xref: /openbmc/u-boot/include/linux/usb/gadget.h (revision 419adbfb)
1 /*
2  * <linux/usb/gadget.h>
3  *
4  * We call the USB code inside a Linux-based peripheral device a "gadget"
5  * driver, except for the hardware-specific bus glue.  One USB host can
6  * master many USB gadgets, but the gadgets are only slaved to one host.
7  *
8  *
9  * (C) Copyright 2002-2004 by David Brownell
10  * All Rights Reserved.
11  *
12  * This software is licensed under the GNU GPL version 2.
13  *
14  * Ported to U-boot by: Thomas Smits <ts.smits@gmail.com> and
15  *                      Remy Bohmer <linux@bohmer.net>
16  */
17 
18 #ifndef __LINUX_USB_GADGET_H
19 #define __LINUX_USB_GADGET_H
20 
21 #include <linux/list.h>
22 
23 struct usb_ep;
24 
25 /**
26  * struct usb_request - describes one i/o request
27  * @buf: Buffer used for data.  Always provide this; some controllers
28  *	only use PIO, or don't use DMA for some endpoints.
29  * @dma: DMA address corresponding to 'buf'.  If you don't set this
30  *	field, and the usb controller needs one, it is responsible
31  *	for mapping and unmapping the buffer.
32  * @length: Length of that data
33  * @no_interrupt: If true, hints that no completion irq is needed.
34  *	Helpful sometimes with deep request queues that are handled
35  *	directly by DMA controllers.
36  * @zero: If true, when writing data, makes the last packet be "short"
37  *     by adding a zero length packet as needed;
38  * @short_not_ok: When reading data, makes short packets be
39  *     treated as errors (queue stops advancing till cleanup).
40  * @complete: Function called when request completes, so this request and
41  *	its buffer may be re-used.
42  *	Reads terminate with a short packet, or when the buffer fills,
43  *	whichever comes first.  When writes terminate, some data bytes
44  *	will usually still be in flight (often in a hardware fifo).
45  *	Errors (for reads or writes) stop the queue from advancing
46  *	until the completion function returns, so that any transfers
47  *	invalidated by the error may first be dequeued.
48  * @context: For use by the completion callback
49  * @list: For use by the gadget driver.
50  * @status: Reports completion code, zero or a negative errno.
51  *	Normally, faults block the transfer queue from advancing until
52  *	the completion callback returns.
53  *	Code "-ESHUTDOWN" indicates completion caused by device disconnect,
54  *	or when the driver disabled the endpoint.
55  * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
56  *	transfers) this may be less than the requested length.  If the
57  *	short_not_ok flag is set, short reads are treated as errors
58  *	even when status otherwise indicates successful completion.
59  *	Note that for writes (IN transfers) some data bytes may still
60  *	reside in a device-side FIFO when the request is reported as
61  *	complete.
62  *
63  * These are allocated/freed through the endpoint they're used with.  The
64  * hardware's driver can add extra per-request data to the memory it returns,
65  * which often avoids separate memory allocations (potential failures),
66  * later when the request is queued.
67  *
68  * Request flags affect request handling, such as whether a zero length
69  * packet is written (the "zero" flag), whether a short read should be
70  * treated as an error (blocking request queue advance, the "short_not_ok"
71  * flag), or hinting that an interrupt is not required (the "no_interrupt"
72  * flag, for use with deep request queues).
73  *
74  * Bulk endpoints can use any size buffers, and can also be used for interrupt
75  * transfers. interrupt-only endpoints can be much less functional.
76  *
77  * NOTE:  this is analagous to 'struct urb' on the host side, except that
78  * it's thinner and promotes more pre-allocation.
79  */
80 
81 struct usb_request {
82 	void			*buf;
83 	unsigned		length;
84 	dma_addr_t		dma;
85 
86 	unsigned		no_interrupt:1;
87 	unsigned		zero:1;
88 	unsigned		short_not_ok:1;
89 
90 	void			(*complete)(struct usb_ep *ep,
91 					struct usb_request *req);
92 	void			*context;
93 	struct list_head	list;
94 
95 	int			status;
96 	unsigned		actual;
97 };
98 
99 /*-------------------------------------------------------------------------*/
100 
101 /* endpoint-specific parts of the api to the usb controller hardware.
