xref: /openbmc/u-boot/include/malloc.h (revision 2290fe06)
1 /*
2   A version of malloc/free/realloc written by Doug Lea and released to the
3   public domain.  Send questions/comments/complaints/performance data
4   to dl@cs.oswego.edu
5 
6 * VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
7 
8    Note: There may be an updated version of this malloc obtainable at
9 	   ftp://g.oswego.edu/pub/misc/malloc.c
10 	 Check before installing!
11 
12 * Why use this malloc?
13 
14   This is not the fastest, most space-conserving, most portable, or
15   most tunable malloc ever written. However it is among the fastest
16   while also being among the most space-conserving, portable and tunable.
17   Consistent balance across these factors results in a good general-purpose
18   allocator. For a high-level description, see
19      http://g.oswego.edu/dl/html/malloc.html
20 
21 * Synopsis of public routines
22 
23   (Much fuller descriptions are contained in the program documentation below.)
24 
25   malloc(size_t n);
26      Return a pointer to a newly allocated chunk of at least n bytes, or null
27      if no space is available.
28   free(Void_t* p);
29      Release the chunk of memory pointed to by p, or no effect if p is null.
30   realloc(Void_t* p, size_t n);
31      Return a pointer to a chunk of size n that contains the same data
32      as does chunk p up to the minimum of (n, p's size) bytes, or null
33      if no space is available. The returned pointer may or may not be
34      the same as p. If p is null, equivalent to malloc.  Unless the
35      #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
36      size argument of zero (re)allocates a minimum-sized chunk.
37   memalign(size_t alignment, size_t n);
38      Return a pointer to a newly allocated chunk of n bytes, aligned
39      in accord with the alignment argument, which must be a power of
40      two.
41   valloc(size_t n);
42      Equivalent to memalign(pagesize, n), where pagesize is the page
43      size of the system (or as near to this as can be figured out from
44      all the includes/defines below.)
45   pvalloc(size_t n);
46      Equivalent to valloc(minimum-page-that-holds(n)), that is,
47      round up n to nearest pagesize.
48   calloc(size_t unit, size_t quantity);
49      Returns a pointer to quantity * unit bytes, with all locations
50      set to zero.
51   cfree(Void_t* p);
52      Equivalent to free(p).
53   malloc_trim(size_t pad);
54      Release all but pad bytes of freed top-most memory back
55      to the system. Return 1 if successful, else 0.
56   malloc_usable_size(Void_t* p);
57      Report the number usable allocated bytes associated with allocated
58      chunk p. This may or may not report more bytes than were requested,
59      due to alignment and minimum size constraints.
60   malloc_stats();
61      Prints brief summary statistics on stderr.
62   mallinfo()
63      Returns (by copy) a struct containing various summary statistics.
64   mallopt(int parameter_number, int parameter_value)
65      Changes one of the tunable parameters described below. Returns
66      1 if successful in changing the parameter, else 0.
67 
68 * Vital statistics:
69 
70   Alignment:                            8-byte
71        8 byte alignment is currently hardwired into the design.  This
72        seems to suffice for all current machines and C compilers.
73 
74   Assumed pointer representation:       4 or 8 bytes
75        Code for 8-byte pointers is untested by me but has worked
76        reliably by Wolfram Gloger, who contributed most of the
77        changes supporting this.
78 
79   Assumed size_t  representation:       4 or 8 bytes
80        Note that size_t is allowed to be 4 bytes even if pointers are 8.
81 
82   Minimum overhead per allocated chunk: 4 or 8 bytes
83        Each malloced chunk has a hidden overhead of 4 bytes holding size
84        and status information.
85 
86   Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
87 			  8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
88 
89        When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
90        ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
91        needed; 4 (8) for a trailing size field
92        and 8 (16) bytes for free list pointers. Thus, the minimum
93        allocatable size is 16/24/32 bytes.
94 
95        Even a request for zero bytes (i.e., malloc(0)) returns a
96        pointer to something of the minimum allocatable size.
97 
98   Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
99 			  8-byte size_t: 2^63 - 16 bytes
100 
101        It is assumed that (possibly signed) size_t bit values suffice to
102        represent chunk sizes. `Possibly signed' is due to the fact
103        that `size_t' may be defined on a system as either a signed or
104        an unsigned type. To be conservative, values that would appear
105        as negative numbers are avoided.
