 
720 #ifndef DEFAULT_MMAP_THRESHOLD
721 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
722 #endif
723 
724 /*
725 
726     M_MMAP_THRESHOLD is the request size threshold for using mmap()
727       to service a request. Requests of at least this size that cannot
728       be allocated using already-existing space will be serviced via mmap.
729       (If enough normal freed space already exists it is used instead.)
730 
731       Using mmap segregates relatively large chunks of memory so that
732       they can be individually obtained and released from the host
733       system. A request serviced through mmap is never reused by any
734       other request (at least not directly; the system may just so
735       happen to remap successive requests to the same locations).
736 
737       Segregating space in this way has the benefit that mmapped space
738       can ALWAYS be individually released back to the system, which
739       helps keep the system level memory demands of a long-lived
740       program low. Mapped memory can never become `locked' between
741       other chunks, as can happen with normally allocated chunks, which
742       menas that even trimming via malloc_trim would not release them.
743 
744       However, it has the disadvantages that:
745 
746 	 1. The space cannot be reclaimed, consolidated, and then
747 	    used to service later requests, as happens with normal chunks.
748 	 2. It can lead to more wastage because of mmap page alignment
749 	    requirements
750 	 3. It causes malloc performance to be more dependent on host
751 	    system memory management support routines which may vary in
752 	    implementation quality and may impose arbitrary
753 	    limitations. Generally, servicing a request via normal
754 	    malloc steps is faster than going through a system's mmap.
755 
756       All together, these considerations should lead you to use mmap
757       only for relatively large requests.
758 
759 
760 */
761 
762 
763 #ifndef DEFAULT_MMAP_MAX
764 #if HAVE_MMAP
765 #define DEFAULT_MMAP_MAX       (64)
766 #else
767 #define DEFAULT_MMAP_MAX       (0)
768 #endif
769 #endif
770 
771 /*
772     M_MMAP_MAX is the maximum number of requests to simultaneously
773       service using mmap. This parameter exists because:
774 
775 	 1. Some systems have a limited number of internal tables for
776 	    use by mmap.
777 	 2. In most systems, overreliance on mmap can degrade overall
778 	    performance.
779 	 3. If a program allocates many large regions, it is probably
780 	    better off using normal sbrk-based allocation routines that
781 	    can reclaim and reallocate normal heap memory. Using a
782 	    small value allows transition into this mode after the
783 	    first few allocations.
784 
785       Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
786       the default value is 0, and attempts to set it to non-zero values
787       in mallopt will fail.
788 */
789 
790 
791 /*
792     USE_DL_PREFIX will prefix all public routines with the string 'dl'.
793       Useful to quickly avoid procedure declaration conflicts and linker
794       symbol conflicts with existing memory allocation routines.
795 
796 */
797 
798 /* #define USE_DL_PREFIX */
799 
800 
801 /*
802 
803   Special defines for linux libc
804 
805   Except when compiled using these special defines for Linux libc
806   using weak aliases, this malloc is NOT designed to work in
807   multithreaded applications.  No semaphores or other concurrency
808   control are provided to ensure that multiple malloc or free calls
809   don't run at the same time, which could be disasterous. A single
810   semaphore could be used across malloc, realloc, and free (which is
811   essentially the effect of the linux weak alias approach). It would
812   be hard to obtain finer granularity.
813 
814 */
815 
816 
817 #ifdef INTERNAL_LINUX_C_LIB
818 
819 #if __STD_C
820 
821 Void_t * __default_morecore_init (ptrdiff_t);
822 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
823 
824 #else
825 
826 Void_t * __default_morecore_init ();
827 Void_t *(*__morecore)() = __default_morecore_init;
828 
829 #endif
830 
831 #define MORECORE (*__morecore)
832 #define MORECORE_FAILURE 0
833 #define MORECORE_CLEARS 1
834 
835 #else /* INTERNAL_LINUX_C_LIB */
836 
837 #if __STD_C
838 extern Void_t*     sbrk(ptrdiff_t);
839 #else
840 extern Void_t*     sbrk();
841 #endif
842 
843 #ifndef MORECORE
844 #define MORECORE sbrk
845 #endif
846 
847 #ifndef MORECORE_FAILURE
848 #define MORECORE_FAILURE -1
849 #endif
850 
851 #ifndef MORECORE_CLEARS
852 #define MORECORE_CLEARS 1
853 #endif
854 
855 #endif /* INTERNAL_LINUX_C_LIB */
856 
857 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
858 
859 #define cALLOc		__libc_calloc
860 #define fREe		__libc_free
861 #define mALLOc		__libc_malloc
862 #define mEMALIGn	__libc_memalign
863 #define rEALLOc		__libc_realloc
864 #define vALLOc		__libc_valloc
865 #define pvALLOc		__libc_pvalloc
866 #define mALLINFo	__libc_mallinfo
867 #define mALLOPt		__libc_mallopt
868 
869 #pragma weak calloc = __libc_calloc
870 #pragma weak free = __libc_free
871 #pragma weak cfree = __libc_free
872 #pragma weak malloc = __libc_malloc
873 #pragma weak memalign = __libc_memalign
874 #pragma weak realloc = __libc_realloc
875 #pragma weak valloc = __libc_valloc
876 #pragma weak pvalloc = __libc_pvalloc
877 #pragma weak mallinfo = __libc_mallinfo
878 #pragma weak mallopt = __libc_mallopt
879 
880 #else
881 
882 #ifdef USE_DL_PREFIX
883 #define cALLOc		dlcalloc
884 #define fREe		dlfree
885 #define mALLOc		dlmalloc
886 #define mEMALIGn	dlmemalign
887 #define rEALLOc		dlrealloc
888 #define vALLOc		dlvalloc
889 #define pvALLOc		dlpvalloc
890 #define mALLINFo	dlmallinfo
891 #define mALLOPt		dlmallopt
892 #else /* USE_DL_PREFIX */
893 #define cALLOc		calloc
894 #define fREe		free
895 #define mALLOc		malloc
896 #define mEMALIGn	memalign
897 #define rEALLOc		realloc
898 #define vALLOc		valloc
899 #define pvALLOc		pvalloc
900 #define mALLINFo	mallinfo
901 #define mALLOPt		mallopt
902 #endif /* USE_DL_PREFIX */
903 
904 #endif
905 
906 /* Public routines */
907 
908 #if __STD_C
909 
910 Void_t* mALLOc(size_t);
911 void    fREe(Void_t*);
912 Void_t* rEALLOc(Void_t*, size_t);
913 Void_t* mEMALIGn(size_t, size_t);
914 Void_t* vALLOc(size_t);
915 Void_t* pvALLOc(size_t);
916 Void_t* cALLOc(size_t, size_t);
917 void    cfree(Void_t*);
918 int     malloc_trim(size_t);
919 size_t  malloc_usable_size(Void_t*);
920 void    malloc_stats(void);
921 int     mALLOPt(int, int);
922 struct mallinfo mALLINFo(void);
923 #else
924 Void_t* mALLOc();
925 void    fREe();
926 Void_t* rEALLOc();
927 Void_t* mEMALIGn();
928 Void_t* vALLOc();
929 Void_t* pvALLOc();
930 Void_t* cALLOc();
931 void    cfree();
932 int     malloc_trim();
933 size_t  malloc_usable_size();
934 void    malloc_stats();
935 int     mALLOPt();
936 struct mallinfo mALLINFo();
937 #endif
938 
939 
940 #ifdef __cplusplus
941 };  /* end of extern "C" */
942 #endif
943