102  * unlike the urb model, (de)multiplexing layers are not required.
103  * (so this api could slash overhead if used on the host side...)
104  *
105  * note that device side usb controllers commonly differ in how many
106  * endpoints they support, as well as their capabilities.
107  */
108 struct usb_ep_ops {
109 	int (*enable) (struct usb_ep *ep,
110 		const struct usb_endpoint_descriptor *desc);
111 	int (*disable) (struct usb_ep *ep);
112 
113 	struct usb_request *(*alloc_request) (struct usb_ep *ep,
114 		gfp_t gfp_flags);
115 	void (*free_request) (struct usb_ep *ep, struct usb_request *req);
116 
117 	int (*queue) (struct usb_ep *ep, struct usb_request *req,
118 		gfp_t gfp_flags);
119 	int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
120 
121 	int (*set_halt) (struct usb_ep *ep, int value);
122 	int (*fifo_status) (struct usb_ep *ep);
123 	void (*fifo_flush) (struct usb_ep *ep);
124 };
125 
126 /**
127  * struct usb_ep - device side representation of USB endpoint
128  * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
129  * @ops: Function pointers used to access hardware-specific operations.
130  * @ep_list:the gadget's ep_list holds all of its endpoints
131  * @maxpacket:The maximum packet size used on this endpoint.  The initial
132  *	value can sometimes be reduced (hardware allowing), according to
133  *      the endpoint descriptor used to configure the endpoint.
134  * @driver_data:for use by the gadget driver.  all other fields are
135  *	read-only to gadget drivers.
136  *
137  * the bus controller driver lists all the general purpose endpoints in
138  * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
139  * and is accessed only in response to a driver setup() callback.
140  */
141 struct usb_ep {
142 	void			*driver_data;
143 	const char		*name;
144 	const struct usb_ep_ops	*ops;
145 	struct list_head	ep_list;
146 	unsigned		maxpacket:16;
147 };
148 
149 /*-------------------------------------------------------------------------*/
150 
151 /**
152  * usb_ep_enable - configure endpoint, making it usable
153  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
154  *	drivers discover endpoints through the ep_list of a usb_gadget.
155  * @desc:descriptor for desired behavior.  caller guarantees this pointer
156  *	remains valid until the endpoint is disabled; the data byte order
157  *	is little-endian (usb-standard).
158  *
159  * when configurations are set, or when interface settings change, the driver
160  * will enable or disable the relevant endpoints.  while it is enabled, an
161  * endpoint may be used for i/o until the driver receives a disconnect() from
162  * the host or until the endpoint is disabled.
163  *
164  * the ep0 implementation (which calls this routine) must ensure that the
165  * hardware capabilities of each endpoint match the descriptor provided
166  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
167  * for interrupt transfers as well as bulk, but it likely couldn't be used
168  * for iso transfers or for endpoint 14.  some endpoints are fully
169  * configurable, with more generic names like "ep-a".  (remember that for
170  * USB, "in" means "towards the USB master".)
171  *
172  * returns zero, or a negative error code.
173  */
174 static inline int usb_ep_enable(struct usb_ep *ep,
175 				const struct usb_endpoint_descriptor *desc)
176 {
177 	return ep->ops->enable(ep, desc);
178 }
179 
180 /**
181  * usb_ep_disable - endpoint is no longer usable
182  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
183  *
184  * no other task may be using this endpoint when this is called.
185  * any pending and uncompleted requests will complete with status
186  * indicating disconnect (-ESHUTDOWN) before this call returns.
187  * gadget drivers must call usb_ep_enable() again before queueing
188  * requests to the endpoint.
189  *
190  * returns zero, or a negative error code.
191  */
192 static inline int usb_ep_disable(struct usb_ep *ep)
193 {
194 	return ep->ops->disable(ep);
195 }
196 
197 /**
198  * usb_ep_alloc_request - allocate a request object to use with this endpoint
199  * @ep:the endpoint to be used with with the request
200  * @gfp_flags:GFP_* flags to use
201  *
202  * Request objects must be allocated with this call, since they normally
203  * need controller-specific setup and may even need endpoint-specific
204  * resources such as allocation of DMA descriptors.