106        Requests for sizes with a negative sign bit when the request
107        size is treaded as a long will return null.
108 
109   Maximum overhead wastage per allocated chunk: normally 15 bytes
110 
111        Alignnment demands, plus the minimum allocatable size restriction
112        make the normal worst-case wastage 15 bytes (i.e., up to 15
113        more bytes will be allocated than were requested in malloc), with
114        two exceptions:
115 	 1. Because requests for zero bytes allocate non-zero space,
116 	    the worst case wastage for a request of zero bytes is 24 bytes.
117 	 2. For requests >= mmap_threshold that are serviced via
118 	    mmap(), the worst case wastage is 8 bytes plus the remainder
119 	    from a system page (the minimal mmap unit); typically 4096 bytes.
120 
121 * Limitations
122 
123     Here are some features that are NOT currently supported
124 
125     * No user-definable hooks for callbacks and the like.
126     * No automated mechanism for fully checking that all accesses
127       to malloced memory stay within their bounds.
128     * No support for compaction.
129 
130 * Synopsis of compile-time options:
131 
132     People have reported using previous versions of this malloc on all
133     versions of Unix, sometimes by tweaking some of the defines
134     below. It has been tested most extensively on Solaris and
135     Linux. It is also reported to work on WIN32 platforms.
136     People have also reported adapting this malloc for use in
137     stand-alone embedded systems.
138 
139     The implementation is in straight, hand-tuned ANSI C.  Among other
140     consequences, it uses a lot of macros.  Because of this, to be at
141     all usable, this code should be compiled using an optimizing compiler
142     (for example gcc -O2) that can simplify expressions and control
143     paths.
144 
145   __STD_C                  (default: derived from C compiler defines)
146      Nonzero if using ANSI-standard C compiler, a C++ compiler, or
147      a C compiler sufficiently close to ANSI to get away with it.
148   DEBUG                    (default: NOT defined)
149      Define to enable debugging. Adds fairly extensive assertion-based
150      checking to help track down memory errors, but noticeably slows down
151      execution.
152   REALLOC_ZERO_BYTES_FREES (default: NOT defined)
153      Define this if you think that realloc(p, 0) should be equivalent
154      to free(p). Otherwise, since malloc returns a unique pointer for
155      malloc(0), so does realloc(p, 0).
156   HAVE_MEMCPY               (default: defined)
157      Define if you are not otherwise using ANSI STD C, but still
158      have memcpy and memset in your C library and want to use them.
159      Otherwise, simple internal versions are supplied.
160   USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
161      Define as 1 if you want the C library versions of memset and
162      memcpy called in realloc and calloc (otherwise macro versions are used).
163      At least on some platforms, the simple macro versions usually
164      outperform libc versions.
165   HAVE_MMAP                 (default: defined as 1)
166      Define to non-zero to optionally make malloc() use mmap() to
167      allocate very large blocks.
168   HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
169      Define to non-zero to optionally make realloc() use mremap() to
170      reallocate very large blocks.
171   malloc_getpagesize        (default: derived from system #includes)
172      Either a constant or routine call returning the system page size.
173   HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
174      Optionally define if you are on a system with a /usr/include/malloc.h
175      that declares struct mallinfo. It is not at all necessary to
176      define this even if you do, but will ensure consistency.
177   INTERNAL_SIZE_T           (default: size_t)
178      Define to a 32-bit type (probably `unsigned int') if you are on a
179      64-bit machine, yet do not want or need to allow malloc requests of
180      greater than 2^31 to be handled. This saves space, especially for
181      very small chunks.
182   INTERNAL_LINUX_C_LIB      (default: NOT defined)
183      Defined only when compiled as part of Linux libc.
184      Also note that there is some odd internal name-mangling via defines
185      (for example, internally, `malloc' is named `mALLOc') needed
186      when compiling in this case. These look funny but don't otherwise
187      affect anything.
188   WIN32                     (default: undefined)
189      Define this on MS win (95, nt) platforms to compile in sbrk emulation.
190   LACKS_UNISTD_H            (default: undefined if not WIN32)
191      Define this if your system does not have a <unistd.h>.
192   LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
193      Define this if your system does not have a <sys/param.h>.
194   MORECORE                  (default: sbrk)
195      The name of the routine to call to obtain more memory from the system.
196   MORECORE_FAILURE          (default: -1)
197      The value returned upon failure of MORECORE.
198   MORECORE_CLEARS           (default 1)
199      true (1) if the routine mapped to MORECORE zeroes out memory (which
200      holds for sbrk).