205  * Requests may be submitted with usb_ep_queue(), and receive a single
206  * completion callback.  Free requests with usb_ep_free_request(), when
207  * they are no longer needed.
208  *
209  * Returns the request, or null if one could not be allocated.
210  */
211 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
212 						       gfp_t gfp_flags)
213 {
214 	return ep->ops->alloc_request(ep, gfp_flags);
215 }
216 
217 /**
218  * usb_ep_free_request - frees a request object
219  * @ep:the endpoint associated with the request
220  * @req:the request being freed
221  *
222  * Reverses the effect of usb_ep_alloc_request().
223  * Caller guarantees the request is not queued, and that it will
224  * no longer be requeued (or otherwise used).
225  */
226 static inline void usb_ep_free_request(struct usb_ep *ep,
227 				       struct usb_request *req)
228 {
229 	ep->ops->free_request(ep, req);
230 }
231 
232 /**
233  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
234  * @ep:the endpoint associated with the request
235  * @req:the request being submitted
236  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
237  *	pre-allocate all necessary memory with the request.
238  *
239  * This tells the device controller to perform the specified request through
240  * that endpoint (reading or writing a buffer).  When the request completes,
241  * including being canceled by usb_ep_dequeue(), the request's completion
242  * routine is called to return the request to the driver.  Any endpoint
243  * (except control endpoints like ep0) may have more than one transfer
244  * request queued; they complete in FIFO order.  Once a gadget driver
245  * submits a request, that request may not be examined or modified until it
246  * is given back to that driver through the completion callback.
247  *
248  * Each request is turned into one or more packets.  The controller driver
249  * never merges adjacent requests into the same packet.  OUT transfers
250  * will sometimes use data that's already buffered in the hardware.
251  * Drivers can rely on the fact that the first byte of the request's buffer
252  * always corresponds to the first byte of some USB packet, for both
253  * IN and OUT transfers.
254  *
255  * Bulk endpoints can queue any amount of data; the transfer is packetized
256  * automatically.  The last packet will be short if the request doesn't fill it
257  * out completely.  Zero length packets (ZLPs) should be avoided in portable
258  * protocols since not all usb hardware can successfully handle zero length
259  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
260  * the request 'zero' flag is set.)  Bulk endpoints may also be used
261  * for interrupt transfers; but the reverse is not true, and some endpoints
262  * won't support every interrupt transfer.  (Such as 768 byte packets.)
263  *
264  * Interrupt-only endpoints are less functional than bulk endpoints, for
265  * example by not supporting queueing or not handling buffers that are
266  * larger than the endpoint's maxpacket size.  They may also treat data
267  * toggle differently.
268  *
269  * Control endpoints ... after getting a setup() callback, the driver queues
270  * one response (even if it would be zero length).  That enables the
271  * status ack, after transfering data as specified in the response.  Setup
272  * functions may return negative error codes to generate protocol stalls.
273  * (Note that some USB device controllers disallow protocol stall responses
274  * in some cases.)  When control responses are deferred (the response is
275  * written after the setup callback returns), then usb_ep_set_halt() may be
276  * used on ep0 to trigger protocol stalls.
277  *
278  * For periodic endpoints, like interrupt or isochronous ones, the usb host
279  * arranges to poll once per interval, and the gadget driver usually will
280  * have queued some data to transfer at that time.
281  *
282  * Returns zero, or a negative error code.  Endpoints that are not enabled
283  * report errors; errors will also be
284  * reported when the usb peripheral is disconnected.
285  */
286 static inline int usb_ep_queue(struct usb_ep *ep,
287 			       struct usb_request *req, gfp_t gfp_flags)
288 {
289 	return ep->ops->queue(ep, req, gfp_flags);
290 }
291 
292 /**
293  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
294  * @ep:the endpoint associated with the request
295  * @req:the request being canceled
296  *
297  * if the request is still active on the endpoint, it is dequeued and its
298  * completion routine is called (with status -ECONNRESET); else a negative
299  * error code is returned.
300  *
301  * note that some hardware can't clear out write fifos (to unlink the request
302  * at the head of the queue) except as part of disconnecting from usb.  such
303  * restrictions prevent drivers from supporting configuration changes,
304  * even to configuration zero (a "chapter 9" requirement).
305  */
306 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
307 {
308 	return ep->ops->dequeue(ep, req);
309 }
310 
311 /**
312  * usb_ep_set_halt - sets the endpoint halt feature.
313  * @ep: the non-isochronous endpoint being stalled
314  *
315  * Use this to stall an endpoint, perhaps as an error report.
316  * Except for control endpoints,
317  * the endpoint stays halted (will not stream any data) until the host
318  * clears this feature; drivers may need to empty the endpoint's request
319  * queue first, to make sure no inappropriate transfers happen.
320  *
321  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
322  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
323  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
324  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
325  *
326  * Returns zero, or a negative error code.  On success, this call sets
327  * underlying hardware state that blocks data transfers.
328  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
329  * transfer requests are still queued, or if the controller hardware
330  * (usually a FIFO) still holds bytes that the host hasn't collected.
331  */
332 static inline int usb_ep_set_halt(struct usb_ep *ep)
333 {
334 	return ep->ops->set_halt(ep, 1);
335 }
336 
337 /**
338  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
339  * @ep:the bulk or interrupt endpoint being reset
340  *
341  * Use this when responding to the standard usb "set interface" request,
342  * for endpoints that aren't reconfigured, after clearing any other state
343  * in the endpoint's i/o queue.
344  *
345  * Returns zero, or a negative error code.  On success, this call clears
346  * the underlying hardware state reflecting endpoint halt and data toggle.
347  * Note that some hardware can't support this request (like pxa2xx_udc),
348  * and accordingly can't correctly implement interface altsettings.
349  */
350 static inline int usb_ep_clear_halt(struct usb_ep *ep)
351 {
352 	return ep->ops->set_halt(ep, 0);
353 }
354 
355 /**
356  * usb_ep_fifo_status - returns number of bytes in fifo, or error
357  * @ep: the endpoint whose fifo status is being checked.
358  *
359  * FIFO endpoints may have "unclaimed data" in them in certain cases,
360  * such as after aborted transfers.  Hosts may not have collected all
361  * the IN data written by the gadget driver (and reported by a request
362  * completion).  The gadget driver may not have collected all the data
363  * written OUT to it by the host.  Drivers that need precise handling for
364  * fault reporting or recovery may need to use this call.
365  *
366  * This returns the number of such bytes in the fifo, or a negative
367  * errno if the endpoint doesn't use a FIFO or doesn't support such
368  * precise handling.
369  */
370 static inline int usb_ep_fifo_status(struct usb_ep *ep)
371 {
372 	if (ep->ops->fifo_status)
373 		return ep->ops->fifo_status(ep);
374 	else
375 		return -EOPNOTSUPP;
376 }
377 
378 /**
379  * usb_ep_fifo_flush - flushes contents of a fifo
380  * @ep: the endpoint whose fifo is being flushed.
381  *
382  * This call may be used to flush the "unclaimed data" that may exist in
383  * an endpoint fifo after abnormal transaction terminations.  The call
384  * must never be used except when endpoint is not being used for any
385  * protocol translation.
386  */
387 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
388 {
389 	if (ep->ops->fifo_flush)
390 		ep->ops->fifo_flush(ep);
391 }
392 
393 
394 /*-------------------------------------------------------------------------*/
395 
396 struct usb_gadget;
397 
398 /* the rest of the api to the controller hardware: device operations,
399  * which don't involve endpoints (or i/o).
400  */
401 struct usb_gadget_ops {
402 	int	(*get_frame)(struct usb_gadget *);
403 	int	(*wakeup)(struct usb_gadget *);
404 	int	(*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
405 	int	(*vbus_session) (struct usb_gadget *, int is_active);
406 	int	(*vbus_draw) (struct usb_gadget *, unsigned mA);
407 	int	(*pullup) (struct usb_gadget *, int is_on);
408 	int	(*ioctl)(struct usb_gadget *,
409 				unsigned code, unsigned long param);
410 };
411 
412 struct device {
413 	void		*driver_data;	/* data private to the driver */
414 };
415 
416 /**
417  * struct usb_gadget - represents a usb slave device
418  * @ops: Function pointers used to access hardware-specific operations.