201   DEFAULT_TRIM_THRESHOLD
202   DEFAULT_TOP_PAD
203   DEFAULT_MMAP_THRESHOLD
204   DEFAULT_MMAP_MAX
205      Default values of tunable parameters (described in detail below)
206      controlling interaction with host system routines (sbrk, mmap, etc).
207      These values may also be changed dynamically via mallopt(). The
208      preset defaults are those that give best performance for typical
209      programs/systems.
210   USE_DL_PREFIX             (default: undefined)
211      Prefix all public routines with the string 'dl'.  Useful to
212      quickly avoid procedure declaration conflicts and linker symbol
213      conflicts with existing memory allocation routines.
214 
215 
216 */
217 
218 
219 #ifndef __MALLOC_H__
220 #define __MALLOC_H__
221 
222 /* Preliminaries */
223 
224 #ifndef __STD_C
225 #ifdef __STDC__
226 #define __STD_C     1
227 #else
228 #if __cplusplus
229 #define __STD_C     1
230 #else
231 #define __STD_C     0
232 #endif /*__cplusplus*/
233 #endif /*__STDC__*/
234 #endif /*__STD_C*/
235 
236 #ifndef Void_t
237 #if (__STD_C || defined(WIN32))
238 #define Void_t      void
239 #else
240 #define Void_t      char
241 #endif
242 #endif /*Void_t*/
243 
244 #if __STD_C
245 #include <linux/stddef.h>	/* for size_t */
246 #else
247 #include <sys/types.h>
248 #endif	/* __STD_C */
249 
250 #ifdef __cplusplus
251 extern "C" {
252 #endif
253 
254 #if 0	/* not for U-Boot */
255 #include <stdio.h>	/* needed for malloc_stats */
256 #endif
257 
258 
259 /*
260   Compile-time options
261 */
262 
263 
264 /*
265     Debugging:
266 
267     Because freed chunks may be overwritten with link fields, this
268     malloc will often die when freed memory is overwritten by user
269     programs.  This can be very effective (albeit in an annoying way)
270     in helping track down dangling pointers.
271 
272     If you compile with -DDEBUG, a number of assertion checks are
273     enabled that will catch more memory errors. You probably won't be
274     able to make much sense of the actual assertion errors, but they
275     should help you locate incorrectly overwritten memory.  The
276     checking is fairly extensive, and will slow down execution
277     noticeably. Calling malloc_stats or mallinfo with DEBUG set will
278     attempt to check every non-mmapped allocated and free chunk in the
279     course of computing the summmaries. (By nature, mmapped regions
280     cannot be checked very much automatically.)
281 
282     Setting DEBUG may also be helpful if you are trying to modify
283     this code. The assertions in the check routines spell out in more
284     detail the assumptions and invariants underlying the algorithms.
285 
286 */
287 
288 /*
289   INTERNAL_SIZE_T is the word-size used for internal bookkeeping
290   of chunk sizes. On a 64-bit machine, you can reduce malloc
291   overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
292   at the expense of not being able to handle requests greater than
293   2^31. This limitation is hardly ever a concern; you are encouraged
294   to set this. However, the default version is the same as size_t.
295 */
296 
297 #ifndef INTERNAL_SIZE_T
298 #define INTERNAL_SIZE_T size_t
299 #endif
300 
301 /*
302   REALLOC_ZERO_BYTES_FREES should be set if a call to
303   realloc with zero bytes should be the same as a call to free.
304   Some people think it should. Otherwise, since this malloc
305   returns a unique pointer for malloc(0), so does realloc(p, 0).
306 */
307 
308 
309 /*   #define REALLOC_ZERO_BYTES_FREES */
310 
311 
312 /*
313   WIN32 causes an emulation of sbrk to be compiled in
314   mmap-based options are not currently supported in WIN32.
315 */
316 
317 /* #define WIN32 */
318 #ifdef WIN32
319 #define MORECORE wsbrk
320 #define HAVE_MMAP 0
321 
322 #define LACKS_UNISTD_H
323 #define LACKS_SYS_PARAM_H
324 
325 /*
326   Include 'windows.h' to get the necessary declarations for the
327   Microsoft Visual C++ data structures and routines used in the 'sbrk'
328   emulation.