419  * @ep0: Endpoint zero, used when reading or writing responses to
420  *	driver setup() requests
421  * @ep_list: List of other endpoints supported by the device.
422  * @speed: Speed of current connection to USB host.
423  * @is_dualspeed: True if the controller supports both high and full speed
424  *	operation.  If it does, the gadget driver must also support both.
425  * @is_otg: True if the USB device port uses a Mini-AB jack, so that the
426  *	gadget driver must provide a USB OTG descriptor.
427  * @is_a_peripheral: False unless is_otg, the "A" end of a USB cable
428  *	is in the Mini-AB jack, and HNP has been used to switch roles
429  *	so that the "A" device currently acts as A-Peripheral, not A-Host.
430  * @a_hnp_support: OTG device feature flag, indicating that the A-Host
431  *	supports HNP at this port.
432  * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
433  *	only supports HNP on a different root port.
434  * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
435  *	enabled HNP support.
436  * @name: Identifies the controller hardware type.  Used in diagnostics
437  *	and sometimes configuration.
438  * @dev: Driver model state for this abstract device.
439  *
440  * Gadgets have a mostly-portable "gadget driver" implementing device
441  * functions, handling all usb configurations and interfaces.  Gadget
442  * drivers talk to hardware-specific code indirectly, through ops vectors.
443  * That insulates the gadget driver from hardware details, and packages
444  * the hardware endpoints through generic i/o queues.  The "usb_gadget"
445  * and "usb_ep" interfaces provide that insulation from the hardware.
446  *
447  * Except for the driver data, all fields in this structure are
448  * read-only to the gadget driver.  That driver data is part of the
449  * "driver model" infrastructure in 2.6 (and later) kernels, and for
450  * earlier systems is grouped in a similar structure that's not known
451  * to the rest of the kernel.
452  *
453  * Values of the three OTG device feature flags are updated before the
454  * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
455  * driver suspend() calls.  They are valid only when is_otg, and when the
456  * device is acting as a B-Peripheral (so is_a_peripheral is false).
457  */
458 struct usb_gadget {
459 	/* readonly to gadget driver */
460 	const struct usb_gadget_ops	*ops;
461 	struct usb_ep			*ep0;
462 	struct list_head		ep_list;	/* of usb_ep */
463 	enum usb_device_speed		speed;
464 	unsigned			is_dualspeed:1;
465 	unsigned			is_otg:1;
466 	unsigned			is_a_peripheral:1;
467 	unsigned			b_hnp_enable:1;
468 	unsigned			a_hnp_support:1;
469 	unsigned			a_alt_hnp_support:1;
470 	const char			*name;
471 	struct device			dev;
472 };
473 
474 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
475 {
476 	gadget->dev.driver_data = data;
477 }
478 
479 static inline void *get_gadget_data(struct usb_gadget *gadget)
480 {
481 	return gadget->dev.driver_data;
482 }
483 
484 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
485 #define gadget_for_each_ep(tmp, gadget) \
486 	list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
487 
488 
489 /**
490  * gadget_is_dualspeed - return true iff the hardware handles high speed
491  * @g: controller that might support both high and full speeds
492  */
493 static inline int gadget_is_dualspeed(struct usb_gadget *g)
494 {
495 #ifdef CONFIG_USB_GADGET_DUALSPEED
496 	/* runtime test would check "g->is_dualspeed" ... that might be
497 	 * useful to work around hardware bugs, but is mostly pointless
498 	 */
499 	return 1;
500 #else
501 	return 0;
502 #endif
503 }
504 
505 /**
506  * gadget_is_otg - return true iff the hardware is OTG-ready
507  * @g: controller that might have a Mini-AB connector
508  *
509  * This is a runtime test, since kernels with a USB-OTG stack sometimes
510  * run on boards which only have a Mini-B (or Mini-A) connector.