329 
330   Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
331   Visual C++ header files are included.
332 */
333 #define WIN32_LEAN_AND_MEAN
334 #include <windows.h>
335 #endif
336 
337 
338 /*
339   HAVE_MEMCPY should be defined if you are not otherwise using
340   ANSI STD C, but still have memcpy and memset in your C library
341   and want to use them in calloc and realloc. Otherwise simple
342   macro versions are defined here.
343 
344   USE_MEMCPY should be defined as 1 if you actually want to
345   have memset and memcpy called. People report that the macro
346   versions are often enough faster than libc versions on many
347   systems that it is better to use them.
348 
349 */
350 
351 #define HAVE_MEMCPY
352 
353 #ifndef USE_MEMCPY
354 #ifdef HAVE_MEMCPY
355 #define USE_MEMCPY 1
356 #else
357 #define USE_MEMCPY 0
358 #endif
359 #endif
360 
361 #if (__STD_C || defined(HAVE_MEMCPY))
362 
363 #if __STD_C
364 void* memset(void*, int, size_t);
365 void* memcpy(void*, const void*, size_t);
366 #else
367 #ifdef WIN32
368 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
369 /* 'windows.h' */
370 #else
371 Void_t* memset();
372 Void_t* memcpy();
373 #endif
374 #endif
375 #endif
376 
377 #if USE_MEMCPY
378 
379 /* The following macros are only invoked with (2n+1)-multiples of
380    INTERNAL_SIZE_T units, with a positive integer n. This is exploited
381    for fast inline execution when n is small. */
382 
383 #define MALLOC_ZERO(charp, nbytes)                                            \
384 do {                                                                          \
385   INTERNAL_SIZE_T mzsz = (nbytes);                                            \
386   if(mzsz <= 9*sizeof(mzsz)) {                                                \
387     INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
388     if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
389 				     *mz++ = 0;                               \
390       if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
391 				     *mz++ = 0;                               \
392 	if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
393 				     *mz++ = 0; }}}                           \
394 				     *mz++ = 0;                               \
395 				     *mz++ = 0;                               \
396 				     *mz   = 0;                               \
397   } else memset((charp), 0, mzsz);                                            \
398 } while(0)
399 
400 #define MALLOC_COPY(dest,src,nbytes)                                          \
401 do {                                                                          \
402   INTERNAL_SIZE_T mcsz = (nbytes);                                            \
403   if(mcsz <= 9*sizeof(mcsz)) {                                                \
404     INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
405     INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
406     if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
407 				     *mcdst++ = *mcsrc++;                     \
408       if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
409 				     *mcdst++ = *mcsrc++;                     \
410 	if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
411 				     *mcdst++ = *mcsrc++; }}}                 \
412 				     *mcdst++ = *mcsrc++;                     \
413 				     *mcdst++ = *mcsrc++;                     \
414 				     *mcdst   = *mcsrc  ;                     \
415   } else memcpy(dest, src, mcsz);                                             \
416 } while(0)
417 
418 #else /* !USE_MEMCPY */
419 
420 /* Use Duff's device for good zeroing/copying performance. */
421 
422 #define MALLOC_ZERO(charp, nbytes)                                            \
423 do {                                                                          \
424   INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
425   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
426   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
427   switch (mctmp) {                                                            \
428     case 0: for(;;) { *mzp++ = 0;                                             \
429     case 7:           *mzp++ = 0;                                             \
430     case 6:           *mzp++ = 0;                                             \
431     case 5:           *mzp++ = 0;                                             \
432     case 4:           *mzp++ = 0;                                             \
433     case 3:           *mzp++ = 0;                                             \
434     case 2:           *mzp++ = 0;                                             \
435     case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
436   }                                                                           \
437 } while(0)
438 
439 #define MALLOC_COPY(dest,src,nbytes)                                          \
440 do {                                                                          \
441   INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
442   INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
443   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
444   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
445   switch (mctmp) {                                                            \
446     case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
447     case 7:           *mcdst++ = *mcsrc++;                                    \
448     case 6:           *mcdst++ = *mcsrc++;                                    \
449     case 5:           *mcdst++ = *mcsrc++;                                    \
450     case 4:           *mcdst++ = *mcsrc++;                                    \
451     case 3:           *mcdst++ = *mcsrc++;                                    \
452     case 2:           *mcdst++ = *mcsrc++;                                    \
453     case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
454   }                                                                           \
455 } while(0)
456 
457 #endif
458 
459 
460 /*
461   Define HAVE_MMAP to optionally make malloc() use mmap() to
462   allocate very large blocks.  These will be returned to the
463   operating system immediately after a free().