511  */
512 static inline int gadget_is_otg(struct usb_gadget *g)
513 {
514 #ifdef CONFIG_USB_OTG
515 	return g->is_otg;
516 #else
517 	return 0;
518 #endif
519 }
520 
521 /**
522  * usb_gadget_frame_number - returns the current frame number
523  * @gadget: controller that reports the frame number
524  *
525  * Returns the usb frame number, normally eleven bits from a SOF packet,
526  * or negative errno if this device doesn't support this capability.
527  */
528 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
529 {
530 	return gadget->ops->get_frame(gadget);
531 }
532 
533 /**
534  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
535  * @gadget: controller used to wake up the host
536  *
537  * Returns zero on success, else negative error code if the hardware
538  * doesn't support such attempts, or its support has not been enabled
539  * by the usb host.  Drivers must return device descriptors that report
540  * their ability to support this, or hosts won't enable it.
541  *
542  * This may also try to use SRP to wake the host and start enumeration,
543  * even if OTG isn't otherwise in use.  OTG devices may also start
544  * remote wakeup even when hosts don't explicitly enable it.
545  */
546 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
547 {
548 	if (!gadget->ops->wakeup)
549 		return -EOPNOTSUPP;
550 	return gadget->ops->wakeup(gadget);
551 }
552 
553 /**
554  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
555  * @gadget:the device being declared as self-powered
556  *
557  * this affects the device status reported by the hardware driver
558  * to reflect that it now has a local power supply.
559  *
560  * returns zero on success, else negative errno.
561  */
562 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
563 {
564 	if (!gadget->ops->set_selfpowered)
565 		return -EOPNOTSUPP;
566 	return gadget->ops->set_selfpowered(gadget, 1);
567 }
568 
569 /**
570  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
571  * @gadget:the device being declared as bus-powered
572  *
573  * this affects the device status reported by the hardware driver.
574  * some hardware may not support bus-powered operation, in which
575  * case this feature's value can never change.
576  *
577  * returns zero on success, else negative errno.
578  */
579 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
580 {
581 	if (!gadget->ops->set_selfpowered)
582 		return -EOPNOTSUPP;
583 	return gadget->ops->set_selfpowered(gadget, 0);
584 }
585 
586 /**
587  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
588  * @gadget:The device which now has VBUS power.
589  *
590  * This call is used by a driver for an external transceiver (or GPIO)
591  * that detects a VBUS power session starting.  Common responses include
592  * resuming the controller, activating the D+ (or D-) pullup to let the
593  * host detect that a USB device is attached, and starting to draw power
594  * (8mA or possibly more, especially after SET_CONFIGURATION).
595  *
596  * Returns zero on success, else negative errno.
597  */
598 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
599 {
600 	if (!gadget->ops->vbus_session)
601 		return -EOPNOTSUPP;
602 	return gadget->ops->vbus_session(gadget, 1);
603 }
604 
605 /**
606  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
607  * @gadget:The device whose VBUS usage is being described
608  * @mA:How much current to draw, in milliAmperes.  This should be twice
609  *	the value listed in the configuration descriptor bMaxPower field.
610  *
611  * This call is used by gadget drivers during SET_CONFIGURATION calls,
612  * reporting how much power the device may consume.  For example, this
613  * could affect how quickly batteries are recharged.
614  *
615  * Returns zero on success, else negative errno.
616  */
617 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
618 {
619 	if (!gadget->ops->vbus_draw)
620 		return -EOPNOTSUPP;
621 	return gadget->ops->vbus_draw(gadget, mA);
622 }
623 
624 /**
625  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
626  * @gadget:the device whose VBUS supply is being described
627  *
628  * This call is used by a driver for an external transceiver (or GPIO)
629  * that detects a VBUS power session ending.  Common responses include
630  * reversing everything done in usb_gadget_vbus_connect().
631  *
632  * Returns zero on success, else negative errno.
633  */
634 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
635 {
636 	if (!gadget->ops->vbus_session)
637 		return -EOPNOTSUPP;
638 	return gadget->ops->vbus_session(gadget, 0);
639 }
640 
641 /**
642  * usb_gadget_connect - software-controlled connect to USB host
643  * @gadget:the peripheral being connected
644  *
645  * Enables the D+ (or potentially D-) pullup.  The host will start
646  * enumerating this gadget when the pullup is active and a VBUS session
647  * is active (the link is powered).  This pullup is always enabled unless
648  * usb_gadget_disconnect() has been used to disable it.