464 */
465 
466 /***
467 #ifndef HAVE_MMAP
468 #define HAVE_MMAP 1
469 #endif
470 ***/
471 #undef	HAVE_MMAP	/* Not available for U-Boot */
472 
473 /*
474   Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
475   large blocks.  This is currently only possible on Linux with
476   kernel versions newer than 1.3.77.
477 */
478 
479 /***
480 #ifndef HAVE_MREMAP
481 #ifdef INTERNAL_LINUX_C_LIB
482 #define HAVE_MREMAP 1
483 #else
484 #define HAVE_MREMAP 0
485 #endif
486 #endif
487 ***/
488 #undef	HAVE_MREMAP	/* Not available for U-Boot */
489 
490 #ifdef HAVE_MMAP
491 
492 #include <unistd.h>
493 #include <fcntl.h>
494 #include <sys/mman.h>
495 
496 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
497 #define MAP_ANONYMOUS MAP_ANON
498 #endif
499 
500 #endif /* HAVE_MMAP */
501 
502 /*
503   Access to system page size. To the extent possible, this malloc
504   manages memory from the system in page-size units.
505 
506   The following mechanics for getpagesize were adapted from
507   bsd/gnu getpagesize.h
508 */
509 
510 #define	LACKS_UNISTD_H	/* Shortcut for U-Boot */
511 #define	malloc_getpagesize	4096
512 
513 #ifndef LACKS_UNISTD_H
514 #  include <unistd.h>
515 #endif
516 
517 #ifndef malloc_getpagesize
518 #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
519 #    ifndef _SC_PAGE_SIZE
520 #      define _SC_PAGE_SIZE _SC_PAGESIZE
521 #    endif
522 #  endif
523 #  ifdef _SC_PAGE_SIZE
524 #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
525 #  else
526 #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
527        extern size_t getpagesize();
528 #      define malloc_getpagesize getpagesize()
529 #    else
530 #      ifdef WIN32
531 #        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
532 #      else
533 #        ifndef LACKS_SYS_PARAM_H
534 #          include <sys/param.h>
535 #        endif
536 #        ifdef EXEC_PAGESIZE
537 #          define malloc_getpagesize EXEC_PAGESIZE
538 #        else
539 #          ifdef NBPG
540 #            ifndef CLSIZE
541 #              define malloc_getpagesize NBPG
542 #            else
543 #              define malloc_getpagesize (NBPG * CLSIZE)
544 #            endif
545 #          else
546 #            ifdef NBPC
547 #              define malloc_getpagesize NBPC
548 #            else
549 #              ifdef PAGESIZE
550 #                define malloc_getpagesize PAGESIZE
551 #              else
552 #                define malloc_getpagesize (4096) /* just guess */
553 #              endif
554 #            endif
555 #          endif
556 #        endif
557 #      endif
558 #    endif
559 #  endif
560 #endif
561 
562 
563 /*
564 
565   This version of malloc supports the standard SVID/XPG mallinfo
566   routine that returns a struct containing the same kind of
567   information you can get from malloc_stats. It should work on
568   any SVID/XPG compliant system that has a /usr/include/malloc.h
569   defining struct mallinfo. (If you'd like to install such a thing
570   yourself, cut out the preliminary declarations as described above
571   and below and save them in a malloc.h file. But there's no
572   compelling reason to bother to do this.)
573 
574   The main declaration needed is the mallinfo struct that is returned
575   (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
576   bunch of fields, most of which are not even meaningful in this
577   version of malloc. Some of these fields are are instead filled by
578   mallinfo() with other numbers that might possibly be of interest.
579 
580   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
581   /usr/include/malloc.h file that includes a declaration of struct
582   mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
583   version is declared below.  These must be precisely the same for
584   mallinfo() to work.
585 
586 */
587 
588 /* #define HAVE_USR_INCLUDE_MALLOC_H */
589 
590 #ifdef HAVE_USR_INCLUDE_MALLOC_H
591 #include "/usr/include/malloc.h"
592 #else
593 
594 /* SVID2/XPG mallinfo structure */
595 
596 struct mallinfo {
597   int arena;    /* total space allocated from system */
598   int ordblks;  /* number of non-inuse chunks */
599   int smblks;   /* unused -- always zero */
600   int hblks;    /* number of mmapped regions */
601   int hblkhd;   /* total space in mmapped regions */
602   int usmblks;  /* unused -- always zero */
603   int fsmblks;  /* unused -- always zero */
604   int uordblks; /* total allocated space */
605   int fordblks; /* total non-inuse space */
606   int keepcost; /* top-most, releasable (via malloc_trim) space */
607 };
608 
609 /* SVID2/XPG mallopt options */
610 
611 #define M_MXFAST  1    /* UNUSED in this malloc */
612 #define M_NLBLKS  2    /* UNUSED in this malloc */
613 #define M_GRAIN   3    /* UNUSED in this malloc */
614 #define M_KEEP    4    /* UNUSED in this malloc */
615 
616 #endif
617 
618 /* mallopt options that actually do something */
619 
620 #define M_TRIM_THRESHOLD    -1
621 #define M_TOP_PAD           -2
622 #define M_MMAP_THRESHOLD    -3
623 #define M_MMAP_MAX          -4
624 
625 
626 #ifndef DEFAULT_TRIM_THRESHOLD
627 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
628 #endif
629 
630 /*
631     M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
632       to keep before releasing via malloc_trim in free().
633 
634       Automatic trimming is mainly useful in long-lived programs.
635       Because trimming via sbrk can be slow on some systems, and can
636       sometimes be wasteful (in cases where programs immediately
637       afterward allocate more large chunks) the value should be high
638       enough so that your overall system performance would improve by
639       releasing.
640 
641       The trim threshold and the mmap control parameters (see below)
642       can be traded off with one another. Trimming and mmapping are
643       two different ways of releasing unused memory back to the
644       system. Between these two, it is often possible to keep
645       system-level demands of a long-lived program down to a bare
646       minimum. For example, in one test suite of sessions measuring
647       the XF86 X server on Linux, using a trim threshold of 128K and a
648       mmap threshold of 192K led to near-minimal long term resource
649       consumption.
650 
651       If you are using this malloc in a long-lived program, it should
652       pay to experiment with these values.  As a rough guide, you
653       might set to a value close to the average size of a process
654       (program) running on your system.  Releasing this much memory
655       would allow such a process to run in memory.  Generally, it's
656       worth it to tune for trimming rather tham memory mapping when a
657       program undergoes phases where several large chunks are
658       allocated and released in ways that can reuse each other's
659       storage, perhaps mixed with phases where there are no such
660       chunks at all.  And in well-behaved long-lived programs,
661       controlling release of large blocks via trimming versus mapping
662       is usually faster.
663 
664       However, in most programs, these parameters serve mainly as
665       protection against the system-level effects of carrying around
666       massive amounts of unneeded memory. Since frequent calls to
667       sbrk, mmap, and munmap otherwise degrade performance, the default
668       parameters are set to relatively high values that serve only as
669       safeguards.
670 
671       The default trim value is high enough to cause trimming only in
672       fairly extreme (by current memory consumption standards) cases.
673       It must be greater than page size to have any useful effect.  To
674       disable trimming completely, you can set to (unsigned long)(-1);
675 
676 
677 */
678 
679 
680 #ifndef DEFAULT_TOP_PAD
681 #define DEFAULT_TOP_PAD        (0)
682 #endif
683 
684 /*
685     M_TOP_PAD is the amount of extra `padding' space to allocate or
686       retain whenever sbrk is called. It is used in two ways internally:
687 
688       * When sbrk is called to extend the top of the arena to satisfy
689 	a new malloc request, this much padding is added to the sbrk
690 	request.
691 
692       * When malloc_trim is called automatically from free(),
693 	it is used as the `pad' argument.
694 
695       In both cases, the actual amount of padding is rounded
696       so that the end of the arena is always a system page boundary.
697 
698       The main reason for using padding is to avoid calling sbrk so
699       often. Having even a small pad greatly reduces the likelihood
700       that nearly every malloc request during program start-up (or
701       after trimming) will invoke sbrk, which needlessly wastes
702       time.
703 
704       Automatic rounding-up to page-size units is normally sufficient
705       to avoid measurable overhead, so the default is 0.  However, in
706       systems where sbrk is relatively slow, it can pay to increase
707       this value, at the expense of carrying around more memory than
708       the program needs.