649  *
650  * Returns zero on success, else negative errno.
651  */
652 static inline int usb_gadget_connect(struct usb_gadget *gadget)
653 {
654 	if (!gadget->ops->pullup)
655 		return -EOPNOTSUPP;
656 	return gadget->ops->pullup(gadget, 1);
657 }
658 
659 /**
660  * usb_gadget_disconnect - software-controlled disconnect from USB host
661  * @gadget:the peripheral being disconnected
662  *
663  * Disables the D+ (or potentially D-) pullup, which the host may see
664  * as a disconnect (when a VBUS session is active).  Not all systems
665  * support software pullup controls.
666  *
667  * This routine may be used during the gadget driver bind() call to prevent
668  * the peripheral from ever being visible to the USB host, unless later
669  * usb_gadget_connect() is called.  For example, user mode components may
670  * need to be activated before the system can talk to hosts.
671  *
672  * Returns zero on success, else negative errno.
673  */
674 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
675 {
676 	if (!gadget->ops->pullup)
677 		return -EOPNOTSUPP;
678 	return gadget->ops->pullup(gadget, 0);
679 }
680 
681 
682 /*-------------------------------------------------------------------------*/
683 
684 /**
685  * struct usb_gadget_driver - driver for usb 'slave' devices
686  * @speed: Highest speed the driver handles.
687  * @bind: Invoked when the driver is bound to a gadget, usually
688  *	after registering the driver.
689  *	At that point, ep0 is fully initialized, and ep_list holds
690  *	the currently-available endpoints.
691  *	Called in a context that permits sleeping.
692  * @setup: Invoked for ep0 control requests that aren't handled by
693  *	the hardware level driver. Most calls must be handled by
694  *	the gadget driver, including descriptor and configuration
695  *	management.  The 16 bit members of the setup data are in
696  *	USB byte order. Called in_interrupt; this may not sleep.  Driver
697  *	queues a response to ep0, or returns negative to stall.
698  * @disconnect: Invoked after all transfers have been stopped,
699  *	when the host is disconnected.  May be called in_interrupt; this
700  *	may not sleep.  Some devices can't detect disconnect, so this might
701  *	not be called except as part of controller shutdown.
702  * @unbind: Invoked when the driver is unbound from a gadget,
703  *	usually from rmmod (after a disconnect is reported).
704  *	Called in a context that permits sleeping.
705  * @suspend: Invoked on USB suspend.  May be called in_interrupt.
706  * @resume: Invoked on USB resume.  May be called in_interrupt.
707  *
708  * Devices are disabled till a gadget driver successfully bind()s, which
709  * means the driver will handle setup() requests needed to enumerate (and
710  * meet "chapter 9" requirements) then do some useful work.
711  *
712  * If gadget->is_otg is true, the gadget driver must provide an OTG
713  * descriptor during enumeration, or else fail the bind() call.  In such
714  * cases, no USB traffic may flow until both bind() returns without
715  * having called usb_gadget_disconnect(), and the USB host stack has
716  * initialized.
717  *
718  * Drivers use hardware-specific knowledge to configure the usb hardware.
719  * endpoint addressing is only one of several hardware characteristics that
720  * are in descriptors the ep0 implementation returns from setup() calls.
721  *
722  * Except for ep0 implementation, most driver code shouldn't need change to
723  * run on top of different usb controllers.  It'll use endpoints set up by
724  * that ep0 implementation.
725  *
726  * The usb controller driver handles a few standard usb requests.  Those
727  * include set_address, and feature flags for devices, interfaces, and
728  * endpoints (the get_status, set_feature, and clear_feature requests).
729  *
730  * Accordingly, the driver's setup() callback must always implement all
731  * get_descriptor requests, returning at least a device descriptor and
732  * a configuration descriptor.  Drivers must make sure the endpoint
733  * descriptors match any hardware constraints. Some hardware also constrains
734  * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
735  *
736  * The driver's setup() callback must also implement set_configuration,
737  * and should also implement set_interface, get_configuration, and
738  * get_interface.  Setting a configuration (or interface) is where
739  * endpoints should be activated or (config 0) shut down.