709 
710 */
711 
712 
713 #ifndef DEFAULT_MMAP_THRESHOLD
714 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
715 #endif
716 
717 /*
718 
719     M_MMAP_THRESHOLD is the request size threshold for using mmap()
720       to service a request. Requests of at least this size that cannot
721       be allocated using already-existing space will be serviced via mmap.
722       (If enough normal freed space already exists it is used instead.)
723 
724       Using mmap segregates relatively large chunks of memory so that
725       they can be individually obtained and released from the host
726       system. A request serviced through mmap is never reused by any
727       other request (at least not directly; the system may just so
728       happen to remap successive requests to the same locations).
729 
730       Segregating space in this way has the benefit that mmapped space
731       can ALWAYS be individually released back to the system, which
732       helps keep the system level memory demands of a long-lived
733       program low. Mapped memory can never become `locked' between
734       other chunks, as can happen with normally allocated chunks, which
735       menas that even trimming via malloc_trim would not release them.
736 
737       However, it has the disadvantages that:
738 
739 	 1. The space cannot be reclaimed, consolidated, and then
740 	    used to service later requests, as happens with normal chunks.
741 	 2. It can lead to more wastage because of mmap page alignment
742 	    requirements
743 	 3. It causes malloc performance to be more dependent on host
744 	    system memory management support routines which may vary in
745 	    implementation quality and may impose arbitrary
746 	    limitations. Generally, servicing a request via normal
747 	    malloc steps is faster than going through a system's mmap.
748 
749       All together, these considerations should lead you to use mmap
750       only for relatively large requests.
751 
752 
753 */
754 
755 
756 #ifndef DEFAULT_MMAP_MAX
757 #ifdef HAVE_MMAP
758 #define DEFAULT_MMAP_MAX       (64)
759 #else
760 #define DEFAULT_MMAP_MAX       (0)
761 #endif
762 #endif
763 
764 /*
765     M_MMAP_MAX is the maximum number of requests to simultaneously
766       service using mmap. This parameter exists because:
767 
768 	 1. Some systems have a limited number of internal tables for
769 	    use by mmap.
770 	 2. In most systems, overreliance on mmap can degrade overall
771 	    performance.
772 	 3. If a program allocates many large regions, it is probably
773 	    better off using normal sbrk-based allocation routines that
774 	    can reclaim and reallocate normal heap memory. Using a
775 	    small value allows transition into this mode after the
776 	    first few allocations.
777 
778       Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
779       the default value is 0, and attempts to set it to non-zero values
780       in mallopt will fail.
781 */
782 
783 
784 /*
785     USE_DL_PREFIX will prefix all public routines with the string 'dl'.
786       Useful to quickly avoid procedure declaration conflicts and linker
787       symbol conflicts with existing memory allocation routines.
788 
789 */
790 
791 /* #define USE_DL_PREFIX */
792 
793 
794 /*
795 
796   Special defines for linux libc
797 
798   Except when compiled using these special defines for Linux libc
799   using weak aliases, this malloc is NOT designed to work in
800   multithreaded applications.  No semaphores or other concurrency
801   control are provided to ensure that multiple malloc or free calls
802   don't run at the same time, which could be disasterous. A single
803   semaphore could be used across malloc, realloc, and free (which is
804   essentially the effect of the linux weak alias approach). It would
805   be hard to obtain finer granularity.