740  *
741  * (Note that only the default control endpoint is supported.  Neither
742  * hosts nor devices generally support control traffic except to ep0.)
743  *
744  * Most devices will ignore USB suspend/resume operations, and so will
745  * not provide those callbacks.  However, some may need to change modes
746  * when the host is not longer directing those activities.  For example,
747  * local controls (buttons, dials, etc) may need to be re-enabled since
748  * the (remote) host can't do that any longer; or an error state might
749  * be cleared, to make the device behave identically whether or not
750  * power is maintained.
751  */
752 struct usb_gadget_driver {
753 	enum usb_device_speed	speed;
754 	int			(*bind)(struct usb_gadget *);
755 	void			(*unbind)(struct usb_gadget *);
756 	int			(*setup)(struct usb_gadget *,
757 					const struct usb_ctrlrequest *);
758 	void			(*disconnect)(struct usb_gadget *);
759 	void			(*suspend)(struct usb_gadget *);
760 	void			(*resume)(struct usb_gadget *);
761 };
762 
763 
764 /*-------------------------------------------------------------------------*/
765 
766 /* driver modules register and unregister, as usual.
767  * these calls must be made in a context that can sleep.
768  *
769  * these will usually be implemented directly by the hardware-dependent
770  * usb bus interface driver, which will only support a single driver.
771  */
772 
773 /**
774  * usb_gadget_register_driver - register a gadget driver
775  * @driver:the driver being registered
776  *
777  * Call this in your gadget driver's module initialization function,
778  * to tell the underlying usb controller driver about your driver.
779  * The driver's bind() function will be called to bind it to a
780  * gadget before this registration call returns.  It's expected that
781  * the bind() functions will be in init sections.
782  * This function must be called in a context that can sleep.
783  */
784 int usb_gadget_register_driver(struct usb_gadget_driver *driver);
785 
786 /**
787  * usb_gadget_unregister_driver - unregister a gadget driver
788  * @driver:the driver being unregistered
789  *
790  * Call this in your gadget driver's module cleanup function,
791  * to tell the underlying usb controller that your driver is
792  * going away.  If the controller is connected to a USB host,
793  * it will first disconnect().  The driver is also requested
794  * to unbind() and clean up any device state, before this procedure
795  * finally returns.  It's expected that the unbind() functions
796  * will in in exit sections, so may not be linked in some kernels.
797  * This function must be called in a context that can sleep.
798  */
799 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
800 
801 /*-------------------------------------------------------------------------*/
802 
803 /* utility to simplify dealing with string descriptors */
804 
805 /**
806  * struct usb_string - wraps a C string and its USB id
807  * @id:the (nonzero) ID for this string
808  * @s:the string, in UTF-8 encoding
809  *
810  * If you're using usb_gadget_get_string(), use this to wrap a string
811  * together with its ID.
812  */
813 struct usb_string {
814 	u8			id;
815 	const char		*s;
816 };
817 
818 /**
819  * struct usb_gadget_strings - a set of USB strings in a given language
820  * @language:identifies the strings' language (0x0409 for en-us)
821  * @strings:array of strings with their ids
822  *
823  * If you're using usb_gadget_get_string(), use this to wrap all the
824  * strings for a given language.
825  */
826 struct usb_gadget_strings {
827 	u16			language;	/* 0x0409 for en-us */
828 	struct usb_string	*strings;
829 };
830 
831 /* put descriptor for string with that id into buf (buflen >= 256) */
832 int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
833 
834 /*-------------------------------------------------------------------------*/
835 
836 /* utility to simplify managing config descriptors */
837 
838 /* write vector of descriptors into buffer */
839 int usb_descriptor_fillbuf(void *, unsigned,
840 		const struct usb_descriptor_header **);
841 
842 /* build config descriptor from single descriptor vector */
843 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
844 	void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
845 
846 /*-------------------------------------------------------------------------*/
847 
848 /* utility wrapping a simple endpoint selection policy */
849 
850 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
851 			struct usb_endpoint_descriptor *);
852 
853 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
854 
855 extern int usb_gadget_handle_interrupts(void);
856 
857 #endif	/* __LINUX_USB_GADGET_H */
858