806 
807 */
808 
809 
810 #ifdef INTERNAL_LINUX_C_LIB
811 
812 #if __STD_C
813 
814 Void_t * __default_morecore_init (ptrdiff_t);
815 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
816 
817 #else
818 
819 Void_t * __default_morecore_init ();
820 Void_t *(*__morecore)() = __default_morecore_init;
821 
822 #endif
823 
824 #define MORECORE (*__morecore)
825 #define MORECORE_FAILURE 0
826 #define MORECORE_CLEARS 1
827 
828 #else /* INTERNAL_LINUX_C_LIB */
829 
830 #if __STD_C
831 extern Void_t*     sbrk(ptrdiff_t);
832 #else
833 extern Void_t*     sbrk();
834 #endif
835 
836 #ifndef MORECORE
837 #define MORECORE sbrk
838 #endif
839 
840 #ifndef MORECORE_FAILURE
841 #define MORECORE_FAILURE -1
842 #endif
843 
844 #ifndef MORECORE_CLEARS
845 #define MORECORE_CLEARS 1
846 #endif
847 
848 #endif /* INTERNAL_LINUX_C_LIB */
849 
850 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
851 
852 #define cALLOc		__libc_calloc
853 #define fREe		__libc_free
854 #define mALLOc		__libc_malloc
855 #define mEMALIGn	__libc_memalign
856 #define rEALLOc		__libc_realloc
857 #define vALLOc		__libc_valloc
858 #define pvALLOc		__libc_pvalloc
859 #define mALLINFo	__libc_mallinfo
860 #define mALLOPt		__libc_mallopt
861 
862 #pragma weak calloc = __libc_calloc
863 #pragma weak free = __libc_free
864 #pragma weak cfree = __libc_free
865 #pragma weak malloc = __libc_malloc
866 #pragma weak memalign = __libc_memalign
867 #pragma weak realloc = __libc_realloc
868 #pragma weak valloc = __libc_valloc
869 #pragma weak pvalloc = __libc_pvalloc
870 #pragma weak mallinfo = __libc_mallinfo
871 #pragma weak mallopt = __libc_mallopt
872 
873 #else
874 
875 #if CONFIG_IS_ENABLED(SYS_MALLOC_SIMPLE)
876 #define malloc malloc_simple
877 #define realloc realloc_simple
878 #define memalign memalign_simple
879 static inline void free(void *ptr) {}
880 void *calloc(size_t nmemb, size_t size);
881 void *memalign_simple(size_t alignment, size_t bytes);
882 void *realloc_simple(void *ptr, size_t size);
883 #else
884 
885 # ifdef USE_DL_PREFIX
886 # define cALLOc		dlcalloc
887 # define fREe		dlfree
888 # define mALLOc		dlmalloc
889 # define mEMALIGn	dlmemalign
890 # define rEALLOc		dlrealloc
891 # define vALLOc		dlvalloc
892 # define pvALLOc		dlpvalloc
893 # define mALLINFo	dlmallinfo
894 # define mALLOPt		dlmallopt
895 # else /* USE_DL_PREFIX */
896 # define cALLOc		calloc
897 # define fREe		free
898 # define mALLOc		malloc
899 # define mEMALIGn	memalign
900 # define rEALLOc		realloc
901 # define vALLOc		valloc
902 # define pvALLOc		pvalloc
903 # define mALLINFo	mallinfo
904 # define mALLOPt		mallopt
905 # endif /* USE_DL_PREFIX */
906 
907 #endif
908 
909 /* Set up pre-relocation malloc() ready for use */
910 int initf_malloc(void);
911 
912 /* Public routines */
913 
914 /* Simple versions which can be used when space is tight */
915 void *malloc_simple(size_t size);
916 
917 #pragma GCC visibility push(hidden)
918 # if __STD_C
919 
920 Void_t* mALLOc(size_t);
921 void    fREe(Void_t*);
922 Void_t* rEALLOc(Void_t*, size_t);
923 Void_t* mEMALIGn(size_t, size_t);
924 Void_t* vALLOc(size_t);
925 Void_t* pvALLOc(size_t);
926 Void_t* cALLOc(size_t, size_t);
927 void    cfree(Void_t*);
928 int     malloc_trim(size_t);
929 size_t  malloc_usable_size(Void_t*);
930 void    malloc_stats(void);
931 int     mALLOPt(int, int);
932 struct mallinfo mALLINFo(void);
933 # else
934 Void_t* mALLOc();
935 void    fREe();
936 Void_t* rEALLOc();
937 Void_t* mEMALIGn();
938 Void_t* vALLOc();
939 Void_t* pvALLOc();
940 Void_t* cALLOc();
941 void    cfree();
942 int     malloc_trim();
943 size_t  malloc_usable_size();
944 void    malloc_stats();
945 int     mALLOPt();
946 struct mallinfo mALLINFo();
947 # endif
948 #endif
949 #pragma GCC visibility pop
950 
951 /*
952  * Begin and End of memory area for malloc(), and current "brk"
953  */
954 extern ulong mem_malloc_start;
955 extern ulong mem_malloc_end;
956 extern ulong mem_malloc_brk;
957 
958 void mem_malloc_init(ulong start, ulong size);
959 
960 #ifdef __cplusplus
961 };  /* end of extern "C" */
962 #endif
963 
964 #endif /* __MALLOC_H__ */
965